netdev.c 182.2 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64 65 66 67
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

68 69
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

70 71 72 73
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
74
	[board_82574]		= &e1000_82574_info,
75
	[board_82583]		= &e1000_82583_info,
76 77 78
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
79
	[board_ich10lan]	= &e1000_ich10_info,
80
	[board_pchlan]		= &e1000_pch_info,
81
	[board_pch2lan]		= &e1000_pch2_info,
B
Bruce Allan 已提交
82
	[board_pch_lpt]		= &e1000_pch_lpt_info,
83 84
};

85 86 87 88 89
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

90 91 92 93 94 95 96 97 98 99 100
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
101 102 103 104 105 106 107 108 109 110 111

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

112
	/* Rx Registers */
113
	{E1000_RCTL, "RCTL"},
114 115 116
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
117 118 119
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
120 121
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},
122 123 124 125 126 127
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

128
	/* Tx Registers */
129
	{E1000_TCTL, "TCTL"},
130 131 132 133 134
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
135 136 137 138 139 140 141 142 143 144 145
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
146
	{0, NULL}
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
172 173
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
174 175 176 177
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
				 struct e1000_buffer *bi)
{
	int i;
	struct e1000_ps_page *ps_page;

	for (i = 0; i < adapter->rx_ps_pages; i++) {
		ps_page = &bi->ps_pages[i];

		if (ps_page->page) {
			pr_info("packet dump for ps_page %d:\n", i);
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
				       16, 1, page_address(ps_page->page),
				       PAGE_SIZE, true);
		}
	}
}

199
/*
200
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
201 202 203 204 205 206 207 208
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
209
	struct my_u0 {
210 211
		__le64 a;
		__le64 b;
212
	} *u0;
213 214 215
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
216
	union e1000_rx_desc_extended *rx_desc;
217
	struct my_u1 {
218 219 220 221
		__le64 a;
		__le64 b;
		__le64 c;
		__le64 d;
222
	} *u1;
223 224 225 226 227 228 229 230 231
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
232 233 234 235
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
236 237 238 239
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
240
	pr_info(" Register Name   Value\n");
241 242 243 244 245
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

246
	/* Print Tx Ring Summary */
247
	if (!netdev || !netif_running(netdev))
248
		return;
249

250
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
251
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
252
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
253 254 255 256 257 258
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
259

260
	/* Print Tx Ring */
261 262 263
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

264
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
293 294 295
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
296
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
297
		const char *next_desc;
298 299 300 301
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
302
			next_desc = " NTC/U";
303
		else if (i == tx_ring->next_to_use)
304
			next_desc = " NTU";
305
		else if (i == tx_ring->next_to_clean)
306
			next_desc = " NTC";
307
		else
308 309 310 311 312 313 314 315 316 317 318
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
319

320
		if (netif_msg_pktdata(adapter) && buffer_info->skb)
321
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
322 323
				       16, 1, buffer_info->skb->data,
				       buffer_info->skb->len, true);
324 325
	}

326
	/* Print Rx Ring Summary */
327
rx_ring_summary:
328
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
329 330 331
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
332

333
	/* Print Rx Ring */
334
	if (!netif_msg_rx_status(adapter))
335
		return;
336

337
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
354
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
355 356 357 358 359 360 361 362 363 364 365
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
366
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
367
		for (i = 0; i < rx_ring->count; i++) {
368
			const char *next_desc;
369 370 371 372
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
373
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
374 375 376 377 378 379 380 381

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

382 383
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
384 385 386 387 388 389 390
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
391
			} else {
392 393 394 395 396 397 398 399
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
400 401

				if (netif_msg_pktdata(adapter))
402 403
					e1000e_dump_ps_pages(adapter,
							     buffer_info);
404 405 406 407 408
			}
		}
		break;
	default:
	case 0:
409
		/* Extended Receive Descriptor (Read) Format
410
		 *
411 412 413 414 415
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
416
		 */
417
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
418 419 420 421 422 423 424 425 426 427 428 429 430
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
431
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
432 433

		for (i = 0; i < rx_ring->count; i++) {
434 435
			const char *next_desc;

436
			buffer_info = &rx_ring->buffer_info[i];
437 438 439
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
440 441 442 443 444 445 446 447

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

448 449
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
450 451 452 453 454
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
455
			} else {
456 457 458 459 460 461
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
462

463 464
				if (netif_msg_pktdata(adapter) &&
				    buffer_info->skb)
465 466 467
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
468
						       buffer_info->skb->data,
469 470 471
						       adapter->rx_buffer_len,
						       true);
			}
472 473 474 475
		}
	}
}

476 477 478 479 480 481 482 483 484 485 486 487
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
488
 * e1000_receive_skb - helper function to handle Rx indications
489 490 491 492 493 494
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
495
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
496
			      u8 status, __le16 vlan)
497
{
J
Jeff Kirsher 已提交
498
	u16 tag = le16_to_cpu(vlan);
499 500
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
501 502 503 504
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
505 506 507
}

/**
508
 * e1000_rx_checksum - Receive Checksum Offload
509 510 511 512
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
513 514
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
515
			      struct sk_buff *skb)
516 517 518
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
519 520

	skb_checksum_none_assert(skb);
521

522 523 524 525
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

526 527 528
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
529

530 531
	/* TCP/UDP checksum error bit or IP checksum error bit is set */
	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
532 533 534 535 536 537 538 539 540 541
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
542
	skb->ip_summed = CHECKSUM_UNNECESSARY;
543 544 545
	adapter->hw_csum_good++;
}

546
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
547
{
548
	struct e1000_adapter *adapter = rx_ring->adapter;
549
	struct e1000_hw *hw = &adapter->hw;
550 551 552
	s32 ret_val = __ew32_prepare(hw);

	writel(i, rx_ring->tail);
553

554
	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
555 556 557 558 559 560 561
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

562
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
563
{
564
	struct e1000_adapter *adapter = tx_ring->adapter;
565
	struct e1000_hw *hw = &adapter->hw;
566
	s32 ret_val = __ew32_prepare(hw);
567

568 569 570
	writel(i, tx_ring->tail);

	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
571 572 573 574 575 576 577
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

578
/**
579
 * e1000_alloc_rx_buffers - Replace used receive buffers
580
 * @rx_ring: Rx descriptor ring
581
 **/
582
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
583
				   int cleaned_count, gfp_t gfp)
584
{
585
	struct e1000_adapter *adapter = rx_ring->adapter;
586 587
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
588
	union e1000_rx_desc_extended *rx_desc;
589 590 591
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
592
	unsigned int bufsz = adapter->rx_buffer_len;
593 594 595 596 597 598 599 600 601 602 603

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

604
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
605 606 607 608 609 610 611 612
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
613
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
614
						  adapter->rx_buffer_len,
615 616
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
617
			dev_err(&pdev->dev, "Rx DMA map failed\n");
618 619 620 621
			adapter->rx_dma_failed++;
			break;
		}

622 623
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
624

625 626 627 628 629 630 631 632
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
633
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
634
				e1000e_update_rdt_wa(rx_ring, i);
635
			else
636
				writel(i, rx_ring->tail);
637
		}
638 639 640 641 642 643
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

644
	rx_ring->next_to_use = i;
645 646 647 648
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
649
 * @rx_ring: Rx descriptor ring
650
 **/
651
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
652
				      int cleaned_count, gfp_t gfp)
653
{
654
	struct e1000_adapter *adapter = rx_ring->adapter;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
670 671 672
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
673 674
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
675 676 677
				continue;
			}
			if (!ps_page->page) {
678
				ps_page->page = alloc_page(gfp);
679
				if (!ps_page->page) {
A
Auke Kok 已提交
680 681 682
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
683 684 685 686 687 688
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
689
					dev_err(&adapter->pdev->dev,
690
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
691 692
					adapter->rx_dma_failed++;
					goto no_buffers;
693 694
				}
			}
A
Auke Kok 已提交
695 696 697 698 699
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
700 701
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
702 703
		}

704 705 706
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
707 708 709 710 711 712 713

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
714
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
715
						  adapter->rx_ps_bsize0,
716 717
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
718
			dev_err(&pdev->dev, "Rx DMA map failed\n");
719 720 721 722 723 724 725 726 727
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

728 729 730 731 732 733 734 735
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
736
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
737
				e1000e_update_rdt_wa(rx_ring, i << 1);
738
			else
739
				writel(i << 1, rx_ring->tail);
740 741
		}

742 743 744 745 746 747 748
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
749
	rx_ring->next_to_use = i;
750 751
}

752 753
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
754
 * @rx_ring: Rx descriptor ring
755 756 757
 * @cleaned_count: number of buffers to allocate this pass
 **/

758
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
759
					 int cleaned_count, gfp_t gfp)
760
{
761
	struct e1000_adapter *adapter = rx_ring->adapter;
762 763
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
764
	union e1000_rx_desc_extended *rx_desc;
765 766 767
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
768
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
769 770 771 772 773 774 775 776 777 778 779

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

780
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
781 782 783 784 785 786 787 788 789 790
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
791
			buffer_info->page = alloc_page(gfp);
792 793 794 795 796 797 798
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
799
			buffer_info->dma = dma_map_page(&pdev->dev,
800 801
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
802
							DMA_FROM_DEVICE);
803

804 805
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
822
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
823
			e1000e_update_rdt_wa(rx_ring, i);
824
		else
825
			writel(i, rx_ring->tail);
826 827 828
	}
}

829 830 831 832 833 834 835
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

