netdev.c 177.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos_params.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

65 66 67 68
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
69
	[board_82574]		= &e1000_82574_info,
70
	[board_82583]		= &e1000_82583_info,
71 72 73
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
74
	[board_ich10lan]	= &e1000_ich10_info,
75
	[board_pchlan]		= &e1000_pch_info,
76
	[board_pch2lan]		= &e1000_pch2_info,
77 78
};

79 80 81 82 83
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

84 85 86 87 88 89 90 91 92 93 94
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 96 97 98 99 100 101 102 103 104 105

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

106
	/* Rx Registers */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

122
	/* Tx Registers */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
167
		       reginfo->name, __er32(hw, reginfo->ofs));
168 169 170 171 172 173 174 175 176 177 178
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 2; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
179
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
180 181 182 183 184 185 186 187
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
188 189 190 191
	struct my_u0 {
		u64 a;
		u64 b;
	} *u0;
192 193 194
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
195
	union e1000_rx_desc_extended *rx_desc;
196 197 198 199 200 201
	struct my_u1 {
		u64 a;
		u64 b;
		u64 c;
		u64 d;
	} *u1;
202 203 204 205 206 207 208 209 210 211
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
212
		       "trans_start      last_rx\n");
213
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
214 215
		       netdev->name, netdev->state, netdev->trans_start,
		       netdev->last_rx);
216 217 218 219 220 221 222 223 224 225
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

226
	/* Print Tx Ring Summary */
227 228 229
	if (!netdev || !netif_running(netdev))
		goto exit;

230
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
231
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
232
	       " leng ntw timestamp\n");
233 234
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
235 236 237 238 239
	       0, tx_ring->next_to_use, tx_ring->next_to_clean,
	       (unsigned long long)buffer_info->dma,
	       buffer_info->length,
	       buffer_info->next_to_watch,
	       (unsigned long long)buffer_info->time_stamp);
240

241
	/* Print Tx Ring */
242 243 244
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

245
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
275 276
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Legacy format\n");
277
	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
278 279
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Ext Context format\n");
280
	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
281 282
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Ext Data format\n");
283 284 285 286 287
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
288 289 290
		       "%04X  %3X %016llX %p",
		       (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
291 292 293 294 295
		       (unsigned long long)le64_to_cpu(u0->a),
		       (unsigned long long)le64_to_cpu(u0->b),
		       (unsigned long long)buffer_info->dma,
		       buffer_info->length, buffer_info->next_to_watch,
		       (unsigned long long)buffer_info->time_stamp,
296 297 298 299 300 301 302 303 304 305 306 307
		       buffer_info->skb);
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC/U\n");
		else if (i == tx_ring->next_to_use)
			printk(KERN_CONT " NTU\n");
		else if (i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC\n");
		else
			printk(KERN_CONT "\n");

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
308 309
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
310 311
	}

312
	/* Print Rx Ring Summary */
313
rx_ring_summary:
314
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
315 316
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	printk(KERN_INFO " %5d %5X %5X\n", 0,
317
	       rx_ring->next_to_use, rx_ring->next_to_clean);
318

319
	/* Print Rx Ring */
320 321 322
	if (!netif_msg_rx_status(adapter))
		goto exit;

323
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
341
		       "[buffer 1 63:0 ] "
342 343 344 345 346 347 348 349 350 351 352 353 354 355
		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
		       "[bi->skb] <-- Ext Pkt Split format\n");
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
356
		       "[vl   l0 ee  es] "
357 358 359 360 361 362 363
		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
		       "[bi->skb] <-- Ext Rx Write-Back format\n");
		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
364
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
365 366 367
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
368 369 370 371 372 373 374
				       "%016llX %016llX %016llX "
				       "---------------- %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)le64_to_cpu(u1->c),
				       (unsigned long long)le64_to_cpu(u1->d),
				       buffer_info->skb);
375 376
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
377 378 379 380 381 382 383
				       "%016llX %016llX %016llX %016llX %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)le64_to_cpu(u1->c),
				       (unsigned long long)le64_to_cpu(u1->d),
				       (unsigned long long)buffer_info->dma,
				       buffer_info->skb);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");
		}
		break;
	default:
	case 0:
402
		/* Extended Receive Descriptor (Read) Format
403
		 *
404 405 406 407 408
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
409
		 */
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		printk(KERN_INFO "R  [desc]      [buf addr 63:0 ] "
		       "[reserved 63:0 ] [bi->dma       ] "
		       "[bi->skb] <-- Ext (Read) format\n");
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
		printk(KERN_INFO "RWB[desc]      [cs ipid    mrq] "
		       "[vt   ln xe  xs] "
		       "[bi->skb] <-- Ext (Write-Back) format\n");

