file.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
35
#include <asm/spu_info.h>
36 37 38 39
#include <asm/uaccess.h>

#include "spufs.h"

40 41
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

42 43 44 45
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
46
	struct spu_context *ctx = i->i_ctx;
47 48

	spin_lock(&ctx->mapping_lock);
49
	file->private_data = ctx;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
	smp_wmb();
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->local_store = NULL;
	spin_unlock(&ctx->mapping_lock);
67
	smp_wmb();
68 69 70
	return 0;
}

71 72 73 74 75 76 77 78 79
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

80 81 82 83
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
84
	struct spu_context *ctx = file->private_data;
85
	ssize_t ret;
86

87
	spu_acquire(ctx);
88
	ret = __spufs_mem_read(ctx, buffer, size, pos);
89
	spu_release(ctx);
90 91 92 93 94
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
95
					size_t size, loff_t *ppos)
96 97
{
	struct spu_context *ctx = file->private_data;
98
	char *local_store;
99
	loff_t pos = *ppos;
100
	int ret;
101

102 103 104
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
105
		return -EFBIG;
106 107
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
108 109 110

	spu_acquire(ctx);
	local_store = ctx->ops->get_ls(ctx);
111
	ret = copy_from_user(local_store + pos, buffer, size);
112
	spu_release(ctx);
113 114 115 116 117

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
118 119
}

120 121
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
122 123
{
	struct spu_context *ctx = vma->vm_file->private_data;
124 125
	unsigned long pfn, offset = address - vma->vm_start;

126 127
	offset += vma->vm_pgoff << PAGE_SHIFT;

128 129 130
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

131 132
	spu_acquire(ctx);

133 134
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
135
							& ~_PAGE_NO_CACHE);
136
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
137 138
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
139 140
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
141
	}
142
	vm_insert_pfn(vma, address, pfn);
143

144
	spu_release(ctx);
145

146
	return NOPFN_REFAULT;
147 148
}

149

150
static struct vm_operations_struct spufs_mem_mmap_vmops = {
151
	.nopfn = spufs_mem_mmap_nopfn,
152 153
};

154 155 156
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
157 158
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
159

160
	vma->vm_flags |= VM_IO | VM_PFNMAP;
161 162 163 164
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
165 166 167
	return 0;
}

168
static const struct file_operations spufs_mem_fops = {
169
	.open	 = spufs_mem_open,
170
	.release = spufs_mem_release,
171 172
	.read    = spufs_mem_read,
	.write   = spufs_mem_write,
173
	.llseek  = generic_file_llseek,
174
	.mmap    = spufs_mem_mmap,
175 176
};

177
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
178
				    unsigned long address,
179
				    unsigned long ps_offs,
180
				    unsigned long ps_size)
181 182
{
	struct spu_context *ctx = vma->vm_file->private_data;
183
	unsigned long area, offset = address - vma->vm_start;
184 185 186
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
187
	if (offset >= ps_size)
188
		return NOPFN_SIGBUS;
189

190 191 192
	/* error here usually means a signal.. we might want to test
	 * the error code more precisely though
	 */
193
	ret = spu_acquire_runnable(ctx, 0);
194
	if (ret)
195
		return NOPFN_REFAULT;
196 197

	area = ctx->spu->problem_phys + ps_offs;
198
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
199 200
	spu_release(ctx);

201
	return NOPFN_REFAULT;
202 203
}

204
#if SPUFS_MMAP_4K
205 206
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
207
{
208
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
209 210 211
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
212
	.nopfn = spufs_cntl_mmap_nopfn,
213 214 215 216 217 218 219 220 221 222
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

223
	vma->vm_flags |= VM_IO | VM_PFNMAP;
224
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
225
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
226 227 228 229

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
230 231 232
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
233

234
static u64 spufs_cntl_get(void *data)
235
{
236 237
	struct spu_context *ctx = data;
	u64 val;
238

239 240 241 242 243
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
244 245
}

246
static void spufs_cntl_set(void *data, u64 val)
247
{
248 249 250 251 252
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
253 254
}

255
static int spufs_cntl_open(struct inode *inode, struct file *file)
256
{
257 258 259
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

260
	spin_lock(&ctx->mapping_lock);
261
	file->private_data = ctx;
262 263 264
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
265
	smp_wmb();
266 267
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	simple_attr_close(inode, file);