836
/**
837 838
 * e1000_clean_rx_irq - Send received data up the network stack
 * @rx_ring: Rx descriptor ring
839 840 841 842
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
843 844
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
			       int work_to_do)
845
{
846
	struct e1000_adapter *adapter = rx_ring->adapter;
847 848
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
849
	struct e1000_hw *hw = &adapter->hw;
850
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
851
	struct e1000_buffer *buffer_info, *next_buffer;
852
	u32 length, staterr;
853 854
	unsigned int i;
	int cleaned_count = 0;
855
	bool cleaned = false;
856 857 858
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
859 860
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
861 862
	buffer_info = &rx_ring->buffer_info[i];

863
	while (staterr & E1000_RXD_STAT_DD) {
864 865 866 867 868
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
869
		rmb();	/* read descriptor and rx_buffer_info after status DD */
870 871 872 873 874 875 876 877 878

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
879
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
880 881 882 883
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

884
		cleaned = true;
885
		cleaned_count++;
886
		dma_unmap_single(&pdev->dev,
887 888
				 buffer_info->dma,
				 adapter->rx_buffer_len,
889
				 DMA_FROM_DEVICE);
890 891
		buffer_info->dma = 0;

892
		length = le16_to_cpu(rx_desc->wb.upper.length);
893

894 895 896 897 898 899 900
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
901
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
902 903 904
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
905
			/* All receives must fit into a single buffer */
906
			e_dbg("Receive packet consumed multiple buffers\n");
907 908
			/* recycle */
			buffer_info->skb = skb;
909
			if (staterr & E1000_RXD_STAT_EOP)
910
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
911 912 913
			goto next_desc;
		}

B
Ben Greear 已提交
914 915
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
916 917 918 919 920
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
921
		/* adjust length to remove Ethernet CRC */
B
Ben Greear 已提交
922 923 924 925 926 927 928 929 930 931
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			/* If configured to store CRC, don't subtract FCS,
			 * but keep the FCS bytes out of the total_rx_bytes
			 * counter
			 */
			if (netdev->features & NETIF_F_RXFCS)
				total_rx_bytes -= 4;
			else
				length -= 4;
		}
J
Jeff Kirsher 已提交
932

933 934 935
		total_rx_bytes += length;
		total_rx_packets++;

936 937
		/*
		 * code added for copybreak, this should improve
938
		 * performance for small packets with large amounts
939 940
		 * of reassembly being done in the stack
		 */
941 942
		if (length < copybreak) {
			struct sk_buff *new_skb =
943
			    netdev_alloc_skb_ip_align(netdev, length);
944
			if (new_skb) {
945 946 947 948 949 950
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
951 952 953 954 955 956 957 958 959 960
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
961
		e1000_rx_checksum(adapter, staterr, skb);
962

963 964
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

965 966
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
967 968

next_desc:
969
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
970 971 972

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
973
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
974
					      GFP_ATOMIC);
975 976 977 978 979 980
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
981 982

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
983 984 985 986 987
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
988
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
989 990

	adapter->total_rx_bytes += total_rx_bytes;
991
	adapter->total_rx_packets += total_rx_packets;
992 993 994
	return cleaned;
}

995 996
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
			    struct e1000_buffer *buffer_info)
997
{
998 999
	struct e1000_adapter *adapter = tx_ring->adapter;

1000 1001
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1002 1003
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1004
		else
1005 1006
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1007 1008
		buffer_info->dma = 0;
	}
1009 1010 1011 1012
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1013
	buffer_info->time_stamp = 0;
1014 1015
}

1016
static void e1000_print_hw_hang(struct work_struct *work)
1017
{
1018 1019 1020
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1021
	struct net_device *netdev = adapter->netdev;
1022 1023 1024 1025
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1026 1027 1028 1029
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1030 1031 1032
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1033 1034
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
M
Matthew Vick 已提交
1035 1036
		/*
		 * May be block on write-back, flush and detect again
1037 1038 1039 1040 1041
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
1042 1043 1044 1045 1046 1047 1048
		/*
		 * Due to rare timing issues, write to TIDV again to ensure
		 * the write is successful
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
1049 1050 1051 1052 1053 1054 1055
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1056 1057 1058
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1059

1060 1061 1062 1063
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1064 1065 1066 1067 1068 1069 1070 1071
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1072 1073 1074 1075 1076 1077
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1078 1079
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1080 1081 1082 1083 1084
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1085 1086 1087 1088 1089 1090
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1091 1092 1093 1094

	/* Suggest workaround for known h/w issue */
	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1095 1096 1097 1098
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1099
 * @tx_ring: Tx descriptor ring
1100 1101 1102 1103
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1104
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1105
{
1106
	struct e1000_adapter *adapter = tx_ring->adapter;
1107 1108 1109 1110 1111 1112 1113
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1114
	unsigned int bytes_compl = 0, pkts_compl = 0;
1115 1116 1117 1118 1119

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1120 1121
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1122
		bool cleaned = false;
1123
		rmb(); /* read buffer_info after eop_desc */
1124
		for (; !cleaned; count++) {
1125 1126 1127 1128 1129
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1130 1131
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1132 1133 1134 1135
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1136 1137
			}

1138
			e1000_put_txbuf(tx_ring, buffer_info);
1139 1140 1141 1142 1143 1144 1145
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1146 1147
		if (i == tx_ring->next_to_use)
			break;
1148 1149 1150 1151 1152 1153
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1154 1155
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1156
#define TX_WAKE_THRESHOLD 32
1157 1158
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1172 1173 1174 1175
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1176
		adapter->detect_tx_hung = false;
1177 1178
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1179
			       + (adapter->tx_timeout_factor * HZ)) &&
1180
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1181
			schedule_work(&adapter->print_hang_task);
1182 1183
		else
			adapter->tx_hang_recheck = false;
1184 1185 1186
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1187
	return count < tx_ring->count;
1188 1189 1190 1191
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1192
 * @rx_ring: Rx descriptor ring
1193 1194 1195 1196
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1197 1198
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
				  int work_to_do)
1199
{
1200
	struct e1000_adapter *adapter = rx_ring->adapter;
1201
	struct e1000_hw *hw = &adapter->hw;
1202 1203 1204 1205 1206 1207 1208 1209 1210
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1211
	bool cleaned = false;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1224
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1237
		cleaned = true;
1238
		cleaned_count++;
1239
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1240
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1241 1242
		buffer_info->dma = 0;

1243
		/* see !EOP comment in other Rx routine */
1244 1245 1246 1247
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1248
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1249
			dev_kfree_skb_irq(skb);
1250 1251
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1252 1253 1254
			goto next_desc;
		}

B
Ben Greear 已提交
1255 1256
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
1257 1258 1259 1260 1261 1262 1263
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1264
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1265 1266 1267 1268 1269 1270 1271 1272
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1273 1274 1275 1276 1277
			/*
			 * this looks ugly, but it seems compiler issues make
			 * it more efficient than reusing j
			 */
			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1278

1279
			/*
1280 1281 1282 1283
			 * page alloc/put takes too long and effects small
			 * packet throughput, so unsplit small packets and
			 * save the alloc/put only valid in softirq (napi)
			 * context to call kmap_*
1284
			 */
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			if (l1 && (l1 <= copybreak) &&
			    ((length + l1) <= adapter->rx_ps_bsize0)) {
				u8 *vaddr;

				ps_page = &buffer_info->ps_pages[0];

				/*
				 * there is no documentation about how to call
				 * kmap_atomic, so we can't hold the mapping
				 * very long
				 */
				dma_sync_single_for_cpu(&pdev->dev,
							ps_page->dma,
							PAGE_SIZE,
							DMA_FROM_DEVICE);
1300
				vaddr = kmap_atomic(ps_page->page);
1301
				memcpy(skb_tail_pointer(skb), vaddr, l1);
1302
				kunmap_atomic(vaddr);
1303 1304 1305 1306 1307 1308
				dma_sync_single_for_device(&pdev->dev,
							   ps_page->dma,
							   PAGE_SIZE,
							   DMA_FROM_DEVICE);

				/* remove the CRC */
B
Ben Greear 已提交
1309 1310 1311 1312
				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
					if (!(netdev->features & NETIF_F_RXFCS))
						l1 -= 4;
				}
1313 1314 1315 1316

				skb_put(skb, l1);
				goto copydone;
			} /* if */
1317 1318 1319 1320 1321 1322 1323
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1324
			ps_page = &buffer_info->ps_pages[j];
1325 1326
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1327 1328 1329 1330 1331
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1332
			skb->truesize += PAGE_SIZE;
1333 1334
		}

J
Jeff Kirsher 已提交
1335 1336 1337
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
B
Ben Greear 已提交
1338 1339 1340 1341
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			if (!(netdev->features & NETIF_F_RXFCS))
				pskb_trim(skb, skb->len - 4);
		}
J
Jeff Kirsher 已提交
1342

1343 1344 1345 1346
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1347
		e1000_rx_checksum(adapter, staterr, skb);
1348

1349 1350
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1364
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1365
					      GFP_ATOMIC);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1379
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1380 1381

	adapter->total_rx_bytes += total_rx_bytes;
1382
	adapter->total_rx_packets += total_rx_packets;
1383 1384 1385
	return cleaned;
}