		for (i = 0; i < rx_ring->count; i++) {
431
			buffer_info = &rx_ring->buffer_info[i];
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
				       "%016llX ---------------- %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       buffer_info->skb);
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
				       "%016llX %016llX %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)buffer_info->dma,
				       buffer_info->skb);

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}

460 461 462 463 464 465 466 467 468 469 470 471 472
			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");
		}
	}

exit:
	return;
}

473 474 475 476 477 478 479 480 481 482 483 484
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
485
 * e1000_receive_skb - helper function to handle Rx indications
486 487 488 489 490 491
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
492
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
493
			      u8 status, __le16 vlan)
494
{
J
Jeff Kirsher 已提交
495
	u16 tag = le16_to_cpu(vlan);
496 497
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
498 499 500 501
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
502 503 504
}

/**
505
 * e1000_rx_checksum - Receive Checksum Offload
506 507 508 509 510 511 512 513 514 515
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
516 517

	skb_checksum_none_assert(skb);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
538 539 540
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
541 542
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
543 544
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
545 546 547 548 549
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
	struct e1000_hw *hw = &adapter->hw;

	if (e1000e_update_tail_wa(hw, tail, i)) {
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
	struct e1000_hw *hw = &adapter->hw;

	if (e1000e_update_tail_wa(hw, tail, i)) {
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

607
/**
608
 * e1000_alloc_rx_buffers - Replace used receive buffers
609 610 611
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
612
				   int cleaned_count, gfp_t gfp)
613 614 615 616
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
617
	union e1000_rx_desc_extended *rx_desc;
618 619 620
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
621
	unsigned int bufsz = adapter->rx_buffer_len;
622 623 624 625 626 627 628 629 630 631 632

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

633
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
634 635 636 637 638 639 640 641
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
642
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
643
						  adapter->rx_buffer_len,
644 645
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
646
			dev_err(&pdev->dev, "Rx DMA map failed\n");
647 648 649 650
			adapter->rx_dma_failed++;
			break;
		}

651 652
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
653

654 655 656 657 658 659 660 661
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
662 663 664 665
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
				e1000e_update_rdt_wa(adapter, i);
			else
				writel(i, adapter->hw.hw_addr + rx_ring->tail);
666
		}
667 668 669 670 671 672
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

673
	rx_ring->next_to_use = i;
674 675 676 677 678 679 680
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
681
				      int cleaned_count, gfp_t gfp)
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
699 700 701
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
702 703
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
704 705 706
				continue;
			}
			if (!ps_page->page) {
707
				ps_page->page = alloc_page(gfp);
708
				if (!ps_page->page) {
A
Auke Kok 已提交
709 710 711
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
712 713 714 715 716 717
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
718
					dev_err(&adapter->pdev->dev,
719
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
720 721
					adapter->rx_dma_failed++;
					goto no_buffers;
722 723
				}
			}
A
Auke Kok 已提交
724 725 726 727 728
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
729 730
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
731 732
		}

733 734 735
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
736 737 738 739 740 741 742

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
743
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
744
						  adapter->rx_ps_bsize0,
745 746
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
747
			dev_err(&pdev->dev, "Rx DMA map failed\n");
748 749 750 751 752 753 754 755 756
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