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->cntl = NULL;
	spin_unlock(&ctx->mapping_lock);
	smp_wmb();
	return 0;
}

286
static const struct file_operations spufs_cntl_fops = {
287
	.open = spufs_cntl_open,
288
	.release = spufs_cntl_release,
289 290
	.read = simple_attr_read,
	.write = simple_attr_write,
291 292 293
	.mmap = spufs_cntl_mmap,
};

294 295 296 297 298 299 300 301
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

302 303 304 305 306 307 308 309 310
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

311 312 313 314 315
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
316
	struct spu_context *ctx = file->private_data;
317 318

	spu_acquire_saved(ctx);
319
	ret = __spufs_regs_read(ctx, buffer, size, pos);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

346
static const struct file_operations spufs_regs_fops = {
347 348 349
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
350 351 352
	.llseek  = generic_file_llseek,
};

353 354 355 356 357 358 359 360 361
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

362 363 364 365 366
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
367
	struct spu_context *ctx = file->private_data;
368 369

	spu_acquire_saved(ctx);
370
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

397
static const struct file_operations spufs_fpcr_fops = {
398 399 400 401 402 403
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

404 405 406 407 408 409 410 411 412
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

413 414 415 416 417 418 419 420
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
421 422 423
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
424
	struct spu_context *ctx = file->private_data;
425 426
	u32 mbox_data, __user *udata;
	ssize_t count;
427 428 429 430

	if (len < 4)
		return -EINVAL;

431 432 433 434 435
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

436
	spu_acquire(ctx);
437
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
455
	spu_release(ctx);
456

457 458
	if (!count)
		count = -EAGAIN;
459

460
	return count;
461 462
}

463
static const struct file_operations spufs_mbox_fops = {
464 465 466 467 468 469 470
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
471
	struct spu_context *ctx = file->private_data;
472 473 474 475 476
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

477 478 479 480 481
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
482 483 484 485 486 487 488

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

489
static const struct file_operations spufs_mbox_stat_fops = {
490 491 492 493 494
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
495
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
496
{
497 498
	return ctx->ops->ibox_read(ctx, data);
}
499

500 501 502
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
503

504
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
505 506
}

507 508
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
509
{
510 511 512 513
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
528 529 530
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
531
	struct spu_context *ctx = file->private_data;
532 533
	u32 ibox_data, __user *udata;
	ssize_t count;
534 535 536 537

	if (len < 4)
		return -EINVAL;

538 539 540 541 542
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

543
	spu_acquire(ctx);
544

545 546
	/* wait only for the first element */
	count = 0;
547
	if (file->f_flags & O_NONBLOCK) {
548
		if (!spu_ibox_read(ctx, &ibox_data))
549
			count = -EAGAIN;
550
	} else {
551
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
552
	}
553 554
	if (count)
		goto out;
555

556 557 558 559
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
575

576 577
out:
	spu_release(ctx);
578

579
	return count;
580 581 582 583
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
584
	struct spu_context *ctx = file->private_data;
585 586
	unsigned int mask;

587
	poll_wait(file, &ctx->ibox_wq, wait);
588

589 590 591
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
592 593 594 595

	return mask;
}

596
static const struct file_operations spufs_ibox_fops = {
597 598 599 600 601 602 603 604 605
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
606
	struct spu_context *ctx = file->private_data;
607 608 609 610 611
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

612 613 614
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
615 616 617 618 619 620 621

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

622
static const struct file_operations spufs_ibox_stat_fops = {
623 624 625 626 627
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
628
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
629
{
630 631
	return ctx->ops->wbox_write(ctx, data);
}
632

633 634 635 636
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
637

638
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
639 640 641 642

	return ret;
}

643 644
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
645
{
646 647 648 649
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
664 665 666
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
667
	struct spu_context *ctx = file->private_data;
668 669
	u32 wbox_data, __user *udata;
	ssize_t count;
670 671 672 673

	if (len < 4)
		return -EINVAL;

674 675 676 677 678
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
679 680
		return -EFAULT;

681 682
	spu_acquire(ctx);

683 684 685 686 687
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
688
	if (file->f_flags & O_NONBLOCK) {
689
		if (!spu_wbox_write(ctx, wbox_data))
690
			count = -EAGAIN;
691
	} else {
692
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
693 694
	}