1386 1387 1388 1389 1390 1391 1392 1393 1394
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1395
	skb->truesize += PAGE_SIZE;
1396 1397 1398 1399 1400 1401 1402 1403 1404
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1405 1406
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
				     int work_to_do)
1407
{
1408
	struct e1000_adapter *adapter = rx_ring->adapter;
1409 1410
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
1411
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1412
	struct e1000_buffer *buffer_info, *next_buffer;
1413
	u32 length, staterr;
1414 1415 1416 1417 1418 1419
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1420 1421
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1422 1423
	buffer_info = &rx_ring->buffer_info[i];

1424
	while (staterr & E1000_RXD_STAT_DD) {
1425 1426 1427 1428 1429
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1430
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1431 1432 1433 1434 1435 1436 1437

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1438
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1439 1440 1441 1442 1443 1444
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1445 1446
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1447 1448
		buffer_info->dma = 0;

1449
		length = le16_to_cpu(rx_desc->wb.upper.length);
1450 1451

		/* errors is only valid for DD + EOP descriptors */
1452
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
B
Ben Greear 已提交
1453 1454
			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			      !(netdev->features & NETIF_F_RXALL)))) {
1455 1456 1457 1458 1459 1460 1461
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1462 1463
		}

1464
#define rxtop (rx_ring->rx_skb_top)
1465
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
1500
					vaddr = kmap_atomic(buffer_info->page);
1501 1502
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
1503
					kunmap_atomic(vaddr);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

1517 1518
		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter, staterr, skb);
1519

1520 1521
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1522 1523 1524 1525 1526 1527
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1528
			e_err("pskb_may_pull failed.\n");
1529
			dev_kfree_skb_irq(skb);
1530 1531 1532
			goto next_desc;
		}

1533 1534
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1535 1536

next_desc:
1537
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1538 1539 1540

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1541
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1542
					      GFP_ATOMIC);
1543 1544 1545 1546 1547 1548
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1549 1550

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1551 1552 1553 1554 1555
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1556
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1557 1558 1559 1560 1561 1562

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1563 1564
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1565
 * @rx_ring: Rx descriptor ring
1566
 **/
1567
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1568
{
1569
	struct e1000_adapter *adapter = rx_ring->adapter;
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1580
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1581
						 adapter->rx_buffer_len,
1582
						 DMA_FROM_DEVICE);
1583
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1584
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1585
				               PAGE_SIZE,
1586
					       DMA_FROM_DEVICE);
1587
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1588
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1589
						 adapter->rx_ps_bsize0,
1590
						 DMA_FROM_DEVICE);
1591 1592 1593
			buffer_info->dma = 0;
		}

1594 1595 1596 1597 1598
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1599 1600 1601 1602 1603 1604
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1605
			ps_page = &buffer_info->ps_pages[j];
1606 1607
			if (!ps_page->page)
				break;
1608 1609
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1627
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1628

1629
	writel(0, rx_ring->head);
1630 1631 1632 1633
	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
		e1000e_update_rdt_wa(rx_ring, 0);
	else
		writel(0, rx_ring->tail);
1634 1635
}

1636 1637 1638 1639 1640
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1641 1642 1643
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1644 1645 1646
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1659 1660 1661
	/*
	 * read ICR disables interrupts using IAM
	 */
1662

1663
	if (icr & E1000_ICR_LSC) {
1664
		hw->mac.get_link_status = true;
1665 1666 1667 1668
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1669 1670
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1671
			schedule_work(&adapter->downshift_task);
1672

1673 1674
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1675
		 * link down event; disable receives here in the ISR and reset
1676 1677
		 * adapter in watchdog
		 */
1678 1679 1680 1681 1682
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1683
			adapter->flags |= FLAG_RX_RESTART_NOW;
1684 1685 1686 1687 1688 1689
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1690
	if (napi_schedule_prep(&adapter->napi)) {
1691 1692 1693 1694
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1695
		__napi_schedule(&adapter->napi);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1712

1713
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1714 1715
		return IRQ_NONE;  /* Not our interrupt */

1716 1717 1718 1719
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1720 1721 1722
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1723 1724 1725 1726 1727
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1728

1729
	if (icr & E1000_ICR_LSC) {
1730
		hw->mac.get_link_status = true;
1731 1732 1733 1734
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1735 1736
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1737
			schedule_work(&adapter->downshift_task);
1738

1739 1740
		/*
		 * 80003ES2LAN workaround--
1741 1742 1743 1744 1745 1746 1747 1748 1749
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1750
			adapter->flags |= FLAG_RX_RESTART_NOW;
1751 1752 1753 1754 1755 1756
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1757
	if (napi_schedule_prep(&adapter->napi)) {
1758 1759 1760 1761
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1762
		__napi_schedule(&adapter->napi);
1763 1764 1765 1766 1767
	}

	return IRQ_HANDLED;
}

1768 1769 1770 1771 1772 1773 1774 1775
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1776 1777
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1778 1779 1780 1781 1782 1783 1784 1785 1786
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
1787
		hw->mac.get_link_status = true;
1788 1789 1790 1791 1792 1793
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1794 1795
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

1812
	if (!e1000_clean_tx_irq(tx_ring))
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
1823
	struct e1000_ring *rx_ring = adapter->rx_ring;
1824 1825 1826 1827

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
1828 1829 1830 1831
	if (rx_ring->set_itr) {
		writel(1000000000 / (rx_ring->itr_val * 256),
		       rx_ring->itr_register);
		rx_ring->set_itr = 0;
1832 1833
	}

1834
	if (napi_schedule_prep(&adapter->napi)) {
1835 1836
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1837
		__napi_schedule(&adapter->napi);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1871
		       rx_ring->itr_register);
1872
	else
1873
		writel(1, rx_ring->itr_register);
1874 1875 1876 1877 1878 1879 1880
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1881
		       tx_ring->itr_register);
1882
	else
1883
		writel(1, tx_ring->itr_register);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1934
	int i;
1935 1936 1937 1938

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1939 1940
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1941 1942 1943
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1944
				for (i = 0; i < adapter->num_vectors; i++)
1945 1946 1947 1948
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1949
						      adapter->num_vectors);
B
Bruce Allan 已提交
1950
				if (err == 0)
1951 1952 1953
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1954
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1955 1956 1957 1958 1959 1960 1961 1962 1963
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1964
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1965 1966 1967 1968 1969 1970
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1971 1972 1973

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 1989 1990
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1991 1992 1993
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1994
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1995 1996
			  netdev);
	if (err)
1997
		return err;
1998 1999
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2000 2001 2002 2003
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2004 2005 2006
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
2007 2008 2009
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2010
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2011 2012
			  netdev);
	if (err)
2013
		return err;
2014 2015
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2016 2017 2018 2019
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2020
			  e1000_msix_other, 0, netdev->name, netdev);
2021
	if (err)
2022
		return err;
2023 2024

	e1000_configure_msix(adapter);
2025

2026 2027 2028
	return 0;
}

2029 2030 2031 2032 2033 2034
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2035 2036 2037 2038 2039
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2040 2041 2042 2043 2044 2045 2046 2047
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2048
	}
2049
	if (adapter->flags & FLAG_MSI_ENABLED) {
2050
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2051 2052 2053
				  netdev->name, netdev);
		if (!err)
			return err;
2054

2055 2056 2057
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2058 2059
	}

2060
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2061 2062 2063 2064
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2065 2066 2067 2068 2069 2070 2071
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2084
	}
2085 2086

	free_irq(adapter->pdev->irq, netdev);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2097 2098
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2099
	e1e_flush();
2100 2101 2102 2103 2104 2105 2106 2107

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2108 2109 2110 2111 2112 2113 2114 2115 2116
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2117 2118 2119 2120 2121 2122
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2123
	e1e_flush();
2124 2125 2126
}

/**
2127
 * e1000e_get_hw_control - get control of the h/w from f/w
2128 2129
 * @adapter: address of board private structure
 *
2130
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2131 2132 2133 2134
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2135
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2147
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2148 2149 2150 2151
	}
}

/**
2152
 * e1000e_release_hw_control - release control of the h/w to f/w
2153 2154
 * @adapter: address of board private structure
 *
2155
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2156 2157 2158 2159 2160
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2161
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2173
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2174 2175 2176 2177
	}
}

/**
2178
 * e1000_alloc_ring_dma - allocate memory for a ring structure
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2195
 * @tx_ring: Tx descriptor ring
2196 2197 2198
 *
 * Return 0 on success, negative on failure
 **/
2199
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2200
{
2201
	struct e1000_adapter *adapter = tx_ring->adapter;
2202 2203 2204
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2205
	tx_ring->buffer_info = vzalloc(size);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2223
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2224 2225 2226 2227 2228
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2229
 * @rx_ring: Rx descriptor ring
2230 2231 2232
 *
 * Returns 0 on success, negative on failure
 **/
2233
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2234
{
2235
	struct e1000_adapter *adapter = rx_ring->adapter;
A
Auke Kok 已提交
2236 2237
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2238 2239

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2240
	rx_ring->buffer_info = vzalloc(size);
2241 2242 2243
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2244 2245 2246 2247 2248 2249 2250 2251
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2252 2253 2254 2255 2256 2257 2258 2259 2260

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2261
		goto err_pages;
2262 2263 2264 2265 2266 2267

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2268 2269 2270 2271 2272 2273

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2274 2275
err:
	vfree(rx_ring->buffer_info);
2276
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2277 2278 2279 2280 2281
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
2282
 * @tx_ring: Tx descriptor ring
2283
 **/
2284
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2285
{
2286
	struct e1000_adapter *adapter = tx_ring->adapter;
2287 2288 2289 2290 2291 2292
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2293
		e1000_put_txbuf(tx_ring, buffer_info);
2294 2295
	}

