igb_main.c 190.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
31
#include <linux/bitops.h>
32 33 34 35
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
36
#include <linux/slab.h>
37 38
#include <net/checksum.h>
#include <net/ip6_checksum.h>
39
#include <linux/net_tstamp.h>
40 41
#include <linux/mii.h>
#include <linux/ethtool.h>
42
#include <linux/if.h>
43 44
#include <linux/if_vlan.h>
#include <linux/pci.h>
45
#include <linux/pci-aspm.h>
46 47
#include <linux/delay.h>
#include <linux/interrupt.h>
48 49 50
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
51
#include <linux/if_ether.h>
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
55 56
#include <linux/dca.h>
#endif
57 58
#include "igb.h"

C
Carolyn Wyborny 已提交
59
#define MAJ 3
C
Carolyn Wyborny 已提交
60 61
#define MIN 2
#define BUILD 10
C
Carolyn Wyborny 已提交
62
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63
__stringify(BUILD) "-k"
64 65 66 67
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
68
static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
69 70 71 72 73

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

74
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
75 76 77 78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
79 80
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
92 93
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
97 98 99 100 101 102 103 104 105 106 107 108 109 110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
111
static void igb_setup_mrqc(struct igb_adapter *);
112 113
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
A
Anders Berggren 已提交
114
static void igb_init_hw_timer(struct igb_adapter *adapter);
115 116 117 118 119 120 121
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
122 123
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
124
static void igb_set_rx_mode(struct net_device *);
125 126 127
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
128
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
129 130
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
131 132
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
133
static void igb_set_uta(struct igb_adapter *adapter);
134 135 136
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
137
static irqreturn_t igb_msix_ring(int irq, void *);
138
#ifdef CONFIG_IGB_DCA
139
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
140
static void igb_setup_dca(struct igb_adapter *);
141
#endif /* CONFIG_IGB_DCA */
142
static int igb_poll(struct napi_struct *, int);
143
static bool igb_clean_tx_irq(struct igb_q_vector *);
144
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
145 146 147
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
J
Jiri Pirko 已提交
148
static void igb_vlan_mode(struct net_device *netdev, u32 features);
149 150 151
static void igb_vlan_rx_add_vid(struct net_device *, u16);
static void igb_vlan_rx_kill_vid(struct net_device *, u16);
static void igb_restore_vlan(struct igb_adapter *);
152
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
153 154 155
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
156
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
157
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 159 160 161 162 163
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
164
static void igb_check_vf_rate_limit(struct igb_adapter *);
165 166

#ifdef CONFIG_PM
167
static int igb_suspend(struct pci_dev *, pm_message_t);
168 169 170
static int igb_resume(struct pci_dev *);
#endif
static void igb_shutdown(struct pci_dev *);
171
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
172 173 174 175 176 177 178
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
179 180 181 182
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
183
#ifdef CONFIG_PCI_IOV
184 185 186 187 188 189
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};


static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = __devexit_p(igb_remove),
#ifdef CONFIG_PM
L
Lucas De Marchi 已提交
208
	/* Power Management Hooks */
209 210 211 212 213 214 215 216 217 218 219 220
	.suspend  = igb_suspend,
	.resume   = igb_resume,
#endif
	.shutdown = igb_shutdown,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
			reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 4; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
347
	u16 i, n;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
			"trans_start      last_rx\n");
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
		netdev->name,
		netdev->state,
		netdev->trans_start,
		netdev->last_rx);
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
		" leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
380
		struct igb_tx_buffer *buffer_info;
381
		tx_ring = adapter->tx_ring[n];
382
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
383
		printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
			   n, tx_ring->next_to_use, tx_ring->next_to_clean,
			   (u64)buffer_info->dma,
			   buffer_info->length,
			   buffer_info->next_to_watch,
			   (u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "T [desc]     [address 63:0  ] "
			"[PlPOCIStDDM Ln] [bi->dma       ] "
			"leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
418
			struct igb_tx_buffer *buffer_info;
419
			tx_desc = IGB_TX_DESC(tx_ring, i);
420
			buffer_info = &tx_ring->tx_buffer_info[i];
421 422
			u0 = (struct my_u0 *)tx_desc;
			printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX"
423
				" %04X  %p %016llX %p", i,
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)buffer_info->dma,
				buffer_info->length,
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb);
			if (i == tx_ring->next_to_use &&
				i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC/U\n");
			else if (i == tx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == tx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, phys_to_virt(buffer_info->dma),
					buffer_info->length, true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO " %5d %5X %5X\n", n,
			   rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		printk(KERN_INFO "------------------------------------\n");
		printk(KERN_INFO "R  [desc]      [ PktBuf     A0] "
			"[  HeadBuf   DD] [bi->dma       ] [bi->skb] "
			"<-- Adv Rx Read format\n");
		printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] "
			"[vl er S cks ln] ---------------- [bi->skb] "
			"<-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
499 500
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
501
			rx_desc = IGB_RX_DESC(rx_ring, i);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
					"%016llX ---------------- %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
					"%016llX %016llX %p", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					buffer_info->skb);

				if (netif_msg_pktdata(adapter)) {
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS,
						16, 1,
						phys_to_virt(buffer_info->dma),
524 525 526 527 528 529 530 531
						IGB_RX_HDR_LEN, true);
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  phys_to_virt(
					    buffer_info->page_dma +
					    buffer_info->page_offset),
					  PAGE_SIZE/2, true);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				}
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

		}
	}

exit:
	return;
}


P
Patrick Ohly 已提交
550 551 552 553 554 555 556 557
/**
 * igb_read_clock - read raw cycle counter (to be used by time counter)
 */
static cycle_t igb_read_clock(const struct cyclecounter *tc)
{
	struct igb_adapter *adapter =
		container_of(tc, struct igb_adapter, cycles);
	struct e1000_hw *hw = &adapter->hw;
558 559
	u64 stamp = 0;
	int shift = 0;
P
Patrick Ohly 已提交
560

561 562 563 564 565
	/*
	 * The timestamp latches on lowest register read. For the 82580
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we never
	 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
	 */
566
	if (hw->mac.type >= e1000_82580) {
567 568 569 570
		stamp = rd32(E1000_SYSTIMR) >> 8;
		shift = IGB_82580_TSYNC_SHIFT;
	}

571 572
	stamp |= (u64)rd32(E1000_SYSTIML) << shift;
	stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
P
Patrick Ohly 已提交
573 574 575
	return stamp;
}

576
/**
577
 * igb_get_hw_dev - return device
578 579
 * used by hardware layer to print debugging information
 **/
580
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
581 582
{
	struct igb_adapter *adapter = hw->back;
583
	return adapter->netdev;
584
}
P
Patrick Ohly 已提交
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s - version %s\n",
	       igb_driver_string, igb_driver_version);

	printk(KERN_INFO "%s\n", igb_copyright);

600
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
601 602
	dca_register_notify(&dca_notifier);
#endif
603
	ret = pci_register_driver(&igb_driver);
604 605 606 607 608 609 610 611 612 613 614 615 616
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
617
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
618 619
	dca_unregister_notify(&dca_notifier);
#endif
620 621 622 623 624
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

625 626 627 628 629 630 631 632 633 634
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
635
	int i = 0, j = 0;
636
	u32 rbase_offset = adapter->vfs_allocated_count;
637 638 639 640 641 642 643 644

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
645
		if (adapter->vfs_allocated_count) {
646
			for (; i < adapter->rss_queues; i++)
647 648
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
649
		}
650
	case e1000_82575:
651
	case e1000_82580:
652
	case e1000_i350:
653
	default:
654
		for (; i < adapter->num_rx_queues; i++)
655
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
656
		for (; j < adapter->num_tx_queues; j++)
657
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
658 659 660 661
		break;
	}
}

662 663
static void igb_free_queues(struct igb_adapter *adapter)
{
664
	int i;
665

666 667 668 669 670 671 672 673
	for (i = 0; i < adapter->num_tx_queues; i++) {
		kfree(adapter->tx_ring[i]);
		adapter->tx_ring[i] = NULL;
	}
	for (i = 0; i < adapter->num_rx_queues; i++) {
		kfree(adapter->rx_ring[i]);
		adapter->rx_ring[i] = NULL;
	}
674 675 676 677
	adapter->num_rx_queues = 0;
	adapter->num_tx_queues = 0;
}

678 679 680 681 682 683 684 685 686
/**
 * igb_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 *
 * We allocate one ring per queue at run-time since we don't know the
 * number of queues at compile-time.
 **/
static int igb_alloc_queues(struct igb_adapter *adapter)
{
687
	struct igb_ring *ring;
688
	int i;
689
	int orig_node = adapter->node;
690

691
	for (i = 0; i < adapter->num_tx_queues; i++) {
692 693 694 695 696 697 698 699 700 701
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
702 703
		if (!ring)
			goto err;
704
		ring->count = adapter->tx_ring_count;
705
		ring->queue_index = i;
706
		ring->dev = &adapter->pdev->dev;
707
		ring->netdev = adapter->netdev;
708
		ring->numa_node = adapter->node;
709 710
		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
711
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
712
		adapter->tx_ring[i] = ring;
713
	}
714 715
	/* Restore the adapter's original node */
	adapter->node = orig_node;
716

717
	for (i = 0; i < adapter->num_rx_queues; i++) {
718 719 720 721 722 723 724 725 726 727
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		ring = kzalloc_node(sizeof(struct igb_ring), GFP_KERNEL,
				    adapter->node);
		if (!ring)
			ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
728 729
		if (!ring)
			goto err;
730
		ring->count = adapter->rx_ring_count;
P
PJ Waskiewicz 已提交
731
		ring->queue_index = i;
732
		ring->dev = &adapter->pdev->dev;
733
		ring->netdev = adapter->netdev;
734
		ring->numa_node = adapter->node;
735 736
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
737
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
738 739 740 741 742

		/* On i350, loopback VLAN packets have the tag byte-swapped. */
		if (adapter->hw.mac.type == e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);

743
		adapter->rx_ring[i] = ring;
744
	}
745 746
	/* Restore the adapter's original node */
	adapter->node = orig_node;
747 748

	igb_cache_ring_register(adapter);
749

750
	return 0;
A
Alexander Duyck 已提交
751

752
err:
753 754
	/* Restore the adapter's original node */
	adapter->node = orig_node;
755
	igb_free_queues(adapter);
756

757
	return -ENOMEM;
A
Alexander Duyck 已提交
758 759
}

A
Alexander Duyck 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

786
#define IGB_N0_QUEUE -1
787
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
788
{
789
	struct igb_adapter *adapter = q_vector->adapter;
790
	struct e1000_hw *hw = &adapter->hw;
791 792
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
793
	u32 msixbm = 0;
794

795 796 797 798
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
799 800 801

	switch (hw->mac.type) {
	case e1000_82575:
802 803 804 805
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
806
		if (rx_queue > IGB_N0_QUEUE)
807
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
808
		if (tx_queue > IGB_N0_QUEUE)
809
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
810 811
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
812
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
813
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
814 815
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
830
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
831
		break;
832
	case e1000_82580:
833
	case e1000_i350:
A
Alexander Duyck 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
849 850
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
851 852 853 854
	default:
		BUG();
		break;
	}
855 856 857 858 859 860

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
878 879
	switch (hw->mac.type) {
	case e1000_82575:
880 881 882 883 884 885 886 887 888
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
889 890 891 892

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
893
		adapter->eims_other = E1000_EIMS_OTHER;
894

A
Alexander Duyck 已提交
895 896 897
		break;

	case e1000_82576:
898
	case e1000_82580:
899
	case e1000_i350:
900 901 902 903 904 905 906 907
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
908 909
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

910
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
911 912 913 914 915
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
916 917 918

	adapter->eims_enable_mask |= adapter->eims_other;

