file.c 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34 35 36

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

241 242
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
243
{
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
262

263
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
264 265 266
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

267 268 269
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

270 271
	if (spu_acquire(ctx))
		return NOPFN_REFAULT;
272

273 274
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
275
							& ~_PAGE_NO_CACHE);
276
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
277 278
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
279 280
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281
	}
282
	vm_insert_pfn(vma, address, pfn);
283

284
	spu_release(ctx);
285

286
	return NOPFN_REFAULT;
287 288
}

289

290
static struct vm_operations_struct spufs_mem_mmap_vmops = {
291
	.nopfn = spufs_mem_mmap_nopfn,
292 293
};

294
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
295
{
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

312 313
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
314

315
	vma->vm_flags |= VM_IO | VM_PFNMAP;
316 317 318 319
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
320 321 322
	return 0;
}

323
#ifdef CONFIG_SPU_FS_64K_LS
324 325 326
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

342
static const struct file_operations spufs_mem_fops = {
343 344 345 346 347 348
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
349 350 351
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
352 353
};

354
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
355
				    unsigned long address,
356
				    unsigned long ps_offs,
357
				    unsigned long ps_size)
358 359
{
	struct spu_context *ctx = vma->vm_file->private_data;
360
	unsigned long area, offset = address - vma->vm_start;
361
	int ret = 0;
362

363 364
	spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);

365
	offset += vma->vm_pgoff << PAGE_SHIFT;
366
	if (offset >= ps_size)
367
		return NOPFN_SIGBUS;
368

369 370 371 372 373 374 375
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
	 * to return NOPFN_REFAULT because the mappings may have
	 * hanged.
376
	 */
377 378 379
	if (spu_acquire(ctx))
		return NOPFN_REFAULT;

380 381
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
382
		spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
383
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
384
		spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
385
		down_read(&current->mm->mmap_sem);
386 387 388
	} else {
		area = ctx->spu->problem_phys + ps_offs;
		vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
389
		spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
390
	}
391

392 393
	if (!ret)
		spu_release(ctx);
394
	return NOPFN_REFAULT;
395 396
}

397
#if SPUFS_MMAP_4K
398 399
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
400
{
401
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
402 403 404
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
405
	.nopfn = spufs_cntl_mmap_nopfn,
406 407 408 409 410 411 412 413 414 415
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

416
	vma->vm_flags |= VM_IO | VM_PFNMAP;
417
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
418
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
419 420 421 422

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
423 424 425
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
426

427
static int spufs_cntl_get(void *data, u64 *val)
428
{
429
	struct spu_context *ctx = data;
430
	int ret;
431

432 433 434
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
435
	*val = ctx->ops->status_read(ctx);
436 437
	spu_release(ctx);

438
	return 0;
439 440
}

441
static int spufs_cntl_set(void *data, u64 val)
442
{
443
	struct spu_context *ctx = data;
444
	int ret;
445

446 447 448
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
449 450
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
451 452

	return 0;
453 454
}

455
static int spufs_cntl_open(struct inode *inode, struct file *file)
456
{
457 458 459
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

460
	mutex_lock(&ctx->mapping_lock);
461
	file->private_data = ctx;
462 463
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
464
	mutex_unlock(&ctx->mapping_lock);
465
	return simple_attr_open(inode, file, spufs_cntl_get,
466
					spufs_cntl_set, "0x%08lx");
467 468
}

469 470 471 472 473 474
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

475
	simple_attr_release(inode, file);
476

477
	mutex_lock(&ctx->mapping_lock);
478 479
	if (!--i->i_openers)
		ctx->cntl = NULL;
480
	mutex_unlock(&ctx->mapping_lock);
481 482 483
	return 0;
}

484
static const struct file_operations spufs_cntl_fops = {
485
	.open = spufs_cntl_open,
486
	.release = spufs_cntl_release,
487 488
	.read = simple_attr_read,
	.write = simple_attr_write,
489 490 491
	.mmap = spufs_cntl_mmap,
};