757 758 759 760 761 762 763 764
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
765 766 767 768 769
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
				e1000e_update_rdt_wa(adapter, i << 1);
			else
				writel(i << 1,
				       adapter->hw.hw_addr + rx_ring->tail);
770 771
		}

772 773 774 775 776 777 778
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
779
	rx_ring->next_to_use = i;
780 781
}

782 783 784 785 786 787 788
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
789
					 int cleaned_count, gfp_t gfp)
790 791 792
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
793
	union e1000_rx_desc_extended *rx_desc;
794 795 796 797
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
798
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
799 800 801 802 803 804 805 806 807 808 809

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

810
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
811 812 813 814 815 816 817 818 819 820
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
821
			buffer_info->page = alloc_page(gfp);
822 823 824 825 826 827 828
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
829
			buffer_info->dma = dma_map_page(&pdev->dev,
830 831
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
832
							DMA_FROM_DEVICE);
833

834 835
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
852 853 854 855
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
			e1000e_update_rdt_wa(adapter, i);
		else
			writel(i, adapter->hw.hw_addr + rx_ring->tail);
856 857 858
	}
}

859 860 861 862 863 864 865 866 867 868 869 870
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
871
	struct e1000_hw *hw = &adapter->hw;
872
	struct e1000_ring *rx_ring = adapter->rx_ring;
873
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
874
	struct e1000_buffer *buffer_info, *next_buffer;
875
	u32 length, staterr;
876 877 878 879 880 881
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
882 883
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
884 885
	buffer_info = &rx_ring->buffer_info[i];

886
	while (staterr & E1000_RXD_STAT_DD) {
887 888 889 890 891
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
892
		rmb();	/* read descriptor and rx_buffer_info after status DD */
893 894 895 896 897 898 899 900 901

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
902
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
903 904 905 906 907 908
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
909
		dma_unmap_single(&pdev->dev,
910 911
				 buffer_info->dma,
				 adapter->rx_buffer_len,
912
				 DMA_FROM_DEVICE);
913 914
		buffer_info->dma = 0;

915
		length = le16_to_cpu(rx_desc->wb.upper.length);
916

917 918 919 920 921 922 923
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
924
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
925 926 927
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
928
			/* All receives must fit into a single buffer */
929
			e_dbg("Receive packet consumed multiple buffers\n");
930 931
			/* recycle */
			buffer_info->skb = skb;
932
			if (staterr & E1000_RXD_STAT_EOP)
933
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
934 935 936
			goto next_desc;
		}

937
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
938 939 940 941 942
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
943 944 945 946
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

947 948 949
		total_rx_bytes += length;
		total_rx_packets++;

950 951
		/*
		 * code added for copybreak, this should improve
952
		 * performance for small packets with large amounts
953 954
		 * of reassembly being done in the stack
		 */
955 956
		if (length < copybreak) {
			struct sk_buff *new_skb =
957
			    netdev_alloc_skb_ip_align(netdev, length);
958
			if (new_skb) {
959 960 961 962 963 964
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
965 966 967 968 969 970 971 972 973 974
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
975 976 977
		e1000_rx_checksum(adapter, staterr,
				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
					      csum_ip.csum), skb);
978

979 980
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
981 982

next_desc:
983
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
984 985 986

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
987 988
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
989 990 991 992 993 994
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
995 996

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
997 998 999 1000 1001
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1002
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1003 1004

	adapter->total_rx_bytes += total_rx_bytes;
1005
	adapter->total_rx_packets += total_rx_packets;
1006 1007 1008 1009 1010 1011
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
1012 1013
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1014 1015
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1016
		else
1017 1018
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1019 1020
		buffer_info->dma = 0;
	}
1021 1022 1023 1024
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1025
	buffer_info->time_stamp = 0;
1026 1027
}

1028
static void e1000_print_hw_hang(struct work_struct *work)
1029
{
1030 1031 1032
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1033 1034 1035 1036
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1037 1038 1039 1040
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1041 1042 1043
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1044 1045 1046
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1047