919 920
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
921

922 923 924 925 926 927 928 929 930 931 932 933
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
934
	struct e1000_hw *hw = &adapter->hw;
935 936
	int i, err = 0, vector = 0;

937
	err = request_irq(adapter->msix_entries[vector].vector,
938
	                  igb_msix_other, 0, netdev->name, adapter);
939 940 941 942 943 944 945 946 947
	if (err)
		goto out;
	vector++;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

948
		if (q_vector->rx.ring && q_vector->tx.ring)
949
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 951
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
952
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 954
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
955
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956
				q_vector->rx.ring->queue_index);
957
		else
958 959
			sprintf(q_vector->name, "%s-unused", netdev->name);

960
		err = request_irq(adapter->msix_entries[vector].vector,
961
		                  igb_msix_ring, 0, q_vector->name,
962
		                  q_vector);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		if (err)
			goto out;
		vector++;
	}

	igb_configure_msix(adapter);
	return 0;
out:
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
980
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
981
		pci_disable_msi(adapter->pdev);
982
	}
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx;

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
		struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
		adapter->q_vector[v_idx] = NULL;
1000 1001
		if (!q_vector)
			continue;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		netif_napi_del(&q_vector->napi);
		kfree(q_vector);
	}
	adapter->num_q_vectors = 0;
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_queues(adapter);
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1020 1021 1022 1023 1024 1025 1026

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1027
static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1028 1029 1030 1031
{
	int err;
	int numvecs, i;

1032
	/* Number of supported queues. */
1033
	adapter->num_rx_queues = adapter->rss_queues;
1034 1035 1036 1037
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1038

1039 1040 1041
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1042
	/* if tx handler is separate add 1 for every tx queue */
1043 1044
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1045 1046 1047 1048 1049 1050

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1063
		goto out;
1064 1065 1066 1067 1068

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1080
		wrfl();
1081 1082 1083 1084
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1085
	adapter->vfs_allocated_count = 0;
1086
	adapter->rss_queues = 1;
1087
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1088
	adapter->num_rx_queues = 1;
1089
	adapter->num_tx_queues = 1;
1090
	adapter->num_q_vectors = 1;
1091
	if (!pci_enable_msi(adapter->pdev))
1092
		adapter->flags |= IGB_FLAG_HAS_MSI;
1093
out:
1094 1095 1096 1097
	/* Notify the stack of the (possibly) reduced queue counts. */
	netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
	return netif_set_real_num_rx_queues(adapter->netdev,
					    adapter->num_rx_queues);
1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/**
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	struct igb_q_vector *q_vector;
	struct e1000_hw *hw = &adapter->hw;
	int v_idx;
1112
	int orig_node = adapter->node;
1113 1114

	for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		if ((adapter->num_q_vectors == (adapter->num_rx_queues +
						adapter->num_tx_queues)) &&
		    (adapter->num_rx_queues == v_idx))
			adapter->node = orig_node;
		if (orig_node == -1) {
			int cur_node = next_online_node(adapter->node);
			if (cur_node == MAX_NUMNODES)
				cur_node = first_online_node;
			adapter->node = cur_node;
		}
		q_vector = kzalloc_node(sizeof(struct igb_q_vector), GFP_KERNEL,
					adapter->node);
		if (!q_vector)
			q_vector = kzalloc(sizeof(struct igb_q_vector),
					   GFP_KERNEL);
1130 1131 1132 1133 1134 1135 1136 1137
		if (!q_vector)
			goto err_out;
		q_vector->adapter = adapter;
		q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
		q_vector->itr_val = IGB_START_ITR;
		netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
		adapter->q_vector[v_idx] = q_vector;
	}
1138 1139 1140
	/* Restore the adapter's original node */
	adapter->node = orig_node;

1141 1142 1143
	return 0;

err_out:
1144 1145
	/* Restore the adapter's original node */
	adapter->node = orig_node;
1146
	igb_free_q_vectors(adapter);
1147 1148 1149 1150 1151 1152
	return -ENOMEM;
}

static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1153
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1154

1155 1156 1157
	q_vector->rx.ring = adapter->rx_ring[ring_idx];
	q_vector->rx.ring->q_vector = q_vector;
	q_vector->rx.count++;
1158 1159 1160
	q_vector->itr_val = adapter->rx_itr_setting;
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1161 1162 1163 1164 1165
}

static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
                                      int ring_idx, int v_idx)
{
1166
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1167

1168 1169 1170
	q_vector->tx.ring = adapter->tx_ring[ring_idx];
	q_vector->tx.ring->q_vector = q_vector;
	q_vector->tx.count++;
1171
	q_vector->itr_val = adapter->tx_itr_setting;
1172
	q_vector->tx.work_limit = adapter->tx_work_limit;
1173 1174
	if (q_vector->itr_val && q_vector->itr_val <= 3)
		q_vector->itr_val = IGB_START_ITR;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
}

/**
 * igb_map_ring_to_vector - maps allocated queues to vectors
 *
 * This function maps the recently allocated queues to vectors.
 **/
static int igb_map_ring_to_vector(struct igb_adapter *adapter)
{
	int i;
	int v_idx = 0;

	if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
	    (adapter->num_q_vectors < adapter->num_tx_queues))
		return -ENOMEM;

	if (adapter->num_q_vectors >=
	    (adapter->num_rx_queues + adapter->num_tx_queues)) {
		for (i = 0; i < adapter->num_rx_queues; i++)
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		for (i = 0; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			if (i < adapter->num_tx_queues)
				igb_map_tx_ring_to_vector(adapter, i, v_idx);
			igb_map_rx_ring_to_vector(adapter, i, v_idx++);
		}
		for (; i < adapter->num_tx_queues; i++)
			igb_map_tx_ring_to_vector(adapter, i, v_idx++);
	}
	return 0;
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1219 1220 1221
	err = igb_set_interrupt_capability(adapter);
	if (err)
		return err;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	err = igb_alloc_queues(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		goto err_alloc_queues;
	}

	err = igb_map_ring_to_vector(adapter);
	if (err) {
		dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
		goto err_map_queues;
	}


	return 0;
err_map_queues:
	igb_free_queues(adapter);
err_alloc_queues:
	igb_free_q_vectors(adapter);
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1261
	struct pci_dev *pdev = adapter->pdev;
1262 1263 1264 1265
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1266
		if (!err)
1267 1268
			goto request_done;
		/* fall back to MSI */
1269
		igb_clear_interrupt_scheme(adapter);
1270
		if (!pci_enable_msi(pdev))
1271
			adapter->flags |= IGB_FLAG_HAS_MSI;
1272 1273
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1274
		adapter->num_tx_queues = 1;
1275
		adapter->num_rx_queues = 1;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		adapter->num_q_vectors = 1;
		err = igb_alloc_q_vectors(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for vectors\n");
			goto request_done;
		}
		err = igb_alloc_queues(adapter);
		if (err) {
			dev_err(&pdev->dev,
			        "Unable to allocate memory for queues\n");
			igb_free_q_vectors(adapter);
			goto request_done;
		}
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1292
	}
P
PJ Waskiewicz 已提交
1293

1294 1295
	igb_assign_vector(adapter->q_vector[0], 0);

1296
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1297
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1298
				  netdev->name, adapter);
1299 1300
		if (!err)
			goto request_done;
1301

1302 1303
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1304
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1305 1306
	}

1307
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1308
			  netdev->name, adapter);
1309

A
Andy Gospodarek 已提交
1310
	if (err)
1311
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1323
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1324

1325
		for (i = 0; i < adapter->num_q_vectors; i++)
1326
			free_irq(adapter->msix_entries[vector++].vector,
1327
				 adapter->q_vector[i]);
1328 1329
	} else {
		free_irq(adapter->pdev->irq, adapter);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1341 1342 1343 1344 1345
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1346
	if (adapter->msix_entries) {
1347 1348 1349 1350 1351
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1352
	}
P
PJ Waskiewicz 已提交
1353 1354

	wr32(E1000_IAM, 0);
1355 1356
	wr32(E1000_IMC, ~0);
	wrfl();
1357 1358 1359 1360 1361 1362 1363
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1375
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1376 1377 1378 1379
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1380
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1381
		if (adapter->vfs_allocated_count) {
1382
			wr32(E1000_MBVFIMR, 0xFF);
1383 1384 1385
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1386
	} else {
1387 1388 1389 1390
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1391
	}
1392 1393 1394 1395
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1396
	struct e1000_hw *hw = &adapter->hw;
1397 1398
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1410
	    !test_bit(old_vid, adapter->active_vlans)) {
1411 1412
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1466
	igb_set_rx_mode(netdev);
1467 1468 1469

	igb_restore_vlan(adapter);

1470
	igb_setup_tctl(adapter);
1471
	igb_setup_mrqc(adapter);
1472
	igb_setup_rctl(adapter);
1473 1474

	igb_configure_tx(adapter);
1475
	igb_configure_rx(adapter);
1476 1477 1478

	igb_rx_fifo_flush_82575(&adapter->hw);

1479
	/* call igb_desc_unused which always leaves
1480 1481 1482
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1483
		struct igb_ring *ring = adapter->rx_ring[i];
1484
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1485 1486 1487
	}
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1526 1527 1528
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1529
	if (adapter->msix_entries)
1530
		igb_configure_msix(adapter);
1531 1532
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1533 1534 1535 1536 1537

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1538 1539 1540 1541 1542 1543 1544
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1545 1546
	netif_tx_start_all_queues(adapter->netdev);

1547 1548 1549 1550
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1551 1552 1553 1554 1555 1556
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1557
	struct e1000_hw *hw = &adapter->hw;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1570
	netif_tx_stop_all_queues(netdev);
1571 1572 1573 1574 1575 1576 1577 1578 1579

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1580 1581
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1582 1583 1584 1585 1586 1587 1588

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1589 1590

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1591 1592 1593
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1594

1595 1596 1597
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1598 1599
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1600 1601
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1602 1603 1604 1605 1606
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1621
	struct pci_dev *pdev = adapter->pdev;
1622
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1623 1624
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1625 1626 1627 1628 1629 1630
	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
	u16 hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1631
	switch (mac->type) {
1632
	case e1000_i350:
1633 1634 1635 1636
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1637
	case e1000_82576:
1638 1639
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1640 1641 1642 1643 1644
		break;
	case e1000_82575:
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1645
	}
1646

A
Alexander Duyck 已提交
1647 1648
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1666
				sizeof(union e1000_adv_tx_desc) -
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1687
		wr32(E1000_PBA, pba);
1688 1689 1690 1691 1692 1693 1694 1695 1696
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1697
			((pba << 10) - 2 * adapter->max_frame_size));
1698

1699 1700
	fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
1701 1702
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1703
	fc->current_mode = fc->requested_mode;
1704

1705 1706 1707 1708
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1709
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1710 1711

		/* ping all the active vfs to let them know we are going down */
1712
		igb_ping_all_vfs(adapter);
1713 1714 1715 1716 1717 1718

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1719
	/* Allow time for pending master requests to run */
1720
	hw->mac.ops.reset_hw(hw);
1721 1722
	wr32(E1000_WUC, 0);

1723
	if (hw->mac.ops.init_hw(hw))
1724
		dev_err(&pdev->dev, "Hardware Error\n");
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/*
			 * DMA Coalescing high water mark needs to be higher
			 * than * the * Rx threshold.  The Rx threshold is
			 * currently * pba - 6, so we * should use a high water
			 * mark of pba * - 4. */
			hwm = (pba - 4) << 10;

			reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
			       & E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
			wr32(E1000_DMACR, reg);

			/* no lower threshold to disable coalescing(smart fifb)
			 * -UTRESH=0*/
			wr32(E1000_DMCRTRH, 0);