2296
	netdev_reset_queue(adapter->netdev);
2297 2298 2299 2300 2301 2302 2303 2304
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2305
	writel(0, tx_ring->head);
2306 2307 2308 2309
	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
		e1000e_update_tdt_wa(tx_ring, 0);
	else
		writel(0, tx_ring->tail);
2310 2311 2312 2313
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
2314
 * @tx_ring: Tx descriptor ring
2315 2316 2317
 *
 * Free all transmit software resources
 **/
2318
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2319
{
2320
	struct e1000_adapter *adapter = tx_ring->adapter;
2321 2322
	struct pci_dev *pdev = adapter->pdev;

2323
	e1000_clean_tx_ring(tx_ring);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
2335
 * @rx_ring: Rx descriptor ring
2336 2337 2338
 *
 * Free all receive software resources
 **/
2339
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2340
{
2341
	struct e1000_adapter *adapter = rx_ring->adapter;
2342
	struct pci_dev *pdev = adapter->pdev;
A
Auke Kok 已提交
2343
	int i;
2344

2345
	e1000_clean_rx_ring(rx_ring);
2346

B
Bruce Allan 已提交
2347
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2348 2349
		kfree(rx_ring->buffer_info[i].ps_pages);

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2360 2361 2362 2363 2364
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2365 2366 2367 2368 2369 2370
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2371 2372
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2373 2374 2375 2376 2377 2378 2379 2380
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
2381
		return itr_setting;
2382 2383 2384 2385 2386 2387

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2388
		else if ((packets < 5) && (bytes > 512))
2389 2390 2391 2392 2393
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2394
			if (bytes/packets > 8000)
2395
				retval = bulk_latency;
B
Bruce Allan 已提交
2396
			else if ((packets < 10) || ((bytes/packets) > 1200))
2397
				retval = bulk_latency;
B
Bruce Allan 已提交
2398
			else if ((packets > 35))
2399 2400 2401 2402 2403 2404 2405 2406 2407
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2408
			if (packets > 35)
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2432 2433 2434 2435 2436
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2472 2473
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2474
		 * by adding intermediate steps when interrupt rate is
2475 2476
		 * increasing
		 */
2477 2478 2479 2480
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2481 2482 2483 2484
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2485 2486 2487 2488
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2489 2490 2491
	}
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/**
 * e1000e_write_itr - write the ITR value to the appropriate registers
 * @adapter: address of board private structure
 * @itr: new ITR value to program
 *
 * e1000e_write_itr determines if the adapter is in MSI-X mode
 * and, if so, writes the EITR registers with the ITR value.
 * Otherwise, it writes the ITR value into the ITR register.
 **/
void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;

	if (adapter->msix_entries) {
		int vector;

		for (vector = 0; vector < adapter->num_vectors; vector++)
			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
	} else {
		ew32(ITR, new_itr);
	}
}

2516 2517 2518 2519 2520 2521
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
2522 2523 2524
	int size = sizeof(struct e1000_ring);

	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2525 2526
	if (!adapter->tx_ring)
		goto err;
2527 2528
	adapter->tx_ring->count = adapter->tx_ring_count;
	adapter->tx_ring->adapter = adapter;
2529

2530
	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2531 2532
	if (!adapter->rx_ring)
		goto err;
2533 2534
	adapter->rx_ring->count = adapter->rx_ring_count;
	adapter->rx_ring->adapter = adapter;
2535 2536 2537 2538 2539 2540 2541 2542 2543

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2544
/**
B
Bruce Allan 已提交
2545
 * e1000e_poll - NAPI Rx polling callback
2546
 * @napi: struct associated with this polling callback
B
Bruce Allan 已提交
2547
 * @weight: number of packets driver is allowed to process this poll
2548
 **/
B
Bruce Allan 已提交
2549
static int e1000e_poll(struct napi_struct *napi, int weight)
2550
{
B
Bruce Allan 已提交
2551 2552
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
						     napi);
2553
	struct e1000_hw *hw = &adapter->hw;
2554
	struct net_device *poll_dev = adapter->netdev;
2555
	int tx_cleaned = 1, work_done = 0;
2556

2557
	adapter = netdev_priv(poll_dev);
2558

B
Bruce Allan 已提交
2559 2560 2561
	if (!adapter->msix_entries ||
	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2562

B
Bruce Allan 已提交
2563
	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2564

2565
	if (!tx_cleaned)
B
Bruce Allan 已提交
2566
		work_done = weight;
2567

B
Bruce Allan 已提交
2568 2569
	/* If weight not fully consumed, exit the polling mode */
	if (work_done < weight) {
2570 2571
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2572
		napi_complete(napi);
2573 2574 2575 2576 2577 2578
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2579 2580 2581 2582 2583
	}

	return work_done;
}

2584
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2585 2586 2587 2588 2589 2590 2591 2592 2593
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2594
		return 0;
2595

2596
	/* add VID to filter table */
2597 2598 2599 2600 2601 2602
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2603 2604

	set_bit(vid, adapter->active_vlans);
2605 2606

	return 0;
2607 2608
}

2609
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2610 2611 2612 2613 2614 2615 2616 2617 2618
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2619
		e1000e_release_hw_control(adapter);
2620
		return 0;
2621 2622 2623
	}

	/* remove VID from filter table */
2624 2625 2626 2627 2628 2629
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2630 2631

	clear_bit(vid, adapter->active_vlans);
2632 2633

	return 0;
2634 2635
}

J
Jeff Kirsher 已提交
2636 2637 2638 2639 2640
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2641 2642
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2643 2644
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2645

J
Jeff Kirsher 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2655 2656 2657 2658
		}
	}
}

J
Jeff Kirsher 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2676

J
Jeff Kirsher 已提交
2677 2678 2679 2680 2681
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2682 2683
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2684
	u32 ctrl;
2685

J
Jeff Kirsher 已提交
2686 2687 2688 2689 2690
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2691

J
Jeff Kirsher 已提交
2692 2693 2694 2695 2696 2697 2698 2699
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2700

J
Jeff Kirsher 已提交
2701 2702 2703 2704 2705
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2706

J
Jeff Kirsher 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2717 2718
	}

J
Jeff Kirsher 已提交
2719 2720
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2721 2722 2723 2724 2725 2726
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2727
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2728

J
Jeff Kirsher 已提交
2729
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2730 2731 2732
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2733
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2734 2735
{
	struct e1000_hw *hw = &adapter->hw;
2736
	u32 manc, manc2h, mdef, i, j;
2737 2738 2739 2740 2741 2742

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2743 2744
	/*
	 * enable receiving management packets to the host. this will probably
2745
	 * generate destination unreachable messages from the host OS, but
2746 2747
	 * the packets will be handled on SMBUS
	 */
2748 2749
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2765
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2793 2794 2795 2796 2797
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2798
 * e1000_configure_tx - Configure Transmit Unit after Reset
2799 2800 2801 2802 2803 2804 2805 2806 2807
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
2808
	u32 tdlen, tarc;
2809 2810 2811 2812

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2813 2814 2815 2816 2817 2818 2819
	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
	ew32(TDBAH(0), (tdba >> 32));
	ew32(TDLEN(0), tdlen);
	ew32(TDH(0), 0);
	ew32(TDT(0), 0);
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2820 2821 2822

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2823
	/* Tx irq moderation */
2824 2825
	ew32(TADV, adapter->tx_abs_int_delay);

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2838
		 * there are Tx hangs or other Tx related bugs
2839 2840 2841 2842
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
	}
2843 2844
	/* erratum work around: set txdctl the same for both queues */
	ew32(TXDCTL(1), er32(TXDCTL(0)));
2845

2846
	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2847
		tarc = er32(TARC(0));
2848 2849 2850 2851
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2852 2853
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2854
		ew32(TARC(0), tarc);
2855 2856 2857 2858
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2859
		tarc = er32(TARC(0));
2860
		tarc |= 1;
2861 2862
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2863
		tarc |= 1;
2864
		ew32(TARC(1), tarc);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

2877
	hw->mac.ops.config_collision_dist(hw);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

B
Bruce Allan 已提交
2892 2893
	/* Workaround Si errata on PCHx - configure jumbo frame flow */
	if (hw->mac.type >= e1000_pch2lan) {
2894 2895 2896 2897 2898 2899
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2900 2901 2902

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2903 2904
	}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2921 2922 2923 2924 2925 2926
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2965 2966 2967
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;
2968
	ew32(RFCTL, rfctl);
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2986
	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2987
		adapter->rx_ps_pages = pages;
2988 2989
	else
		adapter->rx_ps_pages = 0;
2990 2991

	if (adapter->rx_ps_pages) {
2992 2993
		u32 psrctl = 0;

A
Auke Kok 已提交
2994 2995
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

B
Ben Greear 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3032
	ew32(RCTL, rctl);
3033 3034
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3053
		    sizeof(union e1000_rx_desc_packet_split);
3054 3055
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3056
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3057
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3058 3059
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3060
	} else {
3061
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3062 3063 3064 3065 3066 3067
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3068 3069
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3070
	e1e_flush();
3071
	usleep_range(10000, 20000);
3072

3073 3074 3075 3076
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3077
		 * enable prefetching of 0x20 Rx descriptors
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3096 3097 3098 3099 3100
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3101
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3102
		e1000e_write_itr(adapter, adapter->itr);
3103 3104 3105 3106 3107 3108 3109 3110