695 696
	if (count)
		goto out;
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
713 714 715 716
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
717
	struct spu_context *ctx = file->private_data;
718 719
	unsigned int mask;

720
	poll_wait(file, &ctx->wbox_wq, wait);
721

722 723 724
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
725 726 727 728

	return mask;
}

729
static const struct file_operations spufs_wbox_fops = {
730 731 732 733 734 735 736 737 738
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
739
	struct spu_context *ctx = file->private_data;
740 741 742 743 744
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

745 746 747
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
748 749 750 751 752 753 754

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

755
static const struct file_operations spufs_wbox_stat_fops = {
756 757 758 759
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

760 761 762 763
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
764 765

	spin_lock(&ctx->mapping_lock);
766
	file->private_data = ctx;
767 768 769
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
770
	smp_wmb();
771 772 773
	return nonseekable_open(inode, file);
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->signal1 = NULL;
	spin_unlock(&ctx->mapping_lock);
	smp_wmb();
	return 0;
}

788
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
789 790
			size_t len, loff_t *pos)
{
791
	int ret = 0;
792 793 794 795 796
	u32 data;

	if (len < 4)
		return -EINVAL;

797 798 799 800
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
801

802 803 804
	if (!ret)
		goto out;

805 806 807
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

808 809
out:
	return ret;
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823 824
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

839 840 841
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
842 843 844 845

	return 4;
}

846 847
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
848
{
849
#if PAGE_SIZE == 0x1000
850
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
851 852 853 854
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
855
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
856 857 858
#else
#error unsupported page size
#endif
859 860 861
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
862
	.nopfn = spufs_signal1_mmap_nopfn,
863 864 865 866 867 868 869
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

870
	vma->vm_flags |= VM_IO | VM_PFNMAP;
871
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
872
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
873 874 875 876 877

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

878
static const struct file_operations spufs_signal1_fops = {
879
	.open = spufs_signal1_open,
880
	.release = spufs_signal1_release,
881 882
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
883
	.mmap = spufs_signal1_mmap,
884 885
};

886 887 888 889
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
890 891

	spin_lock(&ctx->mapping_lock);
892
	file->private_data = ctx;
893 894 895
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
896
	smp_wmb();
897 898 899
	return nonseekable_open(inode, file);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->signal2 = NULL;
	spin_unlock(&ctx->mapping_lock);
	smp_wmb();
	return 0;
}

914
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
915 916
			size_t len, loff_t *pos)
{
917
	int ret = 0;
918 919 920 921 922
	u32 data;

	if (len < 4)
		return -EINVAL;

923 924 925 926
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
927

928 929 930
	if (!ret)
		goto out;

931 932 933
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

934
out:
935 936 937 938 939 940 941 942 943 944 945 946 947 948
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

965 966 967
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
968 969 970 971

	return 4;
}

972
#if SPUFS_MMAP_4K
973 974
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
975
{
976
#if PAGE_SIZE == 0x1000
977
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
978 979 980 981
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
982
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
983 984 985
#else
#error unsupported page size
#endif
986 987 988
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
989
	.nopfn = spufs_signal2_mmap_nopfn,
990 991 992 993 994 995 996
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

997
	vma->vm_flags |= VM_IO | VM_PFNMAP;
998
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
999
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1000 1001 1002 1003

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1004 1005 1006
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1007

1008
static const struct file_operations spufs_signal2_fops = {
1009
	.open = spufs_signal2_open,
1010
	.release = spufs_signal2_release,
1011 1012
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1013
	.mmap = spufs_signal2_mmap,
1014 1015 1016 1017 1018 1019
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1020 1021 1022
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1023 1024
}

1025 1026 1027 1028 1029 1030
static u64 __spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal1_type_get(ctx);
}

1031 1032 1033
static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
1034 1035 1036
	u64 ret;

	spu_acquire(ctx);
1037
	ret = __spufs_signal1_type_get(data);
1038 1039 1040
	spu_release(ctx);

	return ret;
1041 1042 1043 1044 1045 1046 1047 1048
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

1049 1050 1051
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1052 1053
}

1054 1055 1056 1057 1058 1059
static u64 __spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal2_type_get(ctx);
}

1060 1061 1062
static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
1063 1064 1065
	u64 ret;

	spu_acquire(ctx);
1066
	ret = __spufs_signal2_type_get(data);
1067 1068 1069
	spu_release(ctx);

	return ret;
1070 1071 1072 1073
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