492 493 494 495 496 497 498 499
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

500 501 502 503 504 505 506 507 508
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

509 510 511 512 513
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
514
	struct spu_context *ctx = file->private_data;
515

516 517 518
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
519
	ret = __spufs_regs_read(ctx, buffer, size, pos);
520
	spu_release_saved(ctx);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

537 538 539
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
540 541 542 543

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

544
	spu_release_saved(ctx);
545 546 547
	return ret;
}

548
static const struct file_operations spufs_regs_fops = {
549 550 551
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
552 553 554
	.llseek  = generic_file_llseek,
};

555 556 557 558 559 560 561 562 563
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

564 565 566 567 568
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
569
	struct spu_context *ctx = file->private_data;
570

571 572 573
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
574
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
575
	spu_release_saved(ctx);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

591 592 593
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
594

595
	*pos += size;
596 597 598
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

599
	spu_release_saved(ctx);
600 601 602
	return ret;
}

603
static const struct file_operations spufs_fpcr_fops = {
604 605 606 607 608 609
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

610 611 612 613 614 615 616 617 618
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

619 620 621 622 623 624 625 626
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
627 628 629
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
630
	struct spu_context *ctx = file->private_data;
631 632
	u32 mbox_data, __user *udata;
	ssize_t count;
633 634 635 636

	if (len < 4)
		return -EINVAL;

637 638 639 640 641
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

642 643 644 645
	count = spu_acquire(ctx);
	if (count)
		return count;

646
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
664
	spu_release(ctx);
665

666 667
	if (!count)
		count = -EAGAIN;
668

669
	return count;
670 671
}

672
static const struct file_operations spufs_mbox_fops = {
673 674 675 676 677 678 679
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
680
	struct spu_context *ctx = file->private_data;
681
	ssize_t ret;
682 683 684 685 686
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

687 688 689
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
690 691 692 693

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
694 695 696 697 698 699 700

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

701
static const struct file_operations spufs_mbox_stat_fops = {
702 703 704 705 706
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
707
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
708
{
709 710
	return ctx->ops->ibox_read(ctx, data);
}
711

712 713 714
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
715

716
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
717 718
}

719 720
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
721
{
722 723
	struct spu_context *ctx = spu->ctx;

724 725 726
	if (!ctx)
		return;

727 728
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
743 744 745
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
746
	struct spu_context *ctx = file->private_data;
747 748
	u32 ibox_data, __user *udata;
	ssize_t count;
749 750 751 752

	if (len < 4)
		return -EINVAL;

753 754 755 756 757
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

758 759
	count = spu_acquire(ctx);
	if (count)
760
		goto out;
761

762 763
	/* wait only for the first element */
	count = 0;
764
	if (file->f_flags & O_NONBLOCK) {
765
		if (!spu_ibox_read(ctx, &ibox_data)) {
766
			count = -EAGAIN;
767 768
			goto out_unlock;
		}
769
	} else {
770
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
771 772
		if (count)
			goto out;
773 774
	}

775 776 777
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
778
		goto out_unlock;
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
794

795
out_unlock:
796
	spu_release(ctx);
797
out:
798
	return count;
799 800 801 802
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
803
	struct spu_context *ctx = file->private_data;
804 805
	unsigned int mask;

806
	poll_wait(file, &ctx->ibox_wq, wait);
807

808 809 810 811 812
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
813 814
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
815 816 817 818

	return mask;
}

819
static const struct file_operations spufs_ibox_fops = {
820 821 822 823 824 825 826 827 828
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
829
	struct spu_context *ctx = file->private_data;
830
	ssize_t ret;
831 832 833 834 835
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

836 837 838
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
839 840
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
841 842 843 844 845 846 847