			/* set hwm to PBA -  2 * max frame size */
			wr32(E1000_FCRTC, hwm);

			/*
			 * This sets the time to wait before requesting tran-
			 * sition to * low power state to number of usecs needed
			 * to receive 1 512 * byte frame at gigabit line rate
			 */
			reg = rd32(E1000_DMCTLX);
			reg |= IGB_DMCTLX_DCFLUSH_DIS;

			/* Delay 255 usec before entering Lx state. */
			reg |= 0xFF;
			wr32(E1000_DMCTLX, reg);

			/* free space in Tx packet buffer to wake from DMAC */
			wr32(E1000_DMCTXTH,
			     (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size))
			     >> 6);

			/* make low power state decision controlled by DMAC */
			reg = rd32(E1000_PCIEMISC);
			reg |= E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* end if IGB_FLAG_DMAC set */
	}
1777 1778 1779 1780 1781
	if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC,
		                reg & ~E1000_PCIEMISC_LX_DECISION);
	}
1782 1783 1784
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1785 1786 1787 1788 1789
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1790
	igb_get_phy_info(hw);
1791 1792
}

J
Jiri Pirko 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
static u32 igb_fix_features(struct net_device *netdev, u32 features)
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1807 1808
static int igb_set_features(struct net_device *netdev, u32 features)
{
J
Jiri Pirko 已提交
1809
	u32 changed = netdev->features ^ features;
1810

J
Jiri Pirko 已提交
1811 1812 1813
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

1814 1815 1816
	return 0;
}

S
Stephen Hemminger 已提交
1817
static const struct net_device_ops igb_netdev_ops = {
1818
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1819
	.ndo_stop		= igb_close,
1820
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1821
	.ndo_get_stats64	= igb_get_stats64,
1822
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1823 1824 1825 1826 1827 1828 1829
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1830 1831 1832 1833
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1834 1835 1836
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1837 1838
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1839 1840
};

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit igb_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1858
	u16 eeprom_data = 0;
1859
	s32 ret_val;
1860
	static int global_quad_port_a; /* global quad port a indication */
1861 1862
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1863
	int err, pci_using_dac;
1864
	u16 eeprom_apme_mask = IGB_EEPROM_APME;
1865
	u8 part_str[E1000_PBANUM_LENGTH];
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
		     pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

1876
	err = pci_enable_device_mem(pdev);
1877 1878 1879 1880
	if (err)
		return err;

	pci_using_dac = 0;
1881
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1882
	if (!err) {
1883
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1884 1885 1886
		if (!err)
			pci_using_dac = 1;
	} else {
1887
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1888
		if (err) {
1889
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1890 1891 1892 1893 1894 1895 1896 1897
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

1898 1899 1900
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
1901 1902 1903
	if (err)
		goto err_pci_reg;

1904
	pci_enable_pcie_error_reporting(pdev);
1905

1906
	pci_set_master(pdev);
1907
	pci_save_state(pdev);
1908 1909

	err = -ENOMEM;
1910
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1911
				   IGB_MAX_TX_QUEUES);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
1929 1930
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
1931 1932
		goto err_ioremap;

S
Stephen Hemminger 已提交
1933
	netdev->netdev_ops = &igb_netdev_ops;
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
1956
		goto err_sw_init;
1957

1958
	/* setup the private structure */
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2004

2005
	if (pci_using_dac) {
2006
		netdev->features |= NETIF_F_HIGHDMA;
2007 2008
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2009

2010 2011
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2012
		netdev->features |= NETIF_F_SCTP_CSUM;
2013
	}
2014

2015 2016
	netdev->priv_flags |= IFF_UNICAST_FLT;

2017
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2018 2019 2020 2021 2022 2023

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good */
2024
	if (hw->nvm.ops.validate(hw) < 0) {
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
		dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
		err = -EIO;
		goto err_eeprom;
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2043
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2044
	            (unsigned long) adapter);
2045
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2046
	            (unsigned long) adapter);
2047 2048 2049 2050

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2051
	/* Initialize link properties that are user-changeable */
2052 2053 2054 2055
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2056 2057
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2058 2059 2060 2061 2062 2063 2064

	igb_validate_mdi_setting(hw);

	/* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
	 * enable the ACPI Magic Packet filter
	 */

2065
	if (hw->bus.func == 0)
A
Alexander Duyck 已提交
2066
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2067
	else if (hw->mac.type >= e1000_82580)
2068 2069 2070
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2071 2072
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->eeprom_wol = 0;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2085 2086
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2087 2088 2089 2090 2091
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->eeprom_wol = 0;
		break;
2092
	case E1000_DEV_ID_82576_QUAD_COPPER:
2093
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2094 2095 2096 2097 2098 2099 2100 2101 2102
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->eeprom_wol = 0;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2103 2104 2105 2106
	}

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
2107
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2121 2122 2123
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2124
#ifdef CONFIG_IGB_DCA
2125
	if (dca_add_requester(&pdev->dev) == 0) {
2126
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2127 2128 2129 2130
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2131
#endif
A
Anders Berggren 已提交
2132 2133 2134
	/* do hw tstamp init after resetting */
	igb_init_hw_timer(adapter);

2135 2136
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2137
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2138
		 netdev->name,
2139
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2140
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2141
		                                            "unknown"),
2142 2143 2144 2145
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2146
		 netdev->dev_addr);
2147

2148 2149 2150 2151
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2152 2153 2154
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2155
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2156
		adapter->num_rx_queues, adapter->num_tx_queues);
2157 2158 2159 2160 2161 2162 2163
	switch (hw->mac.type) {
	case e1000_i350:
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
2164 2165 2166 2167 2168 2169
	return 0;

err_register:
	igb_release_hw_control(adapter);
err_eeprom:
	if (!igb_check_reset_block(hw))
2170
		igb_reset_phy(hw);
2171 2172 2173 2174

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2175
	igb_clear_interrupt_scheme(adapter);
2176 2177 2178 2179
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2180 2181
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2201
	struct e1000_hw *hw = &adapter->hw;
2202

2203 2204 2205 2206
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2207 2208 2209 2210
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2211 2212
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2213

2214
#ifdef CONFIG_IGB_DCA
2215
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2216 2217
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2218
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2219
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2220 2221 2222
	}
#endif

2223 2224 2225 2226 2227 2228
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2229
	igb_clear_interrupt_scheme(adapter);
2230

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
#ifdef CONFIG_PCI_IOV
	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2241
		wrfl();
2242 2243 2244 2245
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");
	}
#endif
2246

2247 2248 2249
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2250 2251
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2252 2253 2254

	free_netdev(netdev);

2255
	pci_disable_pcie_error_reporting(pdev);
2256

2257 2258 2259
	pci_disable_device(pdev);
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;

	if (adapter->vfs_allocated_count) {
		adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
		                           sizeof(struct vf_data_storage),
		                           GFP_KERNEL);
		/* if allocation failed then we do not support SR-IOV */
		if (!adapter->vf_data) {
			adapter->vfs_allocated_count = 0;
			dev_err(&pdev->dev, "Unable to allocate memory for VF "
			        "Data Storage\n");
		}
	}

	if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
#endif /* CONFIG_PCI_IOV */
		adapter->vfs_allocated_count = 0;
#ifdef CONFIG_PCI_IOV
	} else {
		unsigned char mac_addr[ETH_ALEN];
		int i;
		dev_info(&pdev->dev, "%d vfs allocated\n",
		         adapter->vfs_allocated_count);
		for (i = 0; i < adapter->vfs_allocated_count; i++) {
			random_ether_addr(mac_addr);
			igb_set_vf_mac(adapter, i, mac_addr);
		}
2301 2302 2303
		/* DMA Coalescing is not supported in IOV mode. */
		if (adapter->flags & IGB_FLAG_DMAC)
			adapter->flags &= ~IGB_FLAG_DMAC;
2304 2305 2306 2307
	}
#endif /* CONFIG_PCI_IOV */
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/**
 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
 * @adapter: board private structure to initialize
 *
 * igb_init_hw_timer initializes the function pointer and values for the hw
 * timer found in hardware.
 **/
static void igb_init_hw_timer(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	switch (hw->mac.type) {
2321
	case e1000_i350:
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	case e1000_82580:
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/*
		 * The 82580 timesync updates the system timer every 8ns by 8ns
		 * and the value cannot be shifted.  Instead we need to shift
		 * the registers to generate a 64bit timer value.  As a result
		 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
		 * 24 in order to generate a larger value for synchronization.
		 */
		adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
		/* disable system timer temporarily by setting bit 31 */
		wr32(E1000_TSAUXC, 0x80000000);
		wrfl();

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIMR, 0x00000000);
		wr32(E1000_SYSTIML, 0x80000000);
		wr32(E1000_SYSTIMH, 0x000000FF);
		wrfl();

		/* enable system timer by clearing bit 31 */
		wr32(E1000_TSAUXC, 0x0);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	case e1000_82576:
		/*
		 * Initialize hardware timer: we keep it running just in case
		 * that some program needs it later on.
		 */
		memset(&adapter->cycles, 0, sizeof(adapter->cycles));
		adapter->cycles.read = igb_read_clock;
		adapter->cycles.mask = CLOCKSOURCE_MASK(64);
		adapter->cycles.mult = 1;
		/**
		 * Scale the NIC clock cycle by a large factor so that
		 * relatively small clock corrections can be added or
L
Lucas De Marchi 已提交
2376
		 * subtracted at each clock tick. The drawbacks of a large
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		 * factor are a) that the clock register overflows more quickly
		 * (not such a big deal) and b) that the increment per tick has
		 * to fit into 24 bits.  As a result we need to use a shift of
		 * 19 so we can fit a value of 16 into the TIMINCA register.
		 */
		adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
		wr32(E1000_TIMINCA,
		                (1 << E1000_TIMINCA_16NS_SHIFT) |
		                (16 << IGB_82576_TSYNC_SHIFT));

		/* Set registers so that rollover occurs soon to test this. */
		wr32(E1000_SYSTIML, 0x00000000);
		wr32(E1000_SYSTIMH, 0xFF800000);
		wrfl();

		timecounter_init(&adapter->clock,
				 &adapter->cycles,
				 ktime_to_ns(ktime_get_real()));
		/*
		 * Synchronize our NIC clock against system wall clock. NIC
		 * time stamp reading requires ~3us per sample, each sample
		 * was pretty stable even under load => only require 10
		 * samples for each offset comparison.
		 */
		memset(&adapter->compare, 0, sizeof(adapter->compare));
		adapter->compare.source = &adapter->clock;
		adapter->compare.target = ktime_get_real;
		adapter->compare.num_samples = 10;
		timecompare_update(&adapter->compare, 0);
		break;
	case e1000_82575:
		/* 82575 does not support timesync */
	default:
		break;
	}

}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

2431
	/* set default ring sizes */
2432 2433
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2434 2435

	/* set default ITR values */
2436 2437 2438
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

2439 2440 2441
	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

2442 2443
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
2444 2445
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

2446 2447
	adapter->node = -1;

E
Eric Dumazet 已提交
2448
	spin_lock_init(&adapter->stats64_lock);
2449
#ifdef CONFIG_PCI_IOV
2450 2451 2452
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
2453 2454 2455 2456 2457 2458
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
2459 2460 2461 2462
		break;
	default:
		break;
	}
2463
#endif /* CONFIG_PCI_IOV */
2464
	adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2465 2466 2467
	/* i350 cannot do RSS and SR-IOV at the same time */
	if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
		adapter->rss_queues = 1;
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

	/*
	 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
	 * then we should combine the queues into a queue pair in order to
	 * conserve interrupts due to limited supply
	 */
	if ((adapter->rss_queues > 4) ||
	    ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
		adapter->flags |= IGB_FLAG_QUEUE_PAIRS;