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3111 3112 3113 3114
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3115
	rdba = rx_ring->dma;
3116 3117 3118 3119 3120 3121 3122
	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
	ew32(RDBAH(0), (rdba >> 32));
	ew32(RDLEN(0), rdlen);
	ew32(RDH(0), 0);
	ew32(RDT(0), 0);
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3123 3124 3125

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3126
	if (adapter->netdev->features & NETIF_F_RXCSUM)
3127
		rxcsum |= E1000_RXCSUM_TUOFL;
3128
	else
3129 3130 3131
		rxcsum &= ~E1000_RXCSUM_TUOFL;
	ew32(RXCSUM, rxcsum);

3132 3133 3134 3135 3136
	if (adapter->hw.mac.type == e1000_pch2lan) {
		/*
		 * With jumbo frames, excessive C-state transition
		 * latencies result in dropped transactions.
		 */
3137 3138 3139
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3140
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3141
		} else {
3142 3143
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3144
		}
3145
	}
3146 3147 3148 3149 3150 3151

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3152 3153
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3154
 *
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3192
 *
3193 3194 3195 3196
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3197
 **/
3198
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3199
{
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
3226
			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3239 3240 3241
}

/**
3242
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3243 3244
 * @netdev: network interface device structure
 *
3245 3246 3247
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3248 3249
 * promiscuous mode, and all-multi behavior.
 **/
3250
static void e1000e_set_rx_mode(struct net_device *netdev)
3251 3252 3253 3254 3255 3256 3257 3258
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3259 3260 3261
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3262 3263
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3264 3265
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3266
	} else {
3267
		int count;
3268

3269 3270 3271
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3272 3273 3274 3275 3276 3277 3278 3279
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3280
		}
J
Jeff Kirsher 已提交
3281
		e1000e_vlan_filter_enable(adapter);
3282
		/*
3283 3284 3285
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3286
		 */
3287 3288 3289
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3290
	}
J
Jeff Kirsher 已提交
3291

3292 3293
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3294 3295 3296 3297
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3336
/**
3337
 * e1000_configure - configure the hardware for Rx and Tx
3338 3339 3340 3341
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3342 3343
	struct e1000_ring *rx_ring = adapter->rx_ring;

3344
	e1000e_set_rx_mode(adapter->netdev);
3345 3346

	e1000_restore_vlan(adapter);
3347
	e1000_init_manageability_pt(adapter);
3348 3349

	e1000_configure_tx(adapter);
3350 3351 3352

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3353 3354
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3355
	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3368 3369
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3370 3371 3372 3373 3374 3375 3376

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3377 3378
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3379 3380 3381 3382
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3383
	if (adapter->wol)
3384 3385
		return;

3386 3387
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3388 3389 3390 3391 3392 3393 3394 3395
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3396
 * properly configured for Rx, Tx etc.
3397 3398 3399 3400
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3401
	struct e1000_fc_info *fc = &adapter->hw.fc;
3402 3403
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3404
	u32 pba = adapter->pba;
3405 3406
	u16 hwm;

3407
	/* reset Packet Buffer Allocation to default */
3408
	ew32(PBA, pba);
3409

3410
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3411 3412
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3413 3414 3415 3416
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3417 3418
		 * expressed in KB.
		 */
3419
		pba = er32(PBA);
3420
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3421
		tx_space = pba >> 16;
3422
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3423
		pba &= 0xffff;
3424
		/*
3425
		 * the Tx fifo also stores 16 bytes of information about the Tx
3426
		 * but don't include ethernet FCS because hardware appends it
3427 3428
		 */
		min_tx_space = (adapter->max_frame_size +
3429 3430 3431 3432 3433
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3434
		min_rx_space = adapter->max_frame_size;
3435 3436 3437
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3438 3439
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3440
		 * and the min Tx FIFO size is less than the current Rx FIFO
3441 3442
		 * allocation, take space away from current Rx allocation
		 */
3443 3444 3445
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3446

3447
			/*
3448
			 * if short on Rx space, Rx wins and must trump Tx
3449 3450
			 * adjustment or use Early Receive if available
			 */
3451
			if (pba < min_rx_space)
3452
				pba = min_rx_space;
3453
		}
3454 3455

		ew32(PBA, pba);
3456 3457
	}

3458 3459 3460
	/*
	 * flow control settings
	 *
3461
	 * The high water mark must be low enough to fit one full frame
3462 3463 3464
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
3465
	 * - the full Rx FIFO size minus one full frame
3466
	 */
3467 3468 3469 3470
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
3471
	fc->send_xon = true;
3472 3473 3474
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	case e1000_ich9lan:
	case e1000_ich10lan:
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
			fc->high_water = 0x2800;
			fc->low_water = fc->high_water - 8;
			break;
		}
		/* fall-through */
3485
	default:
3486 3487
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - adapter->max_frame_size));
3488 3489 3490 3491 3492

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3504
		fc->refresh_time = 0x1000;
3505 3506
		break;
	case e1000_pch2lan:
B
Bruce Allan 已提交
3507
	case e1000_pch_lpt:
3508 3509 3510 3511
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3512 3513 3514 3515
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3516
		break;
3517
	}
3518

3519 3520
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3521
	 * fit in receive buffer.
3522 3523
	 */
	if (adapter->itr_setting & 0x3) {
3524
		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3525 3526 3527 3528
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
3529
				e1000e_write_itr(adapter, 0);
3530 3531 3532 3533 3534 3535
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
3536
			e1000e_write_itr(adapter, adapter->itr);
3537 3538 3539
		}
	}

3540 3541
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3542 3543 3544 3545 3546

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3547
	if (adapter->flags & FLAG_HAS_AMT)
3548
		e1000e_get_hw_control(adapter);
3549

3550 3551 3552
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3553
		e_err("Hardware Error\n");
3554 3555 3556 3557 3558 3559 3560

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3561 3562 3563 3564 3565 3566 3567

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3568 3569
	e1000_get_phy_info(hw);

3570 3571
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3572
		u16 phy_data = 0;
3573 3574
		/*
		 * speed up time to link by disabling smart power down, ignore
3575
		 * the return value of this function because there is nothing
3576 3577
		 * different we would do if it failed
		 */
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3593 3594
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3595 3596
	e1000_irq_enable(adapter);

3597
	netif_start_queue(adapter->netdev);
3598

3599
	/* fire a link change interrupt to start the watchdog */
3600 3601 3602 3603 3604
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3605 3606 3607
	return 0;
}

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
3621 3622 3623 3624 3625 3626 3627

	/*
	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
	 * write is successful
	 */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3628 3629 3630 3631 3632

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3633 3634
static void e1000e_update_stats(struct e1000_adapter *adapter);

3635 3636 3637 3638 3639 3640
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3641 3642 3643 3644
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3645 3646 3647 3648
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3649 3650
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3651 3652
	/* flush and sleep below */

3653
	netif_stop_queue(netdev);
3654 3655 3656 3657 3658

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3659

3660 3661
	/* flush both disables and wait for them to finish */
	e1e_flush();
3662
	usleep_range(10000, 20000);
3663 3664 3665 3666 3667 3668 3669

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3670 3671 3672 3673 3674

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3675
	e1000e_flush_descriptors(adapter);
3676 3677
	e1000_clean_tx_ring(adapter->tx_ring);
	e1000_clean_rx_ring(adapter->rx_ring);
3678

3679 3680 3681
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3682 3683
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3684

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3695
		usleep_range(1000, 2000);
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3715 3716
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3717 3718
	adapter->tx_ring_count = E1000_DEFAULT_TXD;
	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3719

J
Jeff Kirsher 已提交
3720 3721
	spin_lock_init(&adapter->stats64_lock);

3722
	e1000e_set_interrupt_capability(adapter);
3723

3724 3725
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3726 3727 3728 3729 3730 3731 3732 3733

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3746
	e_dbg("icr is %08X\n", icr);
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3773
	e1000e_reset_interrupt_capability(adapter);
3774 3775 3776 3777 3778 3779 3780 3781 3782

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3783
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
3797
	msleep(100);
3798 3799 3800 3801 3802 3803

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3804
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3805
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3806
	} else {
3807
		e_dbg("MSI interrupt test succeeded!\n");
3808
	}
3809 3810 3811 3812 3813

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3814
	e1000e_set_interrupt_capability(adapter);
3815
	return e1000_request_irq(adapter);
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3834 3835 3836
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3837 3838 3839

	err = e1000_test_msi_interrupt(adapter);

3840 3841 3842 3843 3844 3845
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3846 3847 3848 3849

	return err;
}

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3866
	struct pci_dev *pdev = adapter->pdev;
3867 3868 3869 3870 3871 3872
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3873 3874
	pm_runtime_get_sync(&pdev->dev);

3875 3876
	netif_carrier_off(netdev);

3877
	/* allocate transmit descriptors */
3878
	err = e1000e_setup_tx_resources(adapter->tx_ring);
3879 3880 3881 3882
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
3883
	err = e1000e_setup_rx_resources(adapter->rx_ring);
3884 3885 3886
	if (err)
		goto err_setup_rx;

3887 3888 3889 3890 3891
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3892
		e1000e_get_hw_control(adapter);
3893 3894 3895
		e1000e_reset(adapter);
	}

3896 3897 3898 3899 3900 3901 3902
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3903 3904
	/* DMA latency requirement to workaround jumbo issue */
	if (adapter->hw.mac.type == e1000_pch2lan)
3905 3906 3907
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3908