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

848
static const struct file_operations spufs_ibox_stat_fops = {
849 850 851 852 853
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
854
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
855
{
856 857
	return ctx->ops->wbox_write(ctx, data);
}
858

859 860 861 862
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
863

864
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
865 866 867 868

	return ret;
}

869 870
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
871
{
872 873
	struct spu_context *ctx = spu->ctx;

874 875 876
	if (!ctx)
		return;

877 878
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
879 880
}

881 882 883 884 885 886 887 888 889 890 891 892
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
893 894 895
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
896
	struct spu_context *ctx = file->private_data;
897 898
	u32 wbox_data, __user *udata;
	ssize_t count;
899 900 901 902

	if (len < 4)
		return -EINVAL;

903 904 905 906 907
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
908 909
		return -EFAULT;

910 911
	count = spu_acquire(ctx);
	if (count)
912
		goto out;
913

914 915 916 917 918
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
919
	if (file->f_flags & O_NONBLOCK) {
920
		if (!spu_wbox_write(ctx, wbox_data)) {
921
			count = -EAGAIN;
922 923
			goto out_unlock;
		}
924
	} else {
925
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
926 927
		if (count)
			goto out;
928 929
	}

930

931
	/* write as much as possible */
932 933 934 935 936 937 938 939 940 941 942
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

943
out_unlock:
944
	spu_release(ctx);
945
out:
946
	return count;
947 948 949 950
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
951
	struct spu_context *ctx = file->private_data;
952 953
	unsigned int mask;

954
	poll_wait(file, &ctx->wbox_wq, wait);
955

956 957 958 959 960
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
961 962
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
963 964 965 966

	return mask;
}

967
static const struct file_operations spufs_wbox_fops = {
968 969 970 971 972 973 974 975 976
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
977
	struct spu_context *ctx = file->private_data;
978
	ssize_t ret;
979 980 981 982 983
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

984 985 986
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
987 988
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
989 990 991 992 993 994 995

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

996
static const struct file_operations spufs_wbox_stat_fops = {
997 998 999 1000
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1001 1002 1003 1004
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1005

1006
	mutex_lock(&ctx->mapping_lock);
1007
	file->private_data = ctx;
1008 1009
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1010
	mutex_unlock(&ctx->mapping_lock);
1011 1012 1013
	return nonseekable_open(inode, file);
}

1014 1015 1016 1017 1018 1019
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1020
	mutex_lock(&ctx->mapping_lock);
1021 1022
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1023
	mutex_unlock(&ctx->mapping_lock);
1024 1025 1026
	return 0;
}

1027
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1028 1029
			size_t len, loff_t *pos)
{
1030
	int ret = 0;
1031 1032 1033 1034 1035
	u32 data;

	if (len < 4)
		return -EINVAL;

1036 1037 1038 1039
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1040

1041 1042 1043
	if (!ret)
		goto out;

1044 1045 1046
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1047 1048
out:
	return ret;
1049 1050
}

1051 1052 1053 1054 1055 1056
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1057 1058 1059
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1060
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1061
	spu_release_saved(ctx);
1062 1063 1064 1065

	return ret;
}

1066 1067 1068 1069
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1070
	ssize_t ret;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1081 1082 1083
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1084 1085
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1086 1087 1088 1089

	return 4;
}

1090 1091
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1092
{
1093
#if PAGE_SIZE == 0x1000
1094
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1095 1096 1097 1098
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1099
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1100 1101 1102
#else
#error unsupported page size
#endif
1103 1104 1105
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1106
	.nopfn = spufs_signal1_mmap_nopfn,
1107 1108 1109 1110 1111 1112 1113
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1114
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1115
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1116
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1117 1118 1119 1120 1121

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1122
static const struct file_operations spufs_signal1_fops = {
1123
	.open = spufs_signal1_open,
1124
	.release = spufs_signal1_release,
1125 1126
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1127
	.mmap = spufs_signal1_mmap,
1128 1129
};