1048 1049 1050 1051
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1052 1053 1054 1055 1056 1057 1058 1059
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1060 1061 1062 1063 1064 1065
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1066 1067 1068 1069 1070 1071 1072
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1073 1074 1075 1076 1077 1078
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1103 1104
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1105
		bool cleaned = false;
1106
		rmb(); /* read buffer_info after eop_desc */
1107
		for (; !cleaned; count++) {
1108 1109 1110 1111 1112
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1113 1114
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1125 1126
		if (i == tx_ring->next_to_use)
			break;
1127 1128 1129 1130 1131 1132 1133
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
1134 1135
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1149 1150 1151 1152
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1153
		adapter->detect_tx_hung = 0;
1154 1155
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1156 1157
			       + (adapter->tx_timeout_factor * HZ)) &&
		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1158
			schedule_work(&adapter->print_hang_task);
1159 1160 1161 1162 1163
			netif_stop_queue(netdev);
		}
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1164
	return count < tx_ring->count;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
1177
	struct e1000_hw *hw = &adapter->hw;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1201
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
1216
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1217
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1218 1219
		buffer_info->dma = 0;

1220
		/* see !EOP comment in other Rx routine */
1221 1222 1223 1224
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1225 1226
			e_dbg("Packet Split buffers didn't pick up the full "
			      "packet\n");
1227
			dev_kfree_skb_irq(skb);
1228 1229
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1241 1242
			e_dbg("Last part of the packet spanning multiple "
			      "descriptors\n");
1243 1244 1245 1246 1247 1248 1249 1250
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1251 1252 1253 1254
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
1255 1256
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

1257 1258 1259 1260 1261
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
1262 1263 1264 1265
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
1266
			ps_page = &buffer_info->ps_pages[0];
1267

1268 1269
			/*
			 * there is no documentation about how to call
1270
			 * kmap_atomic, so we can't hold the mapping
1271 1272
			 * very long
			 */
1273 1274
			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
						PAGE_SIZE, DMA_FROM_DEVICE);
1275 1276 1277
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1278 1279
			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
						   PAGE_SIZE, DMA_FROM_DEVICE);
A
Auke Kok 已提交
1280

J
Jeff Kirsher 已提交
1281 1282 1283 1284
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1295
			ps_page = &buffer_info->ps_pages[j];
1296 1297
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1298 1299 1300 1301 1302 1303 1304 1305
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}

J
Jeff Kirsher 已提交
1306 1307 1308 1309 1310 1311
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1332 1333
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1347
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1348 1349

	adapter->total_rx_bytes += total_rx_bytes;
1350
	adapter->total_rx_packets += total_rx_packets;
1351 1352 1353
	return cleaned;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
1380
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1381
	struct e1000_buffer *buffer_info, *next_buffer;
1382
	u32 length, staterr;
1383 1384 1385 1386 1387 1388
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1389 1390
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1391 1392
	buffer_info = &rx_ring->buffer_info[i];

1393
	while (staterr & E1000_RXD_STAT_DD) {
1394 1395 1396 1397 1398
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1399
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1400 1401 1402 1403 1404 1405 1406

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1407
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1408 1409 1410 1411 1412 1413
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1414 1415
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1416 1417
		buffer_info->dma = 0;

1418
		length = le16_to_cpu(rx_desc->wb.upper.length);
1419 1420

		/* errors is only valid for DD + EOP descriptors */
1421 1422 1423 1424 1425 1426 1427 1428 1429
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1430 1431
		}

1432
#define rxtop (rx_ring->rx_skb_top)
1433
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1488 1489 1490
		e1000_rx_checksum(adapter, staterr,
				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
					      csum_ip.csum), skb);
1491 1492 1493 1494 1495 1496 1497

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1498
			e_err("pskb_may_pull failed.\n");
1499
			dev_kfree_skb_irq(skb);
1500 1501 1502
			goto next_desc;
		}

1503 1504
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1505 1506

next_desc:
1507
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1508 1509 1510