3909 3910
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3911 3912
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3913 3914
	 * clean_rx handler before we do so.
	 */
3915 3916 3917 3918 3919 3920
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3921 3922 3923 3924 3925
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3926
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3927 3928 3929 3930 3931 3932 3933
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3934 3935 3936 3937 3938 3939 3940
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3941
	adapter->tx_hang_recheck = false;
3942
	netif_start_queue(netdev);
3943

3944 3945 3946
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3947
	/* fire a link status change interrupt to start the watchdog */
3948 3949 3950 3951
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3952 3953 3954 3955

	return 0;

err_req_irq:
3956
	e1000e_release_hw_control(adapter);
3957
	e1000_power_down_phy(adapter);
3958
	e1000e_free_rx_resources(adapter->rx_ring);
3959
err_setup_rx:
3960
	e1000e_free_tx_resources(adapter->tx_ring);
3961 3962
err_setup_tx:
	e1000e_reset(adapter);
3963
	pm_runtime_put_sync(&pdev->dev);
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3982
	struct pci_dev *pdev = adapter->pdev;
3983 3984 3985 3986
	int count = E1000_CHECK_RESET_COUNT;

	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
		usleep_range(10000, 20000);
3987 3988

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3989 3990 3991

	pm_runtime_get_sync(&pdev->dev);

3992 3993
	napi_disable(&adapter->napi);

3994 3995 3996 3997
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3998 3999
	e1000_power_down_phy(adapter);

4000 4001
	e1000e_free_tx_resources(adapter->tx_ring);
	e1000e_free_rx_resources(adapter->rx_ring);
4002

4003 4004 4005 4006
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
4007 4008
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4009 4010
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

4011 4012 4013 4014
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
4015 4016 4017
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
4018

4019
	if (adapter->hw.mac.type == e1000_pch2lan)
4020
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4021

4022 4023
	pm_runtime_put_sync(&pdev->dev);

4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
4036
	struct e1000_hw *hw = &adapter->hw;
4037 4038 4039 4040 4041 4042 4043 4044
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

4045
	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4046 4047 4048 4049 4050

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4051 4052
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4053 4054 4055 4056
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4057 4058
		 * RAR[14]
		 */
4059 4060
		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
				    adapter->hw.mac.rar_entry_count - 1);
4061 4062 4063 4064 4065
	}

	return 0;
}

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4078 4079 4080 4081

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4082 4083 4084
	e1000_get_phy_info(&adapter->hw);
}

4085 4086 4087 4088
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4089 4090 4091
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4092 4093 4094 4095

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4096
	schedule_work(&adapter->update_phy_task);
4097 4098
}

4099 4100 4101
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4102 4103
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4119
	hw->phy.addr = 1;
4120 4121 4122 4123
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4124 4125 4126
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4127 4128 4129 4130 4131
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4132 4133
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4134 4135 4136 4137
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4138 4139
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4140 4141 4142 4143
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4144 4145
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4146 4147 4148 4149
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4150 4151
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4152 4153 4154 4155
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4156 4157
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4158 4159 4160 4161
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4162 4163
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4164 4165 4166 4167
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4168 4169
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4170 4171 4172 4173 4174 4175 4176
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4177 4178 4179 4180
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4181
static void e1000e_update_stats(struct e1000_adapter *adapter)
4182
{
4183
	struct net_device *netdev = adapter->netdev;
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4198 4199
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4200 4201 4202 4203 4204
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4224
	}
4225

4226 4227 4228 4229 4230
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4231 4232
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4251 4252
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4253 4254 4255

	/* Rx Errors */

4256 4257 4258 4259
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4260
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4261 4262 4263
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4264
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4265
					      adapter->stats.roc;
4266 4267 4268
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4269 4270

	/* Tx Errors */
4271
	netdev->stats.tx_errors = adapter->stats.ecol +
4272
				       adapter->stats.latecol;
4273 4274 4275
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4276 4277 4278 4279 4280 4281 4282 4283 4284

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4296 4297
		int ret_val;

4298 4299 4300 4301 4302 4303 4304 4305 4306
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4307
			e_warn("Error reading PHY register\n");
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4327 4328 4329 4330 4331
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4332
	/* Link status message must follow this format for user tools */
4333 4334 4335 4336 4337 4338 4339
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4340 4341
}

4342
static bool e1000e_has_link(struct e1000_adapter *adapter)
4343 4344
{
	struct e1000_hw *hw = &adapter->hw;
4345
	bool link_active = false;
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4360
			link_active = true;
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4379
		e_info("Gigabit has been disabled, downgrading speed\n");
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4436
	struct e1000_phy_info *phy = &adapter->hw.phy;
4437 4438 4439 4440
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4441 4442 4443
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4444
	link = e1000e_has_link(adapter);
4445
	if ((netif_carrier_ok(netdev)) && link) {
4446 4447 4448
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4449
		e1000e_enable_receives(adapter);
4450 4451 4452 4453 4454 4455 4456 4457 4458
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4459
			bool txb2b = true;
4460 4461 4462 4463

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4464
			/* update snapshot of PHY registers on LSC */
4465
			e1000_phy_read_status(adapter);
4466 4467 4468 4469
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4485
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4486 4487
			}

4488
			/* adjust timeout factor according to speed/duplex */
4489 4490 4491
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4492
				txb2b = false;
4493
				adapter->tx_timeout_factor = 16;
4494 4495
				break;
			case SPEED_100:
4496
				txb2b = false;
4497
				adapter->tx_timeout_factor = 10;
4498 4499 4500
				break;
			}

4501 4502 4503 4504
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4505 4506 4507
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4508
				tarc0 = er32(TARC(0));
4509
				tarc0 &= ~SPEED_MODE_BIT;
4510
				ew32(TARC(0), tarc0);
4511 4512
			}

4513 4514 4515 4516
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4517 4518 4519 4520
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4521
					e_info("10/100 speed: disabling TSO\n");
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4535 4536 4537 4538
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4539 4540 4541 4542
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4543 4544 4545 4546 4547 4548 4549
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4560 4561 4562
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4563 4564 4565 4566 4567 4568 4569
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4570 4571 4572
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4573 4574 4575 4576
		}
	}

link_up:
J
Jeff Kirsher 已提交
4577
	spin_lock(&adapter->stats64_lock);
4578 4579 4580 4581 4582 4583 4584
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4585 4586 4587 4588
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4589
	spin_unlock(&adapter->stats64_lock);
4590 4591 4592

	e1000e_update_adaptive(&adapter->hw);

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4604 4605
	}

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

4619
		e1000e_write_itr(adapter, itr);
4620 4621
	}

4622
	/* Cause software interrupt to ensure Rx ring is cleaned */
4623 4624 4625 4626
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4627

4628 4629 4630
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4631
	/* Force detection of hung controller every watchdog period */
4632
	adapter->detect_tx_hung = true;
4633

4634 4635 4636 4637
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4638
	if (e1000e_get_laa_state_82571(hw))
4639
		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4640

4641 4642 4643
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
4654
#define E1000_TX_FLAGS_NO_FCS		0x00000010
4655 4656 4657
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

4658
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4659 4660 4661 4662 4663 4664 4665 4666
{
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4667 4668
	if (!skb_is_gso(skb))
		return 0;
4669

4670
	if (skb_header_cloned(skb)) {
4671 4672
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4673 4674
		if (err)
			return err;
4675 4676
	}

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4687
	} else if (skb_is_gso_v6(skb)) {
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4726 4727
}

4728
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4729
{
4730
	struct e1000_adapter *adapter = tx_ring->adapter;
4731 4732 4733 4734
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4735
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4736
	__be16 protocol;
4737

4738 4739
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4740

4741 4742 4743 4744 4745
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4746
	switch (protocol) {
4747
	case cpu_to_be16(ETH_P_IP):
4748 4749 4750
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4751
	case cpu_to_be16(ETH_P_IPV6):
4752 4753 4754 4755 4756 4757
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4758 4759
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4760
		break;
4761 4762
	}

4763
	css = skb_checksum_start_offset(skb);
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4786 4787 4788 4789 4790
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

4791 4792 4793
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
			unsigned int first, unsigned int max_per_txd,
			unsigned int nr_frags, unsigned int mss)
4794
{
4795
	struct e1000_adapter *adapter = tx_ring->adapter;
4796
	struct pci_dev *pdev = adapter->pdev;
4797
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4798
	unsigned int len = skb_headlen(skb);
4799
	unsigned int offset = 0, size, count = 0, i;
4800
	unsigned int f, bytecount, segs;
4801 4802 4803 4804

	i = tx_ring->next_to_use;

	while (len) {
4805
		buffer_info = &tx_ring->buffer_info[i];
4806 4807 4808 4809 4810
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4811 4812
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4813
						  size, DMA_TO_DEVICE);
4814
		buffer_info->mapped_as_page = false;
4815
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4816
			goto dma_error;
4817 4818 4819

		len -= size;
		offset += size;
4820
		count++;
4821 4822 4823 4824 4825 4826

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4827 4828 4829
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4830
		const struct skb_frag_struct *frag;
4831 4832

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4833
		len = skb_frag_size(frag);
4834
		offset = 0;
4835 4836

		while (len) {
4837 4838 4839 4840
			i++;
			if (i == tx_ring->count)
				i = 0;