1130 1131 1132 1133 1134 1135 1136
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1137 1138 1139 1140
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1141

1142
	mutex_lock(&ctx->mapping_lock);
1143
	file->private_data = ctx;
1144 1145
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1146
	mutex_unlock(&ctx->mapping_lock);
1147 1148 1149
	return nonseekable_open(inode, file);
}

1150 1151 1152 1153 1154 1155
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1156
	mutex_lock(&ctx->mapping_lock);
1157 1158
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1159
	mutex_unlock(&ctx->mapping_lock);
1160 1161 1162
	return 0;
}

1163
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1164 1165
			size_t len, loff_t *pos)
{
1166
	int ret = 0;
1167 1168 1169 1170 1171
	u32 data;

	if (len < 4)
		return -EINVAL;

1172 1173 1174 1175
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1176

1177 1178 1179
	if (!ret)
		goto out;

1180 1181 1182
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1183
out:
1184 1185 1186 1187 1188 1189 1190 1191 1192
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1193 1194 1195
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1196
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1197
	spu_release_saved(ctx);
1198 1199

	return ret;
1200 1201 1202 1203 1204 1205
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1206
	ssize_t ret;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1217 1218 1219
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1220 1221
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1222 1223 1224 1225

	return 4;
}

1226
#if SPUFS_MMAP_4K
1227 1228
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1229
{
1230
#if PAGE_SIZE == 0x1000
1231
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1232 1233 1234 1235
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1236
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1237 1238 1239
#else
#error unsupported page size
#endif
1240 1241 1242
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1243
	.nopfn = spufs_signal2_mmap_nopfn,
1244 1245 1246 1247 1248 1249 1250
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1251
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1252
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1253
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1254 1255 1256 1257

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1258 1259 1260
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1261

1262
static const struct file_operations spufs_signal2_fops = {
1263
	.open = spufs_signal2_open,
1264
	.release = spufs_signal2_release,
1265 1266
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1267
	.mmap = spufs_signal2_mmap,
1268 1269
};

1270 1271 1272 1273 1274 1275 1276
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1287
static int __##__get(void *data, u64 *val)				\
1288 1289
{									\
	struct spu_context *ctx = data;					\
1290
	int ret = 0;							\
1291 1292
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1293 1294 1295
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1296
		*val = __get(ctx);					\
1297 1298
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1299 1300 1301
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1302
		*val = __get(ctx);					\
1303 1304
		spu_release_saved(ctx);					\
	} else								\
1305
		*val = __get(ctx);					\
1306
									\
1307
	return 0;							\
1308
}									\
1309
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1310

1311
static int spufs_signal1_type_set(void *data, u64 val)
1312 1313
{
	struct spu_context *ctx = data;
1314
	int ret;
1315

1316 1317 1318
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1319 1320
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1321 1322

	return 0;
1323 1324
}

1325
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1326 1327 1328
{
	return ctx->ops->signal1_type_get(ctx);
}
1329 1330
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
		       spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1331

1332

1333
static int spufs_signal2_type_set(void *data, u64 val)
1334 1335
{
	struct spu_context *ctx = data;
1336
	int ret;
1337

1338 1339 1340
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1341 1342
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1343 1344

	return 0;
1345 1346
}

1347
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1348 1349 1350
{
	return ctx->ops->signal2_type_get(ctx);
}
1351 1352
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
		       spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1353

1354
#if SPUFS_MMAP_4K
1355 1356
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1357
{
1358
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1359 1360 1361
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1362
	.nopfn = spufs_mss_mmap_nopfn,
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1373
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1374
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1375
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1376 1377 1378 1379

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1380 1381 1382
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1383 1384 1385 1386

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1387
	struct spu_context *ctx = i->i_ctx;
1388 1389

	file->private_data = i->i_ctx;
1390

1391
	mutex_lock(&ctx->mapping_lock);
1392 1393
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1394
	mutex_unlock(&ctx->mapping_lock);
1395 1396 1397
	return nonseekable_open(inode, file);
}