1074
#if SPUFS_MMAP_4K
1075 1076
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1077
{
1078
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1079 1080 1081
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1082
	.nopfn = spufs_mss_mmap_nopfn,
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1093
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1094
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1095
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1096 1097 1098 1099

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1100 1101 1102
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1103 1104 1105 1106

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1107
	struct spu_context *ctx = i->i_ctx;
1108 1109

	file->private_data = i->i_ctx;
1110 1111 1112 1113 1114

	spin_lock(&ctx->mapping_lock);
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
1115
	smp_wmb();
1116 1117 1118
	return nonseekable_open(inode, file);
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->mss = NULL;
	spin_unlock(&ctx->mapping_lock);
	smp_wmb();
	return 0;
}

1133
static const struct file_operations spufs_mss_fops = {
1134
	.open	 = spufs_mss_open,
1135
	.release = spufs_mss_release,
1136
	.mmap	 = spufs_mss_mmap,
1137 1138
};

1139 1140
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1141
{
1142
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1143 1144 1145
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1146
	.nopfn = spufs_psmap_mmap_nopfn,
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1157
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1168
	struct spu_context *ctx = i->i_ctx;
1169

1170
	spin_lock(&ctx->mapping_lock);
1171
	file->private_data = i->i_ctx;
1172 1173 1174
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
1175
	smp_wmb();
1176 1177 1178
	return nonseekable_open(inode, file);
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->psmap = NULL;
	spin_unlock(&ctx->mapping_lock);
	smp_wmb();
	return 0;
}

1193
static const struct file_operations spufs_psmap_fops = {
1194
	.open	 = spufs_psmap_open,
1195
	.release = spufs_psmap_release,
1196
	.mmap	 = spufs_psmap_mmap,
1197 1198 1199
};


1200
#if SPUFS_MMAP_4K
1201 1202
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1203
{
1204
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1205 1206 1207
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1208
	.nopfn = spufs_mfc_mmap_nopfn,
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1219
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1220
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1221
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1222 1223 1224 1225

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1226 1227 1228
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1242
	spin_lock(&ctx->mapping_lock);
1243
	file->private_data = ctx;
1244 1245 1246
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
	spin_unlock(&ctx->mapping_lock);
1247
	smp_wmb();
1248 1249 1250
	return nonseekable_open(inode, file);
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	spin_lock(&ctx->mapping_lock);
	if (!--i->i_openers)
		ctx->mfc = NULL;
	spin_unlock(&ctx->mapping_lock);
	smp_wmb();
	return 0;
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1446
	spu_acquire_runnable(ctx, 0);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;
1462
	ret = size;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1494
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1520
	return spufs_mfc_flush(file, NULL);
1521 1522 1523 1524 1525 1526 1527 1528 1529
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1530
static const struct file_operations spufs_mfc_fops = {
1531
	.open	 = spufs_mfc_open,
1532
	.release = spufs_mfc_release,
1533 1534 1535 1536 1537 1538
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1539
	.mmap	 = spufs_mfc_mmap,
1540 1541
};

1542 1543 1544
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1545 1546 1547
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1548 1549 1550 1551 1552 1553
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1554 1555 1556
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1557 1558
	return ret;
}
1559 1560
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

1571
static u64 __spufs_decr_get(void *data)
1572 1573 1574
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1575 1576 1577 1578 1579 1580
	return lscsa->decr.slot[0];
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
1581 1582
	u64 ret;
	spu_acquire_saved(ctx);
1583
	ret = __spufs_decr_get(data);
1584 1585 1586 1587
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1588
			"0x%llx\n")
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

1599
static u64 __spufs_decr_status_get(void *data)
1600 1601 1602
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1603 1604 1605 1606 1607 1608
	return lscsa->decr_status.slot[0];
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
1609 1610
	u64 ret;
	spu_acquire_saved(ctx);
1611
	ret = __spufs_decr_status_get(data);
1612 1613 1614 1615
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1616
			spufs_decr_status_set, "0x%llx\n")
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

1627
static u64 __spufs_event_mask_get(void *data)
1628 1629 1630
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1631 1632 1633 1634 1635 1636
	return lscsa->event_mask.slot[0];
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
1637 1638
	u64 ret;
	spu_acquire_saved(ctx);
1639
	ret = __spufs_event_mask_get(data);
1640 1641 1642 1643
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1644
			spufs_event_mask_set, "0x%llx\n")
1645