4841 4842 4843 4844 4845 4846
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4847 4848
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4849
			buffer_info->mapped_as_page = true;
4850
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4851
				goto dma_error;
4852 4853 4854 4855 4856 4857 4858

			len -= size;
			offset += size;
			count++;
		}
	}

4859
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4860 4861 4862
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4863
	tx_ring->buffer_info[i].skb = skb;
4864 4865
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4866 4867 4868
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4869 4870

dma_error:
4871
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4872
	buffer_info->dma = 0;
4873
	if (count)
4874
		count--;
4875 4876

	while (count--) {
4877
		if (i == 0)
4878
			i += tx_ring->count;
4879
		i--;
4880
		buffer_info = &tx_ring->buffer_info[i];
4881
		e1000_put_txbuf(tx_ring, buffer_info);
4882 4883 4884
	}

	return 0;
4885 4886
}

4887
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4888
{
4889
	struct e1000_adapter *adapter = tx_ring->adapter;
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

4914 4915 4916
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		txd_lower &= ~(E1000_TXD_CMD_IFCS);

4917 4918
	i = tx_ring->next_to_use;

4919
	do {
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4930
	} while (--count > 0);
4931 4932 4933

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4934 4935 4936 4937
	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));

4938 4939
	/*
	 * Force memory writes to complete before letting h/w
4940 4941
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4942 4943
	 * such as IA-64).
	 */
4944 4945 4946
	wmb();

	tx_ring->next_to_use = i;
4947 4948

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4949
		e1000e_update_tdt_wa(tx_ring, i);
4950
	else
4951
		writel(i, tx_ring->tail);
4952

4953 4954 4955 4956
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4968 4969
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

4999
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5000
{
5001
	struct e1000_adapter *adapter = tx_ring->adapter;
5002

5003
	netif_stop_queue(adapter->netdev);
5004 5005
	/*
	 * Herbert's original patch had:
5006
	 *  smp_mb__after_netif_stop_queue();
5007 5008
	 * but since that doesn't exist yet, just open code it.
	 */
5009 5010
	smp_mb();

5011 5012 5013 5014
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
5015
	if (e1000_desc_unused(tx_ring) < size)
5016 5017 5018
		return -EBUSY;

	/* A reprieve! */
5019
	netif_start_queue(adapter->netdev);
5020 5021 5022 5023
	++adapter->restart_queue;
	return 0;
}

5024
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5025
{
5026
	if (e1000_desc_unused(tx_ring) >= size)
5027
		return 0;
5028
	return __e1000_maybe_stop_tx(tx_ring, size);
5029 5030
}

5031
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5032 5033
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
5034 5035 5036 5037 5038 5039 5040
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
5041
	unsigned int len = skb_headlen(skb);
5042 5043
	unsigned int nr_frags;
	unsigned int mss;
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5059 5060
	/*
	 * The controller does a simple calculation to
5061 5062 5063 5064
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5065 5066
	 * drops.
	 */
5067 5068 5069 5070 5071
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5072 5073 5074 5075 5076
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5077
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5078 5079 5080 5081
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5082
		if (skb->data_len && (hdr_len == len)) {
5083 5084
			unsigned int pull_size;

5085
			pull_size = min_t(unsigned int, 4, skb->data_len);
5086
			if (!__pskb_pull_tail(skb, pull_size)) {
5087
				e_err("__pskb_pull_tail failed.\n");
5088 5089 5090
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5091
			len = skb_headlen(skb);
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5104
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5105 5106 5107 5108 5109
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5110 5111 5112 5113
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5114
	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5115 5116
		return NETDEV_TX_BUSY;

5117
	if (vlan_tx_tag_present(skb)) {
5118 5119 5120 5121 5122 5123
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

5124
	tso = e1000_tso(tx_ring, skb);
5125 5126 5127 5128 5129 5130 5131
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
5132
	else if (e1000_tx_csum(tx_ring, skb))
5133 5134
		tx_flags |= E1000_TX_FLAGS_CSUM;

5135 5136
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5137
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5138 5139
	 * no longer assume, we must.
	 */
5140 5141 5142
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

5143 5144 5145
	if (unlikely(skb->no_fcs))
		tx_flags |= E1000_TX_FLAGS_NO_FCS;

L
Lucas De Marchi 已提交
5146
	/* if count is 0 then mapping error has occurred */
5147
	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5148
	if (count) {
5149 5150
		skb_tx_timestamp(skb);

5151
		netdev_sent_queue(netdev, skb->len);
5152
		e1000_tx_queue(tx_ring, tx_flags, count);
5153
		/* Make sure there is space in the ring for the next send. */
5154
		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5155 5156

	} else {
5157
		dev_kfree_skb_any(skb);
5158 5159
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5183 5184 5185 5186
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5187 5188 5189 5190 5191
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5192 5193 5194 5195
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5196
 * e1000_get_stats64 - Get System Network Statistics
5197
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5198
 * @stats: rtnl_link_stats64 pointer
5199 5200 5201
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5202 5203
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5204
{
J
Jeff Kirsher 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5259
	/* Jumbo frame support */
5260 5261 5262 5263
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
		return -EINVAL;
5264 5265
	}

5266 5267 5268 5269
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5270 5271 5272
		return -EINVAL;
	}

B
Bruce Allan 已提交
5273 5274
	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5275 5276
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
B
Bruce Allan 已提交
5277
		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5278 5279 5280
		return -EINVAL;
	}

5281
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5282
		usleep_range(1000, 2000);
5283
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5284
	adapter->max_frame_size = max_frame;
5285 5286
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5287 5288 5289
	if (netif_running(netdev))
		e1000e_down(adapter);

5290 5291
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5292 5293
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5294
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5295 5296
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5297
	 */
5298

5299
	if (max_frame <= 2048)
5300 5301 5302 5303 5304 5305 5306 5307
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5308
					 + ETH_FCS_LEN;
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5326
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5327 5328 5329 5330 5331 5332 5333
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5334 5335
		e1000_phy_read_status(adapter);

5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5390 5391 5392 5393
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5394
	u16 phy_reg, wuc_enable;
5395 5396 5397
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5398
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5399

5400 5401 5402 5403 5404 5405 5406 5407 5408
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
5409
		goto release;
5410 5411

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5412 5413
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5414 5415 5416 5417
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5418 5419 5420
	}

	/* configure PHY Rx Control register */
5421
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5438
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5439 5440 5441 5442 5443 5444

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5445 5446
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5447 5448

	/* activate PHY wakeup */
5449 5450
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5451 5452
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
5453
release:
5454
	hw->phy.ops.release(hw);
5455 5456 5457 5458

	return retval;
}

5459 5460
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5461 5462 5463 5464 5465
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5466 5467
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5468 5469 5470 5471 5472
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
5473 5474 5475 5476 5477
		int count = E1000_CHECK_RESET_COUNT;

		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
			usleep_range(10000, 20000);

5478 5479 5480 5481
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5482
	e1000e_reset_interrupt_capability(adapter);
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5494
		e1000e_set_rx_mode(netdev);
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5508 5509 5510
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5511 5512
		ew32(CTRL, ctrl);

5513 5514 5515
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5516 5517
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5518
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5519 5520 5521
			ew32(CTRL_EXT, ctrl_ext);
		}

5522
		if (adapter->flags & FLAG_IS_ICH)
5523
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5524

5525 5526 5527
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5528
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5529 5530 5531 5532 5533 5534 5535 5536 5537
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5538 5539 5540 5541 5542
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5543 5544
	*enable_wake = !!wufc;

5545
	/* make sure adapter isn't asleep if manageability is enabled */
5546 5547
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5548
		*enable_wake = true;
5549 5550 5551 5552

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5553 5554 5555 5556
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5557
	e1000e_release_hw_control(adapter);
5558 5559 5560

	pci_disable_device(pdev);

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5581 5582 5583 5584 5585 5586 5587 5588
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5589
		int pos = pci_pcie_cap(us_dev);
5590 5591 5592 5593 5594 5595
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5596
		e1000_power_off(pdev, sleep, wake);
5597 5598 5599

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5600
		e1000_power_off(pdev, sleep, wake);
5601
	}
5602 5603
}

5604 5605 5606
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5607
	pci_disable_link_state_locked(pdev, state);
5608 5609 5610
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5611 5612
{
	int pos;
5613
	u16 reg16;
5614 5615

	/*
5616 5617
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5618
	 */
5619 5620 5621 5622 5623
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5624 5625 5626
	if (!pdev->bus->self)
		return;

5627 5628 5629 5630 5631 5632
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5633
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5634 5635 5636 5637 5638 5639
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5640 5641
}

R
Rafael J. Wysocki 已提交
5642
#ifdef CONFIG_PM
5643
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5644
{
5645
	return !!adapter->tx_ring->buffer_info;
5646 5647
}

5648
static int __e1000_resume(struct pci_dev *pdev)
5649 5650 5651 5652
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5653
	u16 aspm_disable_flag = 0;
5654 5655
	u32 err;

5656 5657 5658 5659 5660 5661 5662
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5663 5664
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5665
	pci_save_state(pdev);
T
Taku Izumi 已提交
5666

5667
	e1000e_set_interrupt_capability(adapter);
5668 5669 5670 5671 5672 5673
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

B
Bruce Allan 已提交
5674
	if (hw->mac.type >= e1000_pch2lan)
5675 5676
		e1000_resume_workarounds_pchlan(&adapter->hw);

5677
	e1000e_power_up_phy(adapter);
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5690 5691
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5708 5709
	e1000e_reset(adapter);