1398 1399 1400 1401 1402 1403
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1404
	mutex_lock(&ctx->mapping_lock);
1405 1406
	if (!--i->i_openers)
		ctx->mss = NULL;
1407
	mutex_unlock(&ctx->mapping_lock);
1408 1409 1410
	return 0;
}

1411
static const struct file_operations spufs_mss_fops = {
1412
	.open	 = spufs_mss_open,
1413
	.release = spufs_mss_release,
1414
	.mmap	 = spufs_mss_mmap,
1415 1416
};

1417 1418
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1419
{
1420
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1421 1422 1423
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1424
	.nopfn = spufs_psmap_mmap_nopfn,
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1435
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1446
	struct spu_context *ctx = i->i_ctx;
1447

1448
	mutex_lock(&ctx->mapping_lock);
1449
	file->private_data = i->i_ctx;
1450 1451
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1452
	mutex_unlock(&ctx->mapping_lock);
1453 1454 1455
	return nonseekable_open(inode, file);
}

1456 1457 1458 1459 1460 1461
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1462
	mutex_lock(&ctx->mapping_lock);
1463 1464
	if (!--i->i_openers)
		ctx->psmap = NULL;
1465
	mutex_unlock(&ctx->mapping_lock);
1466 1467 1468
	return 0;
}

1469
static const struct file_operations spufs_psmap_fops = {
1470
	.open	 = spufs_psmap_open,
1471
	.release = spufs_psmap_release,
1472
	.mmap	 = spufs_psmap_mmap,
1473 1474 1475
};


1476
#if SPUFS_MMAP_4K
1477 1478
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1479
{
1480
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1481 1482 1483
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1484
	.nopfn = spufs_mfc_mmap_nopfn,
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1495
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1496
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1497
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1498 1499 1500 1501

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1502 1503 1504
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1518
	mutex_lock(&ctx->mapping_lock);
1519
	file->private_data = ctx;
1520 1521
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1522
	mutex_unlock(&ctx->mapping_lock);
1523 1524 1525
	return nonseekable_open(inode, file);
}

1526 1527 1528 1529 1530 1531
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1532
	mutex_lock(&ctx->mapping_lock);
1533 1534
	if (!--i->i_openers)
		ctx->mfc = NULL;
1535
	mutex_unlock(&ctx->mapping_lock);
1536 1537 1538
	return 0;
}

1539 1540 1541 1542 1543
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1544 1545 1546
	if (!ctx)
		return;

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1593 1594 1595 1596 1597
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1598 1599 1600 1601 1602
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1603
			/* XXX(hch): shouldn't we clear ret here? */
1604 1605 1606 1607
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1608 1609
		if (ret)
			goto out;
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1727 1728 1729 1730
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1731
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1732 1733 1734
	if (ret)
		goto out;

1735 1736 1737 1738 1739 1740
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1741 1742
		if (ret)
			goto out;
1743 1744 1745 1746 1747
		if (status)
			ret = status;
	}

	if (ret)
1748
		goto out_unlock;
1749 1750

	ctx->tagwait |= 1 << cmd.tag;
1751
	ret = size;
1752

1753 1754
out_unlock:
	spu_release(ctx);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1765 1766
	poll_wait(file, &ctx->mfc_wq, wait);

1767 1768 1769 1770 1771
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1789
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1790 1791 1792 1793
{
	struct spu_context *ctx = file->private_data;
	int ret;