2478
	/* This call may decrease the number of queues */
2479
	if (igb_init_interrupt_scheme(adapter)) {
2480 2481 2482 2483
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2484 2485
	igb_probe_vfs(adapter);

2486 2487 2488
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2489 2490 2491
	if (hw->mac.type == e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int igb_open(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state))
		return -EBUSY;

2519 2520
	netif_carrier_off(netdev);

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2531
	igb_power_up_link(adapter);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2546 2547
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2548 2549 2550

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2551 2552 2553

	igb_irq_enable(adapter);

2554 2555 2556 2557 2558 2559 2560
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2561 2562
	netif_tx_start_all_queues(netdev);

2563 2564 2565
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2566 2567 2568 2569 2570

	return 0;

err_req_irq:
	igb_release_hw_control(adapter);
2571
	igb_power_down_link(adapter);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);

	return err;
}

/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int igb_close(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
	igb_down(adapter);

	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	return 0;
}

/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2613
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2614
{
2615
	struct device *dev = tx_ring->dev;
2616
	int orig_node = dev_to_node(dev);
2617 2618
	int size;

2619
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2620 2621 2622
	tx_ring->tx_buffer_info = vzalloc_node(size, tx_ring->numa_node);
	if (!tx_ring->tx_buffer_info)
		tx_ring->tx_buffer_info = vzalloc(size);
2623
	if (!tx_ring->tx_buffer_info)
2624 2625 2626
		goto err;

	/* round up to nearest 4K */
2627
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2628 2629
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2630
	set_dev_node(dev, tx_ring->numa_node);
2631 2632 2633 2634
	tx_ring->desc = dma_alloc_coherent(dev,
					   tx_ring->size,
					   &tx_ring->dma,
					   GFP_KERNEL);
2635 2636 2637 2638 2639 2640
	set_dev_node(dev, orig_node);
	if (!tx_ring->desc)
		tx_ring->desc = dma_alloc_coherent(dev,
						   tx_ring->size,
						   &tx_ring->dma,
						   GFP_KERNEL);
2641 2642 2643 2644 2645 2646

	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2647

2648 2649 2650
	return 0;

err:
2651
	vfree(tx_ring->tx_buffer_info);
2652
	dev_err(dev,
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
		"Unable to allocate memory for the transmit descriptor ring\n");
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2666
	struct pci_dev *pdev = adapter->pdev;
2667 2668 2669
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2670
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2671
		if (err) {
2672
			dev_err(&pdev->dev,
2673 2674
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2675
				igb_free_tx_resources(adapter->tx_ring[i]);
2676 2677 2678 2679 2680 2681 2682 2683
			break;
		}
	}

	return err;
}

/**
2684 2685
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2686
 **/
2687
void igb_setup_tctl(struct igb_adapter *adapter)
2688 2689 2690 2691
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2692 2693
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2709 2710 2711 2712 2713 2714 2715
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2716 2717
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2718 2719
{
	struct e1000_hw *hw = &adapter->hw;
2720
	u32 txdctl = 0;
2721 2722 2723 2724
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2725
	wr32(E1000_TXDCTL(reg_idx), 0);
2726 2727 2728 2729 2730 2731 2732 2733 2734
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2735
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2736
	wr32(E1000_TDH(reg_idx), 0);
2737
	writel(0, ring->tail);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2758
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2759 2760
}

2761 2762 2763 2764 2765 2766
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2767
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2768
{
2769
	struct device *dev = rx_ring->dev;
2770
	int orig_node = dev_to_node(dev);
2771 2772
	int size, desc_len;

2773
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2774 2775 2776
	rx_ring->rx_buffer_info = vzalloc_node(size, rx_ring->numa_node);
	if (!rx_ring->rx_buffer_info)
		rx_ring->rx_buffer_info = vzalloc(size);
2777
	if (!rx_ring->rx_buffer_info)
2778 2779 2780 2781 2782 2783 2784 2785
		goto err;

	desc_len = sizeof(union e1000_adv_rx_desc);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

2786
	set_dev_node(dev, rx_ring->numa_node);
2787 2788 2789 2790
	rx_ring->desc = dma_alloc_coherent(dev,
					   rx_ring->size,
					   &rx_ring->dma,
					   GFP_KERNEL);
2791 2792 2793 2794 2795 2796
	set_dev_node(dev, orig_node);
	if (!rx_ring->desc)
		rx_ring->desc = dma_alloc_coherent(dev,
						   rx_ring->size,
						   &rx_ring->dma,
						   GFP_KERNEL);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
2807 2808
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
2809 2810
	dev_err(dev, "Unable to allocate memory for the receive descriptor"
		" ring\n");
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
2823
	struct pci_dev *pdev = adapter->pdev;
2824 2825 2826
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
2827
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
2828
		if (err) {
2829
			dev_err(&pdev->dev,
2830 2831
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2832
				igb_free_rx_resources(adapter->rx_ring[i]);
2833 2834 2835 2836 2837 2838 2839
			break;
		}
	}

	return err;
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues, shift = 0, shift2 = 0;
	union e1000_reta {
		u32 dword;
		u8  bytes[4];
	} reta;
	static const u8 rsshash[40] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
		0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
		0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
		0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };

	/* Fill out hash function seeds */
	for (j = 0; j < 10; j++) {
		u32 rsskey = rsshash[(j * 4)];
		rsskey |= rsshash[(j * 4) + 1] << 8;
		rsskey |= rsshash[(j * 4) + 2] << 16;
		rsskey |= rsshash[(j * 4) + 3] << 24;
		array_wr32(E1000_RSSRK(0), j, rsskey);
	}

2868
	num_rx_queues = adapter->rss_queues;
2869 2870 2871 2872

	if (adapter->vfs_allocated_count) {
		/* 82575 and 82576 supports 2 RSS queues for VMDq */
		switch (hw->mac.type) {
2873
		case e1000_i350:
2874 2875 2876 2877
		case e1000_82580:
			num_rx_queues = 1;
			shift = 0;
			break;
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
		case e1000_82576:
			shift = 3;
			num_rx_queues = 2;
			break;
		case e1000_82575:
			shift = 2;
			shift2 = 6;
		default:
			break;
		}
	} else {
		if (hw->mac.type == e1000_82575)
			shift = 6;
	}

	for (j = 0; j < (32 * 4); j++) {
		reta.bytes[j & 3] = (j % num_rx_queues) << shift;
		if (shift2)
			reta.bytes[j & 3] |= num_rx_queues << shift2;
		if ((j & 3) == 3)
			wr32(E1000_RETA(j >> 2), reta.dword);
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
2929
		if (adapter->rss_queues > 1)
2930 2931 2932 2933 2934 2935 2936 2937
			mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
		else
			mrqc = E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc = E1000_MRQC_ENABLE_RSS_4Q;
	}
	igb_vmm_control(adapter);

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * Generate RSS hash based on TCP port numbers and/or
	 * IPv4/v6 src and dst addresses since UDP cannot be
	 * hashed reliably due to IP fragmentation
	 */
	mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2948 2949 2950 2951

	wr32(E1000_MRQC, mrqc);
}

2952 2953 2954 2955
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
2956
void igb_setup_rctl(struct igb_adapter *adapter)
2957 2958 2959 2960 2961 2962 2963
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2964
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2965

2966
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2967
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2968

2969 2970 2971 2972
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
2973
	 */
2974
	rctl |= E1000_RCTL_SECRC;
2975

2976
	/* disable store bad packets and clear size bits. */
2977
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2978

A
Alexander Duyck 已提交
2979 2980
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
2981

2982 2983
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

2994 2995 2996
	wr32(E1000_RCTL, rctl);
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3017 3018 3019 3020 3021 3022 3023 3024
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3025
	u32 max_frame_size = adapter->max_frame_size;
3026 3027 3028 3029 3030
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3031 3032 3033 3034 3035 3036 3037
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3038
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3039 3040 3041 3042 3043
	}

	wr32(E1000_RLPML, max_frame_size);
}

3044 3045
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3058 3059 3060 3061 3062
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3063 3064 3065 3066

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3067
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3079 3080 3081 3082 3083 3084 3085
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3086 3087
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3088 3089 3090 3091
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3092
	u32 srrctl = 0, rxdctl = 0;
3093 3094

	/* disable the queue */
3095
	wr32(E1000_RXDCTL(reg_idx), 0);
3096 3097 3098 3099 3100 3101 3102 3103 3104

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3105
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3106
	wr32(E1000_RDH(reg_idx), 0);
3107
	writel(0, ring->tail);
3108

3109
	/* set descriptor configuration */
3110
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3111
#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3112
	srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3113
#else
3114
	srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3115
#endif
3116
	srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3117
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3118
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3119 3120 3121
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3122 3123 3124

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3125
	/* set filtering for VMDQ pools */
3126
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3127

3128 3129 3130
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3131 3132 3133

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3134 3135 3136
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3137 3138 3139 3140 3141 3142 3143 3144
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3145
	int i;
3146

3147 3148 3149
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3150 3151 3152 3153
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3154 3155 3156
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
	for (i = 0; i < adapter->num_rx_queues; i++)
3157
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3158 3159 3160 3161 3162 3163 3164 3165
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3166
void igb_free_tx_resources(struct igb_ring *tx_ring)
3167
{
3168
	igb_clean_tx_ring(tx_ring);
3169

3170 3171
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3172

3173 3174 3175 3176
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3177 3178
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3194
		igb_free_tx_resources(adapter->tx_ring[i]);
3195 3196
}

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
		if (tx_buffer->dma)
			dma_unmap_single(ring->dev,
					 tx_buffer->dma,
					 tx_buffer->length,
					 DMA_TO_DEVICE);
	} else if (tx_buffer->dma) {
		dma_unmap_page(ring->dev,
			       tx_buffer->dma,
			       tx_buffer->length,
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	tx_buffer->dma = 0;
	/* buffer_info must be completely set up in the transmit path */
3217 3218 3219 3220 3221 3222
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3223
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3224
{
3225
	struct igb_tx_buffer *buffer_info;
3226
	unsigned long size;
3227
	u16 i;
3228

3229
	if (!tx_ring->tx_buffer_info)
3230 3231 3232 3233
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3234
		buffer_info = &tx_ring->tx_buffer_info[i];
3235
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3236 3237
	}

3238 3239
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3257
		igb_clean_tx_ring(adapter->tx_ring[i]);
3258 3259 3260 3261 3262 3263 3264 3265
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3266
void igb_free_rx_resources(struct igb_ring *rx_ring)
3267
{
3268
	igb_clean_rx_ring(rx_ring);
3269

3270 3271
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3272

3273 3274 3275 3276
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3277 3278
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3294
		igb_free_rx_resources(adapter->rx_ring[i]);
3295 3296 3297 3298 3299 3300
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3301
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3302 3303
{
	unsigned long size;
3304
	u16 i;
3305

3306
	if (!rx_ring->rx_buffer_info)
3307
		return;
3308

3309 3310
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3311
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3312
		if (buffer_info->dma) {
3313
			dma_unmap_single(rx_ring->dev,
3314
			                 buffer_info->dma,
3315
					 IGB_RX_HDR_LEN,
3316
					 DMA_FROM_DEVICE);
3317 3318 3319 3320 3321 3322 3323
			buffer_info->dma = 0;
		}

		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}
A
Alexander Duyck 已提交
3324
		if (buffer_info->page_dma) {
3325
			dma_unmap_page(rx_ring->dev,
3326
			               buffer_info->page_dma,
A
Alexander Duyck 已提交
3327
				       PAGE_SIZE / 2,
3328
				       DMA_FROM_DEVICE);
A
Alexander Duyck 已提交
3329 3330
			buffer_info->page_dma = 0;
		}
3331 3332 3333
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
3334
			buffer_info->page_offset = 0;
3335 3336 3337
		}
	}