5710
	e1000_init_manageability_pt(adapter);
5711 5712 5713 5714 5715 5716

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5717 5718
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5719
	 * is up.  For all other cases, let the f/w know that the h/w is now
5720 5721
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5722
	if (!(adapter->flags & FLAG_HAS_AMT))
5723
		e1000e_get_hw_control(adapter);
5724 5725 5726

	return 0;
}
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5801
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5802
#endif /* CONFIG_PM */
5803 5804 5805

static void e1000_shutdown(struct pci_dev *pdev)
{
5806 5807
	bool wake = false;

5808
	__e1000_shutdown(pdev, &wake, false);
5809 5810 5811

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5812 5813 5814
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5815 5816 5817 5818 5819 5820 5821

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5822 5823
		int vector, msix_irq;

5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5846 5847 5848 5849 5850 5851 5852 5853 5854
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5889 5890 5891
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5912
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5913
	int err;
J
Jesse Brandeburg 已提交
5914
	pci_ers_result_t result;
5915

5916 5917
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5918
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5919 5920 5921 5922
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5923
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5924
	if (err) {
5925 5926
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5927 5928 5929
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5930
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5931
		pci_restore_state(pdev);
5932

J
Jesse Brandeburg 已提交
5933 5934
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5935

J
Jesse Brandeburg 已提交
5936 5937 5938 5939
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5940

J
Jesse Brandeburg 已提交
5941 5942 5943
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5959
	e1000_init_manageability_pt(adapter);
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5971 5972
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5973
	 * is up.  For all other cases, let the f/w know that the h/w is now
5974 5975
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5976
	if (!(adapter->flags & FLAG_HAS_AMT))
5977
		e1000e_get_hw_control(adapter);
5978 5979 5980 5981 5982 5983 5984

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5985 5986
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5987 5988

	/* print bus type/speed/width info */
5989
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5990 5991 5992 5993
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5994
	       netdev->dev_addr);
5995 5996
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5997 5998 5999
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
6000
		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6001 6002
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
6003 6004
}

6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6015 6016
	le16_to_cpus(&buf);
	if (!ret_val && (!(buf & (1 << 0)))) {
6017
		/* Deep Smart Power Down (DSPD) */
6018 6019
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
6020 6021 6022
	}
}

6023
static int e1000_set_features(struct net_device *netdev,
6024
			      netdev_features_t features)
6025 6026
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
6027
	netdev_features_t changed = features ^ netdev->features;
6028 6029 6030 6031 6032

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
B
Ben Greear 已提交
6033 6034
			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
			 NETIF_F_RXALL)))
6035 6036
		return 0;

B
Ben Greear 已提交
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
	if (changed & NETIF_F_RXFCS) {
		if (features & NETIF_F_RXFCS) {
			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		} else {
			/* We need to take it back to defaults, which might mean
			 * stripping is still disabled at the adapter level.
			 */
			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
				adapter->flags2 |= FLAG2_CRC_STRIPPING;
			else
				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		}
	}

6051 6052
	netdev->features = features;

6053 6054 6055 6056 6057 6058 6059 6060
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6061 6062 6063
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6064
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6065
	.ndo_get_stats64	= e1000e_get_stats64,
6066
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6078
	.ndo_set_features = e1000_set_features,
6079 6080
};

6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6099 6100
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6101
	static int cards_found;
6102
	u16 aspm_disable_flag = 0;
6103 6104 6105 6106
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6107 6108
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6109
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6110 6111 6112
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6113

6114
	err = pci_enable_device_mem(pdev);
6115 6116 6117 6118
	if (err)
		return err;

	pci_using_dac = 0;
6119
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6120
	if (!err) {
6121
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6122 6123 6124
		if (!err)
			pci_using_dac = 1;
	} else {
6125
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6126
		if (err) {
6127 6128
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6129
			if (err) {
6130
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6131 6132 6133 6134 6135
				goto err_dma;
			}
		}
	}

6136
	err = pci_request_selected_regions_exclusive(pdev,
6137 6138
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6139 6140 6141
	if (err)
		goto err_pci_reg;

6142
	/* AER (Advanced Error Reporting) hooks */
6143
	pci_enable_pcie_error_reporting(pdev);
6144

6145
	pci_set_master(pdev);
6146 6147 6148 6149
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6150 6151 6152 6153 6154 6155 6156 6157

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6158 6159
	netdev->irq = pdev->irq;

6160 6161 6162 6163 6164 6165 6166 6167
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6168
	adapter->flags2 = ei->flags2;
6169 6170
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6171
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6172
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6192
	netdev->netdev_ops		= &e1000e_netdev_ops;
6193 6194
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
B
Bruce Allan 已提交
6195
	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6196
	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6197 6198 6199 6200 6201 6202

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6203 6204
	e1000e_check_options(adapter);

6205 6206 6207 6208 6209 6210 6211 6212 6213
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6214
	err = ei->get_variants(adapter);
6215 6216 6217
	if (err)
		goto err_hw_init;

6218 6219 6220 6221
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6222 6223
	hw->mac.ops.get_bus_info(&adapter->hw);

6224
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6225 6226

	/* Copper options */
6227
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6228 6229 6230 6231 6232
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

6233
	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6234 6235
		dev_info(&pdev->dev,
			 "PHY reset is blocked due to SOL/IDER session.\n");
6236

6237 6238 6239 6240 6241 6242
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6243
			    NETIF_F_RXHASH |
6244 6245 6246 6247 6248
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
B
Ben Greear 已提交
6249
	netdev->hw_features |= NETIF_F_RXFCS;
6250
	netdev->priv_flags |= IFF_SUPP_NOFCS;
B
Ben Greear 已提交
6251
	netdev->hw_features |= NETIF_F_RXALL;
6252 6253 6254 6255

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6256 6257 6258 6259
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6260

6261 6262
	netdev->priv_flags |= IFF_UNICAST_FLT;

6263
	if (pci_using_dac) {
6264
		netdev->features |= NETIF_F_HIGHDMA;
6265 6266
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6267 6268 6269 6270

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6271 6272 6273 6274
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6285
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6286 6287 6288 6289 6290
			err = -EIO;
			goto err_eeprom;
		}
	}

6291 6292
	e1000_eeprom_checks(adapter);

6293
	/* copy the MAC address */
6294
	if (e1000e_read_mac_addr(&adapter->hw))
6295 6296
		dev_err(&pdev->dev,
			"NVM Read Error while reading MAC address\n");
6297 6298 6299 6300 6301

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
6302 6303
		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
			netdev->perm_addr);
6304 6305 6306 6307 6308
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6309
	adapter->watchdog_timer.function = e1000_watchdog;
6310 6311 6312
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6313
	adapter->phy_info_timer.function = e1000_update_phy_info;
6314 6315 6316 6317
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6318 6319
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6320
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6321 6322 6323

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6324
	adapter->fc_autoneg = true;
6325 6326
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6341 6342
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6343
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6344 6345 6346
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
6347 6348
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
				       1, &eeprom_data);
6349
		else
6350 6351
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
				       1, &eeprom_data);
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6368
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6369

6370 6371 6372
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6373 6374 6375
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6376 6377
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6378
	 * is up.  For all other cases, let the f/w know that the h/w is now
6379 6380
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6381
	if (!(adapter->flags & FLAG_HAS_AMT))
6382
		e1000e_get_hw_control(adapter);
6383

6384
	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6385 6386 6387 6388
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6389 6390 6391
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6392 6393
	e1000_print_device_info(adapter);

6394 6395
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6396

6397 6398 6399
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6400
	if (!(adapter->flags & FLAG_HAS_AMT))
6401
		e1000e_release_hw_control(adapter);
6402
err_eeprom:
6403
	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6404
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6405
err_hw_init:
6406 6407 6408
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6409 6410
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6411
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6412
err_flashmap:
6413 6414 6415 6416
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6417 6418
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6438 6439
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6440
	/*
6441 6442
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6443
	 */
6444 6445
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6446 6447 6448
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6449 6450 6451 6452 6453
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6454

6455 6456 6457
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6458 6459 6460
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6461 6462
	unregister_netdev(netdev);

6463 6464
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6465

6466 6467 6468 6469
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6470
	e1000e_release_hw_control(adapter);
6471

6472
	e1000e_reset_interrupt_capability(adapter);
6473 6474 6475 6476 6477 6478
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6479 6480
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6481 6482 6483

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6484
	/* AER disable */
6485
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6486

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6497
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6498 6499 6500 6501 6502 6503
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6504 6505 6506
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6507

6508 6509 6510 6511
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6512

6513 6514 6515
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6516

6517
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6518
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6519
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6520

6521 6522 6523 6524 6525 6526 6527 6528
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6529

6530 6531 6532 6533 6534 6535 6536
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6537
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6538

6539 6540 6541 6542 6543
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6544
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6545 6546 6547 6548 6549 6550 6551
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6552

6553 6554
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6555
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6556

6557 6558 6559 6560 6561
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6562 6563 6564
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

B
Bruce Allan 已提交
6565 6566 6567
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },

6568
	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6569 6570 6571
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6572
#ifdef CONFIG_PM
6573
static const struct dev_pm_ops e1000_pm_ops = {
6574 6575 6576
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6577
};
6578
#endif
6579

6580 6581 6582 6583 6584 6585
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6586
#ifdef CONFIG_PM
6587 6588 6589
	.driver   = {
		.pm = &e1000_pm_ops,
	},
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6604 6605
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6606
	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6607
	ret = pci_register_driver(&e1000_driver);
6608

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

6631
/* netdev.c */