1794 1795
	ret = spu_acquire(ctx);
	if (ret)
1796
		goto out;
1797 1798 1799 1800 1801 1802 1803 1804
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1805 1806
	if (ret)
		goto out;
1807 1808 1809 1810
#else
	ret = 0;
#endif
	spu_release(ctx);
1811
out:
1812 1813 1814 1815 1816 1817
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1818
	return spufs_mfc_flush(file, NULL);
1819 1820 1821 1822 1823 1824 1825 1826 1827
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1828
static const struct file_operations spufs_mfc_fops = {
1829
	.open	 = spufs_mfc_open,
1830
	.release = spufs_mfc_release,
1831 1832 1833 1834 1835 1836
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1837
	.mmap	 = spufs_mfc_mmap,
1838 1839
};

1840
static int spufs_npc_set(void *data, u64 val)
1841 1842
{
	struct spu_context *ctx = data;
1843 1844 1845 1846 1847
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1848 1849
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1850 1851

	return 0;
1852 1853
}

1854
static u64 spufs_npc_get(struct spu_context *ctx)
1855 1856 1857
{
	return ctx->ops->npc_read(ctx);
}
1858 1859
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1860

1861
static int spufs_decr_set(void *data, u64 val)
1862 1863 1864
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1865 1866 1867 1868 1869
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1870
	lscsa->decr.slot[0] = (u32) val;
1871
	spu_release_saved(ctx);
1872 1873

	return 0;
1874 1875
}

1876
static u64 spufs_decr_get(struct spu_context *ctx)
1877 1878
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1879 1880
	return lscsa->decr.slot[0];
}
1881 1882
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1883

1884
static int spufs_decr_status_set(void *data, u64 val)
1885 1886
{
	struct spu_context *ctx = data;
1887 1888 1889 1890 1891
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1892 1893 1894 1895
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1896
	spu_release_saved(ctx);
1897 1898

	return 0;
1899 1900
}

1901
static u64 spufs_decr_status_get(struct spu_context *ctx)
1902
{
1903 1904 1905 1906
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1907
}
1908 1909 1910
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1911

1912
static int spufs_event_mask_set(void *data, u64 val)
1913 1914 1915
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1916 1917 1918 1919 1920
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1921
	lscsa->event_mask.slot[0] = (u32) val;
1922
	spu_release_saved(ctx);
1923 1924

	return 0;
1925 1926
}

1927
static u64 spufs_event_mask_get(struct spu_context *ctx)
1928 1929
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1930 1931 1932
	return lscsa->event_mask.slot[0];
}

1933 1934 1935
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1936

1937
static u64 spufs_event_status_get(struct spu_context *ctx)
1938 1939 1940 1941 1942
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1943 1944 1945
		return state->spu_chnldata_RW[0];
	return 0;
}
1946 1947
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1948

1949
static int spufs_srr0_set(void *data, u64 val)
1950 1951 1952
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1953 1954 1955 1956 1957
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1958
	lscsa->srr0.slot[0] = (u32) val;
1959
	spu_release_saved(ctx);
1960 1961

	return 0;
1962 1963
}

1964
static u64 spufs_srr0_get(struct spu_context *ctx)
1965 1966
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1967
	return lscsa->srr0.slot[0];
1968
}
1969 1970
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1971

1972
static u64 spufs_id_get(struct spu_context *ctx)
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1983 1984
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1985

1986
static u64 spufs_object_id_get(struct spu_context *ctx)
1987 1988
{
	/* FIXME: Should there really be no locking here? */
1989
	return ctx->object_id;
1990 1991
}

1992
static int spufs_object_id_set(void *data, u64 id)
1993 1994 1995
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
1996 1997

	return 0;
1998 1999
}

2000 2001
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2002

2003
static u64 spufs_lslr_get(struct spu_context *ctx)
2004 2005 2006
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2007 2008
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2009 2010 2011 2012 2013 2014 2015 2016 2017

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2041 2042 2043 2044 2045
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2046 2047 2048 2049 2050
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2051 2052 2053 2054

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2055 2056 2057
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2058
	int ret;
2059 2060 2061 2062 2063
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2064 2065 2066
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2067
	spin_lock(&ctx->csa.register_lock);
2068
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2069
	spin_unlock(&ctx->csa.register_lock);
2070
	spu_release_saved(ctx);
2071