3338 3339
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3357
		igb_clean_rx_ring(adapter->rx_ring[i]);
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3370
	struct e1000_hw *hw = &adapter->hw;
3371 3372 3373 3374 3375 3376
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3377
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3378

3379 3380 3381
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3382

3383 3384 3385 3386
	return 0;
}

/**
3387
 * igb_write_mc_addr_list - write multicast addresses to MTA
3388 3389
 * @netdev: network interface device structure
 *
3390 3391 3392 3393
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3394
 **/
3395
static int igb_write_mc_addr_list(struct net_device *netdev)
3396 3397 3398
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3399
	struct netdev_hw_addr *ha;
3400
	u8  *mta_list;
3401 3402
	int i;

3403
	if (netdev_mc_empty(netdev)) {
3404 3405 3406 3407 3408
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3409

3410
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3411 3412
	if (!mta_list)
		return -ENOMEM;
3413

3414
	/* The shared function expects a packed array of only addresses. */
3415
	i = 0;
3416 3417
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3418 3419 3420 3421

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3422
	return netdev_mc_count(netdev);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3443
	if (netdev_uc_count(netdev) > rar_entries)
3444
		return -ENOMEM;
3445

3446
	if (!netdev_uc_empty(netdev) && rar_entries) {
3447
		struct netdev_hw_addr *ha;
3448 3449

		netdev_for_each_uc_addr(ha, netdev) {
3450 3451
			if (!rar_entries)
				break;
3452 3453
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3454 3455
			                 vfn);
			count++;
3456 3457 3458 3459 3460 3461 3462 3463 3464
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3501
			 * then we should just turn on promiscuous mode so
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3515
		 * unicast promiscuous mode
3516 3517 3518 3519 3520 3521 3522
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3523
	}
3524
	wr32(E1000_RCTL, rctl);
3525

3526 3527 3528 3529 3530 3531 3532
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if (hw->mac.type < e1000_82576)
3533
		return;
3534

3535 3536 3537
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3538
	igb_restore_vf_multicasts(adapter);
3539 3540
}

G
Greg Rose 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3580 3581 3582 3583 3584
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3585
	igb_get_phy_info(&adapter->hw);
3586 3587
}

A
Alexander Duyck 已提交
3588 3589 3590 3591
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3592
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350, copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3657 3658
	                                           struct igb_adapter,
                                                   watchdog_task);
3659 3660
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3661
	u32 link;
3662
	int i;
3663

A
Alexander Duyck 已提交
3664
	link = igb_has_link(adapter);
3665 3666 3667
	if (link) {
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3668 3669 3670
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3671 3672

			ctrl = rd32(E1000_CTRL);
3673 3674
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3675
				 "Flow Control: %s\n",
3676 3677 3678
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
3679
				 "Full Duplex" : "Half Duplex",
3680 3681 3682 3683
			       ((ctrl & E1000_CTRL_TFCE) &&
			        (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
			       ((ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None")));
3684

3685 3686 3687 3688 3689 3690
			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
				printk(KERN_INFO "igb: %s The network adapter "
						 "link speed was downshifted "
						 "because it overheated.\n",
						 netdev->name);
3691
			}
3692

3693
			/* adjust timeout factor according to speed/duplex */
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3706
			igb_ping_all_vfs(adapter);
3707
			igb_check_vf_rate_limit(adapter);
3708

3709
			/* link state has changed, schedule phy info update */
3710 3711 3712 3713 3714 3715 3716 3717
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3718 3719 3720 3721 3722 3723

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
				printk(KERN_ERR "igb: %s The network adapter "
						"was stopped because it "
						"overheated.\n",
3724 3725
						netdev->name);
			}
3726

3727 3728 3729
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3730
			netif_carrier_off(netdev);
3731

3732 3733
			igb_ping_all_vfs(adapter);

3734
			/* link state has changed, schedule phy info update */
3735 3736 3737 3738 3739 3740
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	}

E
Eric Dumazet 已提交
3741 3742 3743
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3744

3745
	for (i = 0; i < adapter->num_tx_queues; i++) {
3746
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3747
		if (!netif_carrier_ok(netdev)) {
3748 3749 3750 3751
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3752 3753 3754 3755 3756 3757
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3758 3759
		}

3760
		/* Force detection of hung controller every watchdog period */
3761
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3762
	}
3763

3764
	/* Cause software interrupt to ensure rx ring is cleaned */
3765
	if (adapter->msix_entries) {
3766
		u32 eics = 0;
3767 3768
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
3769 3770 3771 3772
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
3773

G
Greg Rose 已提交
3774 3775
	igb_spoof_check(adapter);

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

3789 3790 3791 3792 3793 3794
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
3795
 *      receive rings.  The divisors and thresholds used by this function
3796 3797 3798 3799 3800 3801 3802
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
3803
 * @q_vector: pointer to q_vector
3804
 **/
3805
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3806
{
3807
	int new_val = q_vector->itr_val;
3808
	int avg_wire_size = 0;
3809
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
3810
	unsigned int packets;
3811

3812 3813 3814 3815
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
3816
		new_val = IGB_4K_ITR;
3817
		goto set_itr_val;
3818
	}
3819

3820 3821 3822
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
3823

3824 3825 3826 3827
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
3828 3829 3830 3831

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
3832

3833 3834 3835 3836 3837
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
3838

3839 3840 3841 3842 3843
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
3844

3845 3846 3847 3848 3849
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
3850

3851
set_itr_val:
3852 3853 3854
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
3855
	}
3856
clear_counts:
3857 3858 3859 3860
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
3876 3877
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
3878
 **/
3879 3880
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
3881
{
3882 3883 3884
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
3885

3886
	/* no packets, exit with status unchanged */
3887
	if (packets == 0)
3888
		return;
3889

3890
	switch (itrval) {
3891 3892 3893
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
3894
			itrval = bulk_latency;
3895
		else if ((packets < 5) && (bytes > 512))
3896
			itrval = low_latency;
3897 3898 3899 3900 3901
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
3902
				itrval = bulk_latency;
3903
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
3904
				itrval = bulk_latency;
3905
			} else if ((packets > 35)) {
3906
				itrval = lowest_latency;
3907 3908
			}
		} else if (bytes/packets > 2000) {
3909
			itrval = bulk_latency;
3910
		} else if (packets <= 2 && bytes < 512) {
3911
			itrval = lowest_latency;
3912 3913 3914 3915 3916
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
3917
				itrval = low_latency;
3918
		} else if (bytes < 1500) {
3919
			itrval = low_latency;
3920 3921 3922 3923
		}
		break;
	}

3924 3925 3926 3927 3928 3929
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
3930 3931
}

3932
static void igb_set_itr(struct igb_q_vector *q_vector)
3933
{
3934
	struct igb_adapter *adapter = q_vector->adapter;
3935
	u32 new_itr = q_vector->itr_val;
3936
	u8 current_itr = 0;
3937 3938 3939 3940

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
3941
		new_itr = IGB_4K_ITR;
3942 3943 3944
		goto set_itr_now;
	}

3945 3946
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
3947

3948
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3949

3950
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3951 3952 3953
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3954 3955
		current_itr = low_latency;

3956 3957 3958
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
3959
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3960 3961
		break;
	case low_latency:
3962
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3963 3964
		break;
	case bulk_latency:
3965
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
3966 3967 3968 3969 3970 3971
		break;
	default:
		break;
	}

set_itr_now:
3972
	if (new_itr != q_vector->itr_val) {
3973 3974 3975
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
3976 3977 3978
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
3979
				 new_itr) :
3980 3981 3982 3983 3984 3985 3986
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
3987 3988
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
3989 3990 3991
	}
}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
		     u32 type_tucmd, u32 mss_l4len_idx)
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4007
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4008 4009 4010 4011 4012 4013 4014 4015
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4016 4017 4018
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4019
{
4020
	struct sk_buff *skb = first->skb;
4021 4022 4023 4024 4025
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

	if (!skb_is_gso(skb))
		return 0;
4026 4027

	if (skb_header_cloned(skb)) {
4028
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4029 4030 4031 4032
		if (err)
			return err;
	}

4033 4034
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4035

4036
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4037 4038 4039 4040 4041 4042 4043
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4044
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4045 4046 4047
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4048
	} else if (skb_is_gso_v6(skb)) {
4049 4050 4051 4052
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4053 4054
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4055 4056
	}

4057
	/* compute header lengths */
4058 4059
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4060

4061 4062 4063 4064
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4065
	/* MSS L4LEN IDX */
4066 4067
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4068

4069 4070 4071
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4072
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4073

4074
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4075

4076
	return 1;
4077 4078
}

4079
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4080
{
4081
	struct sk_buff *skb = first->skb;
4082 4083 4084
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4085

4086
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4087 4088
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4089 4090
	} else {
		u8 l4_hdr = 0;
4091
		switch (first->protocol) {
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4105
				 first->protocol);
4106
			}
4107 4108
			break;
		}
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4130
			}
4131
			break;
4132
		}
4133 4134 4135

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4136
	}
4137

4138
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4139
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4140

4141
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4142 4143
}

4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
static __le32 igb_tx_cmd_type(u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	__le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
				      E1000_ADVTXD_DCMD_IFCS |
				      E1000_ADVTXD_DCMD_DEXT);

	/* set HW vlan bit if vlan is present */
	if (tx_flags & IGB_TX_FLAGS_VLAN)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);

	/* set timestamp bit if present */
	if (tx_flags & IGB_TX_FLAGS_TSTAMP)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);

	/* set segmentation bits for TSO */
	if (tx_flags & IGB_TX_FLAGS_TSO)
		cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);

	return cmd_type;
}

4166 4167 4168
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4169 4170 4171 4172 4173
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring if any offload is enabled */
	if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4174
	    test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	if (tx_flags & IGB_TX_FLAGS_CSUM) {
		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;

		/* insert IPv4 checksum */
		if (tx_flags & IGB_TX_FLAGS_IPV4)
			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
	}

4186
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4187 4188
}

4189 4190 4191 4192 4193
/*
 * The largest size we can write to the descriptor is 65535.  In order to
 * maintain a power of two alignment we have to limit ourselves to 32K.
 */
#define IGB_MAX_TXD_PWR	15
4194
#define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR)
4195

4196 4197
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4198
		       const u8 hdr_len)
4199
{
4200
	struct sk_buff *skb = first->skb;
4201 4202 4203 4204 4205 4206 4207 4208
	struct igb_tx_buffer *tx_buffer_info;
	union e1000_adv_tx_desc *tx_desc;
	dma_addr_t dma;
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	unsigned int paylen = skb->len - hdr_len;
	__le32 cmd_type;
4209
	u32 tx_flags = first->tx_flags;
4210 4211 4212 4213
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4214
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4215 4216 4217 4218
	cmd_type = igb_tx_cmd_type(tx_flags);

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
4219
		goto dma_error;
4220

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	/* record length, and DMA address */
	first->length = size;
	first->dma = dma;
	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	for (;;) {
		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.olinfo_status = 0;
			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4247

4248
		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4249

4250
		i++;
4251 4252 4253
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4254
			i = 0;
4255
		}
4256

4257 4258 4259 4260 4261 4262
		size = frag->size;
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				   size, DMA_TO_DEVICE);
		if (dma_mapping_error(tx_ring->dev, dma))
4263 4264
			goto dma_error;

4265 4266 4267 4268 4269 4270 4271 4272
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		tx_buffer_info->length = size;
		tx_buffer_info->dma = dma;

		tx_desc->read.olinfo_status = 0;
		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		frag++;
4273 4274
	}