1646
static u64 __spufs_event_status_get(void *data)
1647 1648 1649 1650 1651 1652
{
	struct spu_context *ctx = data;
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		return state->spu_chnldata_RW[0];
	return 0;
}

static u64 spufs_event_status_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret = 0;

	spu_acquire_saved(ctx);
	ret = __spufs_event_status_get(data);
1664 1665 1666 1667 1668 1669
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
			NULL, "0x%llx\n")

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1690
			"0x%llx\n")
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
A
Al Viro 已提交
1706
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1707

1708
static u64 __spufs_object_id_get(void *data)
1709 1710 1711 1712 1713
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

1714 1715 1716 1717 1718 1719
static u64 spufs_object_id_get(void *data)
{
	/* FIXME: Should there really be no locking here? */
	return __spufs_object_id_get(data);
}

1720 1721 1722 1723 1724 1725 1726 1727 1728
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1729 1730 1731 1732 1733 1734
static u64 __spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->csa.priv2.spu_lslr_RW;
}

1735 1736 1737 1738 1739 1740
static u64 spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;

	spu_acquire_saved(ctx);
1741
	ret = __spufs_lslr_get(data);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	spu_release(ctx);

	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1770 1771 1772
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1773
	int ret;
1774 1775 1776 1777 1778 1779 1780
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1781
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1782 1783 1784
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1785
	return ret;
1786 1787
}

1788
static const struct file_operations spufs_mbox_info_fops = {
1789 1790 1791 1792 1793
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1808 1809 1810 1811
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1812
	int ret;
1813 1814 1815 1816 1817 1818

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1819
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1820 1821 1822
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1823
	return ret;
1824 1825
}

1826
static const struct file_operations spufs_ibox_info_fops = {
1827 1828 1829 1830 1831
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1832 1833
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1834 1835 1836 1837 1838
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1855 1856 1857 1858 1859
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1860
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1861 1862 1863
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1864
	return ret;
1865 1866
}

1867
static const struct file_operations spufs_wbox_info_fops = {
1868 1869 1870 1871 1872
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1873 1874
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1917
static const struct file_operations spufs_dma_info_fops = {
1918 1919 1920 1921
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1922 1923
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1924 1925 1926
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1927
	int ret = sizeof info;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1962 1963 1964 1965 1966 1967
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1968
static const struct file_operations spufs_proxydma_info_fops = {
1969 1970 1971 1972
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

1973 1974
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
1975
	{ "regs", &spufs_regs_fops,  0666, },
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
1986
	{ "cntl", &spufs_cntl_fops,  0666, },
1987
	{ "fpcr", &spufs_fpcr_fops, 0666, },
1988 1989 1990 1991 1992
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
1993 1994 1995
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
1996
	{ "event_status", &spufs_event_status_ops, 0444, },
1997
	{ "psmap", &spufs_psmap_fops, 0666, },
1998 1999
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2000 2001 2002
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2003 2004
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2005 2006
	{},
};
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
	{},
};
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

struct spufs_coredump_reader spufs_coredump_read[] = {
	{ "regs", __spufs_regs_read, NULL, 128 * 16 },
	{ "fpcr", __spufs_fpcr_read, NULL, 16 },
	{ "lslr", NULL, __spufs_lslr_get, 11 },
	{ "decr", NULL, __spufs_decr_get, 11 },
	{ "decr_status", NULL, __spufs_decr_status_get, 11 },
	{ "mem", __spufs_mem_read, NULL, 256 * 1024, },
	{ "signal1", __spufs_signal1_read, NULL, 4 },
	{ "signal1_type", NULL, __spufs_signal1_type_get, 2 },
	{ "signal2", __spufs_signal2_read, NULL, 4 },
	{ "signal2_type", NULL, __spufs_signal2_type_get, 2 },
	{ "event_mask", NULL, __spufs_event_mask_get, 8 },
	{ "event_status", NULL, __spufs_event_status_get, 8 },
	{ "mbox_info", __spufs_mbox_info_read, NULL, 4 },
	{ "ibox_info", __spufs_ibox_info_read, NULL, 4 },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 16 },
	{ "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
	{ "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
	{ "object-id", NULL, __spufs_object_id_get, 19 },
	{ },
};
int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;