2072
	return ret;
2073 2074
}

2075
static const struct file_operations spufs_mbox_info_fops = {
2076 2077 2078 2079 2080
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2081 2082 2083 2084 2085
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2086 2087 2088 2089 2090
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2091 2092 2093 2094

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2095 2096 2097 2098
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2099
	int ret;
2100 2101 2102 2103

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2104 2105 2106
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2107
	spin_lock(&ctx->csa.register_lock);
2108
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2109
	spin_unlock(&ctx->csa.register_lock);
2110
	spu_release_saved(ctx);
2111

2112
	return ret;
2113 2114
}

2115
static const struct file_operations spufs_ibox_info_fops = {
2116 2117 2118 2119 2120
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2121 2122
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2123 2124 2125 2126 2127
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2144 2145 2146
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2147 2148 2149
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2150
	spin_lock(&ctx->csa.register_lock);
2151
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2152
	spin_unlock(&ctx->csa.register_lock);
2153
	spu_release_saved(ctx);
2154

2155
	return ret;
2156 2157
}

2158
static const struct file_operations spufs_wbox_info_fops = {
2159 2160 2161 2162 2163
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2164 2165
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2190 2191 2192 2193 2194 2195 2196 2197 2198
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2199 2200 2201
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2202 2203 2204
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2205
	spu_release_saved(ctx);
2206 2207 2208 2209

	return ret;
}

2210
static const struct file_operations spufs_dma_info_fops = {
2211 2212 2213 2214
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2215 2216
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2217 2218 2219
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2220
	int ret = sizeof info;
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2252 2253 2254
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2255 2256
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2257
	spin_unlock(&ctx->csa.register_lock);
2258
	spu_release_saved(ctx);
2259 2260 2261 2262

	return ret;
}

2263
static const struct file_operations spufs_proxydma_info_fops = {
2264 2265 2266 2267
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2288 2289 2290 2291 2292
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2293
		enum spu_utilization_state state)
2294
{
2295 2296
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2297

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2311

2312
	return time / NSEC_PER_MSEC;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2343 2344 2345 2346 2347
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2348 2349 2350

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2351 2352 2353 2354 2355
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


2381
struct tree_descr spufs_dir_contents[] = {
2382
	{ "capabilities", &spufs_caps_fops, 0444, },
2383
	{ "mem",  &spufs_mem_fops,  0666, },
2384
	{ "regs", &spufs_regs_fops,  0666, },
2385 2386 2387 2388 2389 2390
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2391 2392
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2393 2394
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2395
	{ "cntl", &spufs_cntl_fops,  0666, },
2396
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2397 2398 2399 2400 2401
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2402 2403 2404
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2405
	{ "event_status", &spufs_event_status_ops, 0444, },
2406
	{ "psmap", &spufs_psmap_fops, 0666, },
2407 2408
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2409 2410 2411
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2412 2413
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2414
	{ "tid", &spufs_tid_fops, 0444, },
2415
	{ "stat", &spufs_stat_fops, 0444, },
2416 2417
	{},
};
2418 2419

struct tree_descr spufs_dir_nosched_contents[] = {
2420
	{ "capabilities", &spufs_caps_fops, 0444, },
2421 2422 2423 2424 2425 2426 2427
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2428 2429
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2430 2431 2432 2433 2434 2435 2436 2437 2438
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2439
	{ "tid", &spufs_tid_fops, 0444, },
2440
	{ "stat", &spufs_stat_fops, 0444, },
2441 2442
	{},
};
2443 2444

struct spufs_coredump_reader spufs_coredump_read[] = {
2445 2446
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2447 2448 2449
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2450 2451
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2452
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2453
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2454 2455 2456
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2457 2458 2459 2460 2461 2462
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2463 2464
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2465
	{ NULL },
2466
};