4275 4276 4277
	/* write last descriptor with RS and EOP bits */
	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
	tx_desc->read.cmd_type_len = cmd_type;
4278 4279 4280 4281

	/* set the timestamp */
	first->time_stamp = jiffies;

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4292
	/* set next_to_watch value indicating a packet is present */
4293
	first->next_to_watch = tx_desc;
4294

4295 4296 4297
	i++;
	if (i == tx_ring->count)
		i = 0;
4298

4299
	tx_ring->next_to_use = i;
4300

4301
	writel(i, tx_ring->tail);
4302

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
		tx_buffer_info = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
		if (tx_buffer_info == first)
			break;
4318 4319
		if (i == 0)
			i = tx_ring->count;
4320 4321 4322
		i--;
	}

4323 4324 4325
	tx_ring->next_to_use = i;
}

4326
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4327
{
4328 4329
	struct net_device *netdev = tx_ring->netdev;

4330 4331
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4332 4333 4334 4335 4336 4337 4338
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4339
	if (igb_desc_unused(tx_ring) < size)
4340 4341 4342
		return -EBUSY;

	/* A reprieve! */
4343
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4344 4345 4346 4347 4348

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4349 4350 4351
	return 0;
}

4352
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4353
{
4354
	if (igb_desc_unused(tx_ring) >= size)
4355
		return 0;
4356
	return __igb_maybe_stop_tx(tx_ring, size);
4357 4358
}

4359 4360
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4361
{
4362
	struct igb_tx_buffer *first;
4363
	int tso;
N
Nick Nunley 已提交
4364
	u32 tx_flags = 0;
4365
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4366
	u8 hdr_len = 0;
4367 4368 4369 4370 4371 4372

	/* need: 1 descriptor per page,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for skb->data,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time */
4373
	if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4374 4375 4376
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4377

4378 4379 4380 4381 4382 4383
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4384 4385
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4386 4387
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
	}
4388

4389
	if (vlan_tx_tag_present(skb)) {
4390 4391 4392 4393
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4394 4395 4396
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4397

4398 4399
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4400
		goto out_drop;
4401 4402
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4403

4404
	igb_tx_map(tx_ring, first, hdr_len);
4405 4406

	/* Make sure there is space in the ring for the next send. */
4407
	igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4408

4409
	return NETDEV_TX_OK;
4410 4411

out_drop:
4412 4413
	igb_unmap_and_free_tx_resource(tx_ring, first);

4414
	return NETDEV_TX_OK;
4415 4416
}

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4428 4429
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4430 4431
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4443 4444 4445 4446 4447 4448 4449 4450 4451
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb->len < 17) {
		if (skb_padto(skb, 17))
			return NETDEV_TX_OK;
		skb->len = 17;
	}
4452

4453
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4467

4468
	if (hw->mac.type >= e1000_82580)
4469 4470
		hw->dev_spec._82575.global_device_reset = true;

4471
	schedule_work(&adapter->reset_task);
4472 4473
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4474 4475 4476 4477 4478 4479 4480
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4481 4482
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4483 4484 4485 4486
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4487
 * igb_get_stats64 - Get System Network Statistics
4488
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4489
 * @stats: rtnl_link_stats64 pointer
4490 4491
 *
 **/
E
Eric Dumazet 已提交
4492 4493
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4494
{
E
Eric Dumazet 已提交
4495 4496 4497 4498 4499 4500 4501 4502
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4515
	struct pci_dev *pdev = adapter->pdev;
4516
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4517

4518
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4519
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4520 4521 4522
		return -EINVAL;
	}

4523
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4524
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4525
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4526 4527 4528 4529 4530
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4531

4532 4533
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4534

4535 4536
	if (netif_running(netdev))
		igb_down(adapter);
4537

4538
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4557 4558
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4559 4560 4561
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4562
	u32 reg, mpc;
4563
	u16 phy_tmp;
4564 4565
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4566 4567
	unsigned int start;
	u64 _bytes, _packets;
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4580 4581 4582 4583
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
		u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4584
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4585

4586
		ring->rx_stats.drops += rqdpc_tmp;
4587
		net_stats->rx_fifo_errors += rqdpc_tmp;
E
Eric Dumazet 已提交
4588 4589 4590 4591 4592 4593 4594 4595

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4596 4597
	}

4598 4599
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4600 4601 4602 4603

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4604
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4605 4606 4607 4608 4609 4610 4611
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4612
	}
4613 4614
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4615 4616

	/* read stats registers */
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4634 4635 4636
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4651
	adapter->stats.rnbc += rd32(E1000_RNBC);
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4669 4670
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4671 4672

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4673 4674 4675 4676 4677 4678 4679
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
		adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4694 4695
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4696 4697 4698 4699

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4700
	 * our own version based on RUC and ROC */
4701
	net_stats->rx_errors = adapter->stats.rxerrc +
4702 4703 4704
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4705 4706 4707 4708 4709
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4710 4711

	/* Tx Errors */
4712 4713 4714 4715 4716
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4717 4718 4719 4720 4721 4722

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4723
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4724 4725 4726 4727 4728 4729 4730 4731 4732
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4733 4734 4735 4736 4737 4738 4739 4740 4741

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
4742 4743 4744 4745
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
4746
	struct igb_adapter *adapter = data;
4747
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
4748 4749
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
4750

4751 4752 4753
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

4754
	if (icr & E1000_ICR_DOUTSYNC) {
4755 4756
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
4757 4758 4759 4760
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
4761
	}
4762

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

P
PJ Waskiewicz 已提交
4774
	wr32(E1000_EIMS, adapter->eims_other);
4775 4776 4777 4778

	return IRQ_HANDLED;
}

4779
static void igb_write_itr(struct igb_q_vector *q_vector)
4780
{
4781
	struct igb_adapter *adapter = q_vector->adapter;
4782
	u32 itr_val = q_vector->itr_val & 0x7FFC;
4783

4784 4785
	if (!q_vector->set_itr)
		return;
4786

4787 4788
	if (!itr_val)
		itr_val = 0x4;
4789

4790 4791
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
4792
	else
4793
		itr_val |= E1000_EITR_CNT_IGNR;
4794

4795 4796
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
4797 4798
}

4799
static irqreturn_t igb_msix_ring(int irq, void *data)
4800
{
4801
	struct igb_q_vector *q_vector = data;
4802

4803 4804
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
4805

4806
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
4807

4808
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
4809 4810
}

4811
#ifdef CONFIG_IGB_DCA
4812
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
4813
{
4814
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
4815 4816 4817
	struct e1000_hw *hw = &adapter->hw;
	int cpu = get_cpu();

4818 4819 4820
	if (q_vector->cpu == cpu)
		goto out_no_update;

4821 4822
	if (q_vector->tx.ring) {
		int q = q_vector->tx.ring->reg_idx;
4823 4824 4825 4826
		u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
		if (hw->mac.type == e1000_82575) {
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
A
Alexander Duyck 已提交
4827
		} else {
4828 4829 4830 4831 4832 4833 4834
			dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
			dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_TXCTRL_CPUID_SHIFT;
		}
		dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
		wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
	}
4835 4836
	if (q_vector->rx.ring) {
		int q = q_vector->rx.ring->reg_idx;
4837 4838
		u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
		if (hw->mac.type == e1000_82575) {
A
Alexander Duyck 已提交
4839
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
M
Maciej Sosnowski 已提交
4840
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4841 4842 4843 4844
		} else {
			dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
			dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
			              E1000_DCA_RXCTRL_CPUID_SHIFT;
A
Alexander Duyck 已提交
4845
		}
J
Jeb Cramer 已提交
4846 4847 4848 4849 4850
		dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
		dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
		wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
	}
4851 4852
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
4853 4854 4855 4856 4857
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
4858
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
4859 4860
	int i;

4861
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
4862 4863
		return;

4864 4865 4866
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

4867
	for (i = 0; i < adapter->num_q_vectors; i++) {
4868 4869
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
4870 4871 4872 4873 4874 4875 4876
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
4877
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
4878 4879 4880 4881 4882 4883
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
4884
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
4885 4886
			break;
		if (dca_add_requester(dev) == 0) {
4887
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
4888
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
4889 4890 4891 4892 4893
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
4894
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
4895
			/* without this a class_device is left
4896
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
4897
			dca_remove_requester(dev);
4898
			dev_info(&pdev->dev, "DCA disabled\n");
4899
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
4900
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
4901 4902 4903
		}
		break;
	}
4904

J
Jeb Cramer 已提交
4905
	return 0;
4906 4907
}

J
Jeb Cramer 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
4918
#endif /* CONFIG_IGB_DCA */
4919

4920 4921 4922 4923 4924 4925 4926 4927
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
4928
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4929 4930 4931 4932 4933
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

4934 4935 4936 4937 4938 4939
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

4940
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4941 4942 4943 4944 4945
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
4946
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

4974 4975 4976 4977 4978 4979 4980 4981
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

4982
	/* salt away the number of multicast addresses assigned
4983 4984 4985 4986 4987
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

4988 4989 4990 4991 4992
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
4993
	for (i = 0; i < n; i++)
4994
		vf_data->vf_mc_hashes[i] = hash_list[i];
4995 4996

	/* Flush and reset the mta with the new values */
4997
	igb_set_rx_mode(adapter->netdev);
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5009 5010 5011
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5012
		vf_data = &adapter->vf_data[i];
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5051 5052

	adapter->vf_data[vf].vlans_enabled = 0;
5053 5054 5055 5056 5057 5058 5059
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5060 5061 5062 5063 5064
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5094 5095
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5096 5097
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5098 5099
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5100
			wr32(E1000_VLVF(i), reg);
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5116
			adapter->vf_data[vf].vlans_enabled++;
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5143 5144
		}
	}
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5204
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5205
{
G
Greg Rose 已提交
5206 5207
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5208
	adapter->vf_data[vf].last_nack = jiffies;
5209 5210

	/* reset offloads to defaults */
5211
	igb_set_vmolr(adapter, vf, true);
5212 5213 5214

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5215 5216 5217 5218 5219 5220
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5221 5222 5223 5224 5225

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5226
	igb_set_rx_mode(adapter->netdev);
5227 5228
}

5229 5230 5231 5232 5233
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* generate a new mac address as we were hotplug removed/added */
5234 5235
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		random_ether_addr(vf_mac);
5236 5237 5238 5239 5240 5241

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5242 5243 5244
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5245
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5246 5247 5248 5249
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5250
	igb_vf_reset(adapter, vf);
5251 5252

	/* set vf mac address */
5253
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5254 5255 5256 5257 5258 5259 5260

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5261
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5262 5263 5264 5265 5266 5267 5268 5269 5270

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5271 5272 5273 5274
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5275 5276
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5277

5278 5279
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5280

5281
	return err;
5282 5283 5284 5285 5286
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5287
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5288 5289 5290
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5291 5292
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5293
		igb_write_mbx(hw, &msg, 1, vf);
5294
		vf_data->last_nack = jiffies;
5295 5296 5297
	}
}

5298
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5299
{
5300 5301
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5302
	struct e1000_hw *hw = &adapter->hw;
5303
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5304 5305
	s32 retval;

5306
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5307

5308 5309
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5310
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5311 5312 5313 5314 5315
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5316 5317 5318

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5319
		return;
5320 5321 5322 5323 5324 5325 5326 5327

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5328
		return;
5329 5330
	}

5331
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5332 5333 5334 5335
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5336 5337 5338 5339
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5340 5341 5342 5343 5344 5345 5346 5347
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5348
		break;
5349 5350 5351
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5352 5353 5354 5355 5356 5357 5358
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5359 5360 5361 5362 5363 5364
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5365 5366
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5367 5368
		break;
	default:
5369
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5370 5371 5372 5373
		retval = -1;
		break;
	}

5374 5375
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5376 5377 5378 5379 5380 5381 5382
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5383
}
5384

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5403 5404
}

5405 5406 5407 5408 5409 5410 5411
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5412 5413
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5432 5433 5434 5435 5436 5437 5438
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5439 5440
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5441 5442 5443 5444
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5445
	igb_write_itr(q_vector);
5446

5447 5448 5449
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5450
	if (icr & E1000_ICR_DOUTSYNC) {
5451 5452 5453 5454
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5455 5456 5457 5458 5459 5460
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5461
	napi_schedule(&q_vector->napi);
5462 5463 5464 5465 5466

	return IRQ_HANDLED;
}

/**
5467
 * igb_intr - Legacy Interrupt Handler
5468 5469 5470 5471 5472
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5473 5474
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5485 5486
	igb_write_itr(q_vector);

5487 5488 5489
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5490
	if (icr & E1000_ICR_DOUTSYNC) {
5491 5492 5493 5494
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5495 5496 5497 5498 5499 5500 5501
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5502
	napi_schedule(&q_vector->napi);
5503 5504 5505 5506

	return IRQ_HANDLED;
}

5507
void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5508
{
5509
	struct igb_adapter *adapter = q_vector->adapter;
5510
	struct e1000_hw *hw = &adapter->hw;
5511

5512 5513 5514 5515
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5516
		else
5517
			igb_update_ring_itr(q_vector);
5518 5519
	}

5520 5521
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5522
			wr32(E1000_EIMS, q_vector->eims_value);
5523 5524 5525
		else
			igb_irq_enable(adapter);
	}
5526 5527
}

5528 5529 5530 5531 5532 5533
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5534
{
5535 5536 5537
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5538
	bool clean_complete = true;
5539

5540
#ifdef CONFIG_IGB_DCA
5541 5542
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5543
#endif
5544
	if (q_vector->tx.ring)
5545
		clean_complete = igb_clean_tx_irq(q_vector);
5546

5547
	if (q_vector->rx.ring)
5548
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5549

5550 5551 5552
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5553

5554
	/* If not enough Rx work done, exit the polling mode */
5555 5556
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5557

5558
	return 0;
5559
}
A
Al Viro 已提交
5560

5561
/**
5562
 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5563
 * @adapter: board private structure
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
 * @shhwtstamps: timestamp structure to update
 * @regval: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions
 */
static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
                                   struct skb_shared_hwtstamps *shhwtstamps,
                                   u64 regval)
{
	u64 ns;

5576 5577 5578 5579
	/*
	 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
	 * 24 to match clock shift we setup earlier.
	 */
5580
	if (adapter->hw.mac.type >= e1000_82580)
5581 5582
		regval <<= IGB_82580_TSYNC_SHIFT;

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
	ns = timecounter_cyc2time(&adapter->clock, regval);
	timecompare_update(&adapter->compare, ns);
	memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
	shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
}

/**
 * igb_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: pointer to q_vector containing needed info
5593
 * @buffer: pointer to igb_tx_buffer structure
5594 5595 5596 5597 5598
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
 */
5599 5600
static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
			    struct igb_tx_buffer *buffer_info)
5601
{
5602
	struct igb_adapter *adapter = q_vector->adapter;
5603
	struct e1000_hw *hw = &adapter->hw;
5604 5605
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
5606

5607
	/* if skb does not support hw timestamp or TX stamp not valid exit */
5608
	if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
5609 5610 5611 5612 5613 5614 5615
	    !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
		return;

	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;

	igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5616
	skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5617 5618
}

5619 5620
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5621
 * @q_vector: pointer to q_vector containing needed info
5622 5623
 * returns true if ring is completely cleaned
 **/
5624
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5625
{
5626
	struct igb_adapter *adapter = q_vector->adapter;
5627
	struct igb_ring *tx_ring = q_vector->tx.ring;
5628
	struct igb_tx_buffer *tx_buffer;
5629
	union e1000_adv_tx_desc *tx_desc, *eop_desc;
5630
	unsigned int total_bytes = 0, total_packets = 0;
5631
	unsigned int budget = q_vector->tx.work_limit;
5632
	unsigned int i = tx_ring->next_to_clean;
5633

5634 5635
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5636

5637
	tx_buffer = &tx_ring->tx_buffer_info[i];
5638
	tx_desc = IGB_TX_DESC(tx_ring, i);
5639
	i -= tx_ring->count;
5640

5641
	for (; budget; budget--) {
5642
		eop_desc = tx_buffer->next_to_watch;
5643

5644 5645 5646 5647 5648 5649
		/* prevent any other reads prior to eop_desc */
		rmb();

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5650 5651 5652 5653 5654

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5655 5656
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5657

5658 5659 5660
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5661

5662 5663 5664 5665 5666 5667
		/* retrieve hardware timestamp */
		igb_tx_hwtstamp(q_vector, tx_buffer);

		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
		tx_buffer->skb = NULL;
5668

5669 5670 5671 5672 5673 5674 5675 5676 5677
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 tx_buffer->dma,
				 tx_buffer->length,
				 DMA_TO_DEVICE);

		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer->dma = 0;
5678

5679 5680
			tx_buffer++;
			tx_desc++;
5681
			i++;
5682 5683
			if (unlikely(!i)) {
				i -= tx_ring->count;
5684
				tx_buffer = tx_ring->tx_buffer_info;
5685 5686
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708

			/* unmap any remaining paged data */
			if (tx_buffer->dma) {
				dma_unmap_page(tx_ring->dev,
					       tx_buffer->dma,
					       tx_buffer->length,
					       DMA_TO_DEVICE);
			}
		}

		/* clear last DMA location */
		tx_buffer->dma = 0;

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
A
Alexander Duyck 已提交
5709 5710
	}

5711
	i += tx_ring->count;
5712
	tx_ring->next_to_clean = i;
5713 5714 5715 5716
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
5717 5718
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
5719

5720
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5721
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
5722

5723
		eop_desc = tx_buffer->next_to_watch;
5724 5725 5726

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
5727
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5728 5729
		if (eop_desc &&
		    time_after(jiffies, tx_buffer->time_stamp +
5730 5731
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5732 5733

			/* detected Tx unit hang */
5734
			dev_err(tx_ring->dev,
5735
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
5736
				"  Tx Queue             <%d>\n"
5737 5738 5739 5740 5741 5742
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
5743
				"  next_to_watch        <%p>\n"
5744 5745
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
5746
				tx_ring->queue_index,
5747
				rd32(E1000_TDH(tx_ring->reg_idx)),
5748
				readl(tx_ring->tail),
5749 5750
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
5751 5752
				tx_buffer->time_stamp,
				eop_desc,
5753
				jiffies,
A
Alexander Duyck 已提交
5754
				eop_desc->wb.status);
5755 5756 5757 5758 5759
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
5760 5761
		}
	}
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782

	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
		     igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
5783 5784
}

5785
static inline void igb_rx_checksum(struct igb_ring *ring,
5786 5787
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
5788
{
5789
	skb_checksum_none_assert(skb);
5790

5791
	/* Ignore Checksum bit is set */
5792
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5793 5794 5795 5796
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
5797
		return;
5798

5799
	/* TCP/UDP checksum error bit is set */
5800 5801 5802
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
5803 5804 5805 5806 5807
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
5808 5809
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
5810
			u64_stats_update_begin(&ring->rx_syncp);
5811
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
5812 5813
			u64_stats_update_end(&ring->rx_syncp);
		}
5814 5815 5816 5817
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
5818 5819
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
5820 5821
		skb->ip_summed = CHECKSUM_UNNECESSARY;

5822 5823
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
5824 5825
}

5826 5827 5828 5829 5830 5831 5832 5833
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

5834 5835 5836
static void igb_rx_hwtstamp(struct igb_q_vector *q_vector,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
5837 5838 5839 5840 5841
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

5842 5843 5844 5845
	if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
				       E1000_RXDADV_STAT_TS))
		return;

5846 5847 5848 5849 5850 5851 5852 5853
	/*
	 * If this bit is set, then the RX registers contain the time stamp. No
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
5854
	 * If nothing went wrong, then it should have a shared tx_flags that we
5855 5856
	 * can turn into a skb_shared_hwtstamps.
	 */
5857
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
N
Nick Nunley 已提交
5858 5859 5860 5861 5862 5863 5864
		u32 *stamp = (u32 *)skb->data;
		regval = le32_to_cpu(*(stamp + 2));
		regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
		skb_pull(skb, IGB_TS_HDR_LEN);
	} else {
		if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
			return;
5865

N
Nick Nunley 已提交
5866 5867 5868
		regval = rd32(E1000_RXSTMPL);
		regval |= (u64)rd32(E1000_RXSTMPH) << 32;
	}
5869 5870 5871

	igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888

static void igb_rx_vlan(struct igb_ring *ring,
			union e1000_adv_rx_desc *rx_desc,
			struct sk_buff *skb)
{
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}
}

5889
static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
5890 5891 5892 5893 5894 5895 5896
{
	/* HW will not DMA in data larger than the given buffer, even if it
	 * parses the (NFS, of course) header to be larger.  In that case, it
	 * fills the header buffer and spills the rest into the page.
	 */
	u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
	           E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5897 5898
	if (hlen > IGB_RX_HDR_LEN)
		hlen = IGB_RX_HDR_LEN;
5899 5900 5901
	return hlen;
}

5902
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
5903
{
5904
	struct igb_ring *rx_ring = q_vector->rx.ring;
5905 5906
	union e1000_adv_rx_desc *rx_desc;
	const int current_node = numa_node_id();
5907
	unsigned int total_bytes = 0, total_packets = 0;
5908 5909
	u16 cleaned_count = igb_desc_unused(rx_ring);
	u16 i = rx_ring->next_to_clean;
5910

5911
	rx_desc = IGB_RX_DESC(rx_ring, i);
5912

5913
	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
5914
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5915 5916
		struct sk_buff *skb = buffer_info->skb;
		union e1000_adv_rx_desc *next_rxd;
5917

5918
		buffer_info->skb = NULL;
5919
		prefetch(skb->data);
5920 5921 5922 5923

		i++;
		if (i == rx_ring->count)
			i = 0;
5924

5925
		next_rxd = IGB_RX_DESC(rx_ring, i);
5926
		prefetch(next_rxd);
5927

5928 5929 5930 5931 5932 5933
		/*
		 * This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();
5934

5935 5936 5937
		if (!skb_is_nonlinear(skb)) {
			__skb_put(skb, igb_get_hlen(rx_desc));
			dma_unmap_single(rx_ring->dev, buffer_info->dma,
5938
					 IGB_RX_HDR_LEN,
5939
					 DMA_FROM_DEVICE);
J
Jesse Brandeburg 已提交
5940
			buffer_info->dma = 0;
5941 5942
		}

5943 5944
		if (rx_desc->wb.upper.length) {
			u16 length = le16_to_cpu(rx_desc->wb.upper.length);
5945

K
Koki Sanagi 已提交
5946
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5947 5948 5949 5950
						buffer_info->page,
						buffer_info->page_offset,
						length);

5951 5952
			skb->len += length;
			skb->data_len += length;
5953
			skb->truesize += PAGE_SIZE / 2;
5954

5955 5956
			if ((page_count(buffer_info->page) != 1) ||
			    (page_to_nid(buffer_info->page) != current_node))
5957 5958 5959
				buffer_info->page = NULL;
			else
				get_page(buffer_info->page);
5960

5961 5962 5963
			dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
			buffer_info->page_dma = 0;
5964 5965
		}

5966
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
5967 5968
			struct igb_rx_buffer *next_buffer;
			next_buffer = &rx_ring->rx_buffer_info[i];
5969 5970 5971 5972
			buffer_info->skb = next_buffer->skb;
			buffer_info->dma = next_buffer->dma;
			next_buffer->skb = skb;
			next_buffer->dma = 0;
5973 5974
			goto next_desc;
		}
5975

5976 5977
		if (igb_test_staterr(rx_desc,
				     E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
5978
			dev_kfree_skb_any(skb);
5979 5980 5981
			goto next_desc;
		}

5982
		igb_rx_hwtstamp(q_vector, rx_desc, skb);
5983
		igb_rx_hash(rx_ring, rx_desc, skb);
5984
		igb_rx_checksum(rx_ring, rx_desc, skb);
5985
		igb_rx_vlan(rx_ring, rx_desc, skb);
5986 5987 5988 5989 5990 5991

		total_bytes += skb->len;
		total_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

J
Jiri Pirko 已提交
5992
		napi_gro_receive(&q_vector->napi, skb);
5993

5994
		budget--;
5995
next_desc:
5996 5997 5998 5999
		if (!budget)
			break;

		cleaned_count++;
6000 6001
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6002
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6003 6004 6005 6006 6007 6008
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
	}
6009

6010
	rx_ring->next_to_clean = i;
E
Eric Dumazet 已提交
6011
	u64_stats_update_begin(&rx_ring->rx_syncp);
6012 6013
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6014
	u64_stats_update_end(&rx_ring->rx_syncp);
6015 6016
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6017 6018

	if (cleaned_count)
6019
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6020

6021
	return !!budget;
6022 6023
}

6024
static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6025
				 struct igb_rx_buffer *bi)
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
{
	struct sk_buff *skb = bi->skb;
	dma_addr_t dma = bi->dma;

	if (dma)
		return true;

	if (likely(!skb)) {
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		bi->skb = skb;
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}

		/* initialize skb for ring */
		skb_record_rx_queue(skb, rx_ring->queue_index);
	}

	dma = dma_map_single(rx_ring->dev, skb->data,
			     IGB_RX_HDR_LEN, DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	return true;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6059
				  struct igb_rx_buffer *bi)
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
{
	struct page *page = bi->page;
	dma_addr_t page_dma = bi->page_dma;
	unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);

	if (page_dma)
		return true;

	if (!page) {
		page = netdev_alloc_page(rx_ring->netdev);
		bi->page = page;
		if (unlikely(!page)) {
			rx_ring->rx_stats.alloc_failed++;
			return false;
		}
	}

	page_dma = dma_map_page(rx_ring->dev, page,
				page_offset, PAGE_SIZE / 2,
				DMA_FROM_DEVICE);

	if (dma_mapping_error(rx_ring->dev, page_dma)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->page_dma = page_dma;
	bi->page_offset = page_offset;
	return true;
}

6091
/**
6092
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6093 6094
 * @adapter: address of board private structure
 **/
6095
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6096 6097
{
	union e1000_adv_rx_desc *rx_desc;
6098
	struct igb_rx_buffer *bi;
6099
	u16 i = rx_ring->next_to_use;
6100

6101
	rx_desc = IGB_RX_DESC(rx_ring, i);
6102
	bi = &rx_ring->rx_buffer_info[i];
6103
	i -= rx_ring->count;
6104 6105

	while (cleaned_count--) {
6106 6107
		if (!igb_alloc_mapped_skb(rx_ring, bi))
			break;
6108

6109 6110 6111
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info. */
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6112

6113 6114 6115 6116
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6117

6118 6119
		rx_desc++;
		bi++;
6120
		i++;
6121
		if (unlikely(!i)) {
6122
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6123
			bi = rx_ring->rx_buffer_info;
6124 6125 6126 6127 6128
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6129 6130
	}

6131 6132
	i += rx_ring->count;

6133 6134 6135 6136 6137 6138 6139 6140
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
6141
		writel(i, rx_ring->tail);
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6164 6165
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6166 6167 6168 6169 6170 6171 6172 6173 6174
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

6175 6176 6177 6178 6179 6180
/**
 * igb_hwtstamp_ioctl - control hardware time stamping
 * @netdev:
 * @ifreq:
 * @cmd:
 *
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
 *
6193 6194 6195 6196
 **/
static int igb_hwtstamp_ioctl(struct net_device *netdev,
			      struct ifreq *ifr, int cmd)
{
6197 6198
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6199
	struct hwtstamp_config config;
6200 6201
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6202
	u32 tsync_rx_cfg = 0;
6203 6204
	bool is_l4 = false;
	bool is_l2 = false;
6205
	u32 regval;
6206 6207 6208 6209 6210 6211 6212 6213

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

6214 6215
	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
6216
		tsync_tx_ctl = 0;
6217 6218 6219 6220 6221 6222 6223 6224
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
6225
		tsync_rx_ctl = 0;
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/*
		 * register TSYNCRXCFG must be set, therefore it is not
		 * possible to time stamp both Sync and Delay_Req messages
		 * => fall back to time stamping all packets
		 */
6236
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6237 6238 6239
		config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6240
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6241
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6242
		is_l4 = true;
6243 6244
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6245
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6246
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6247
		is_l4 = true;
6248 6249 6250
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6251
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6252
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6253 6254
		is_l2 = true;
		is_l4 = true;
6255 6256 6257 6258
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6259
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6260
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6261 6262
		is_l2 = true;
		is_l4 = true;
6263 6264 6265 6266 6267
		config.rx_filter = HWTSTAMP_FILTER_SOME;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6268
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6269
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6270
		is_l2 = true;
6271 6272 6273 6274 6275
		break;
	default:
		return -ERANGE;
	}

6276 6277 6278 6279 6280 6281
	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

N
Nick Nunley 已提交
6282 6283 6284 6285 6286
	/*
	 * Per-packet timestamping only works if all packets are
	 * timestamped, so enable timestamping in all packets as
	 * long as one rx filter was configured.
	 */
6287
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
N
Nick Nunley 已提交
6288 6289 6290 6291
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
	}

6292 6293
	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
6294 6295
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
6296 6297
	wr32(E1000_TSYNCTXCTL, regval);

6298
	/* enable/disable RX */
6299
	regval = rd32(E1000_TSYNCRXCTL);
6300 6301
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
6302 6303
	wr32(E1000_TSYNCRXCTL, regval);

6304 6305
	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6306

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		                (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		                 E1000_ETQF_1588 | /* enable timestamping */
		                 ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

		wr32(E1000_IMIR(3), htons(PTP_PORT));
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
			wr32(E1000_SPQF(3), htons(PTP_PORT));
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
6337 6338 6339 6340 6341 6342 6343
	wrfl();

	adapter->hwtstamp_config = config;

	/* clear TX/RX time stamp registers, just to be sure */
	regval = rd32(E1000_TXSTMPH);
	regval = rd32(E1000_RXSTMPH);
6344

6345 6346
	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
6347 6348
}

6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6362 6363
	case SIOCSHWTSTAMP:
		return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6364 6365 6366 6367 6368
	default:
		return -EOPNOTSUPP;
	}
}

6369 6370 6371 6372 6373
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6374
	cap_offset = adapter->pdev->pcie_cap;
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_read_config_word(adapter->pdev, cap_offset + reg, value);

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;
	u16 cap_offset;

6388
	cap_offset = adapter->pdev->pcie_cap;
6389 6390 6391 6392 6393 6394 6395 6396
	if (!cap_offset)
		return -E1000_ERR_CONFIG;

	pci_write_config_word(adapter->pdev, cap_offset + reg, *value);

	return 0;
}

J
Jiri Pirko 已提交
6397
static void igb_vlan_mode(struct net_device *netdev, u32 features)
6398 6399 6400 6401
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6402
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6403

6404
	if (enable) {
6405 6406 6407 6408 6409
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6410
		/* Disable CFI check */
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6421
	igb_rlpml_set(adapter);
6422 6423 6424 6425 6426 6427
}

static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6428
	int pf_id = adapter->vfs_allocated_count;
6429

6430 6431
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6432

6433 6434
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6435 6436

	set_bit(vid, adapter->active_vlans);
6437 6438 6439 6440 6441 6442
}

static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6443
	int pf_id = adapter->vfs_allocated_count;
6444
	s32 err;
6445

6446 6447
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6448

6449 6450
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6451
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6452 6453

	clear_bit(vid, adapter->active_vlans);
6454 6455 6456 6457
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6458
	u16 vid;
6459

6460 6461
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6462 6463
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
6464 6465
}

6466
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6467
{
6468
	struct pci_dev *pdev = adapter->pdev;
6469 6470 6471 6472
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

6473 6474 6475 6476 6477
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

6478 6479
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6480 6481 6482
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
6483

6484
	switch (spd + dplx) {
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
6503
		goto err_inval;
6504 6505
	}
	return 0;
6506 6507 6508 6509

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
6510 6511
}

6512
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6513 6514 6515 6516
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
6517
	u32 ctrl, rctl, status;
6518 6519 6520 6521 6522 6523 6524
	u32 wufc = adapter->wol;
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
6525 6526 6527
	if (netif_running(netdev))
		igb_close(netdev);

6528
	igb_clear_interrupt_scheme(adapter);
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
6542
		igb_set_rx_mode(netdev);
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
6560
		igb_disable_pcie_master(hw);
6561 6562 6563 6564 6565 6566 6567 6568

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

6569 6570
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
6571 6572 6573
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}

6604 6605 6606 6607 6608 6609 6610 6611 6612
static int igb_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
6613
	pci_save_state(pdev);
T
Taku Izumi 已提交
6614

6615
	err = pci_enable_device_mem(pdev);
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

6626
	if (igb_init_interrupt_scheme(adapter)) {
A
Alexander Duyck 已提交
6627 6628
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
6629 6630 6631
	}

	igb_reset(adapter);
6632 6633 6634 6635 6636

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

6637 6638
	wr32(E1000_WUS, ~0);

A
Alexander Duyck 已提交
6639 6640 6641 6642 6643
	if (netif_running(netdev)) {
		err = igb_open(netdev);
		if (err)
			return err;
	}
6644 6645 6646 6647 6648 6649 6650 6651 6652

	netif_device_attach(netdev);

	return 0;
}
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
6653 6654 6655 6656 6657 6658 6659 6660
	bool wake;

	__igb_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
6672
	struct e1000_hw *hw = &adapter->hw;
6673
	struct igb_q_vector *q_vector;
6674 6675
	int i;

6676
	for (i = 0; i < adapter->num_q_vectors; i++) {
6677 6678 6679 6680 6681
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
6682
		napi_schedule(&q_vector->napi);
6683
	}
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

6703 6704 6705
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6726
	pci_ers_result_t result;
T
Taku Izumi 已提交
6727
	int err;
6728

6729
	if (pci_enable_device_mem(pdev)) {
6730 6731
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
6732 6733 6734 6735
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
6736
		pci_save_state(pdev);
6737

6738 6739
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
6740

6741 6742 6743 6744
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
6745

6746 6747 6748 6749 6750 6751
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
6752 6753

	return result;
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

6810 6811 6812 6813
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
6814 6815 6816
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6817

6818
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6819

6820
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6821 6822 6823 6824

	return 0;
}

6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

6908 6909
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6938
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6939 6940 6941 6942 6943
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

6944 6945 6946
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
6947
	u32 reg;
6948

6949 6950 6951 6952
	switch (hw->mac.type) {
	case e1000_82575:
	default:
		/* replication is not supported for 82575 */
6953
		return;
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
6964 6965
	case e1000_i350:
		/* none of the above registers are supported by i350 */
6966 6967
		break;
	}
6968

6969 6970 6971
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
6972 6973
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
6974 6975 6976 6977
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
6978 6979
}

6980
/* igb_main.c */