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1511 1512
			adapter->alloc_rx_buf(adapter, cleaned_count,
					      GFP_ATOMIC);
1513 1514 1515 1516 1517 1518
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1519 1520

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1521 1522 1523 1524 1525
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1526
		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1527 1528 1529 1530 1531 1532

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1550
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1551
						 adapter->rx_buffer_len,
1552
						 DMA_FROM_DEVICE);
1553
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1554
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1555
				               PAGE_SIZE,
1556
					       DMA_FROM_DEVICE);
1557
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1558
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1559
						 adapter->rx_ps_bsize0,
1560
						 DMA_FROM_DEVICE);
1561 1562 1563
			buffer_info->dma = 0;
		}

1564 1565 1566 1567 1568
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1569 1570 1571 1572 1573 1574
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1575
			ps_page = &buffer_info->ps_pages[j];
1576 1577
			if (!ps_page->page)
				break;
1578 1579
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1597
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1598 1599 1600 1601 1602

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1603 1604 1605 1606 1607
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1608 1609 1610
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1611 1612 1613
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1626 1627 1628
	/*
	 * read ICR disables interrupts using IAM
	 */
1629

1630
	if (icr & E1000_ICR_LSC) {
1631
		hw->mac.get_link_status = 1;
1632 1633 1634 1635
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1636 1637
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1638
			schedule_work(&adapter->downshift_task);
1639

1640 1641
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1642
		 * link down event; disable receives here in the ISR and reset
1643 1644
		 * adapter in watchdog
		 */
1645 1646 1647 1648 1649
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1650
			adapter->flags |= FLAG_RX_RESTART_NOW;
1651 1652 1653 1654 1655 1656
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1657
	if (napi_schedule_prep(&adapter->napi)) {
1658 1659 1660 1661
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1662
		__napi_schedule(&adapter->napi);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1679

1680
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1681 1682
		return IRQ_NONE;  /* Not our interrupt */

1683 1684 1685 1686
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1687 1688 1689
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1690 1691 1692 1693 1694
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1695

1696
	if (icr & E1000_ICR_LSC) {
1697
		hw->mac.get_link_status = 1;
1698 1699 1700 1701
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1702 1703
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1704
			schedule_work(&adapter->downshift_task);
1705

1706 1707
		/*
		 * 80003ES2LAN workaround--
1708 1709 1710 1711 1712 1713 1714 1715 1716
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1717
			adapter->flags |= FLAG_RX_RESTART_NOW;
1718 1719 1720 1721 1722 1723
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1724
	if (napi_schedule_prep(&adapter->napi)) {
1725 1726 1727 1728
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1729
		__napi_schedule(&adapter->napi);
1730 1731 1732 1733 1734
	}

	return IRQ_HANDLED;
}

1735 1736 1737 1738 1739 1740 1741 1742
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1743 1744
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1761 1762
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1800
	if (napi_schedule_prep(&adapter->napi)) {
1801 1802
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1803
		__napi_schedule(&adapter->napi);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1900
	int i;
1901 1902 1903 1904

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1905 1906
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1907 1908 1909
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1910
				for (i = 0; i < adapter->num_vectors; i++)
1911 1912 1913 1914
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1915
						      adapter->num_vectors);
B
Bruce Allan 已提交
1916
				if (err == 0)
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
			e_err("Failed to initialize MSI-X interrupts.  "
			      "Falling back to MSI interrupts.\n");
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
			e_err("Failed to initialize MSI interrupts.  Falling "
			      "back to legacy interrupts.\n");
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1939 1940 1941

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1956 1957 1958
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1959 1960 1961
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1962
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1963 1964 1965 1966 1967 1968 1969 1970
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1971 1972 1973
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
1974 1975 1976
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1977
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1978 1979 1980 1981 1982 1983 1984 1985
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1986
			  e1000_msix_other, 0, netdev->name, netdev);
1987 1988 1989 1990 1991 1992 1993 1994 1995
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1996 1997 1998 1999 2000 2001
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2002 2003 2004 2005 2006
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2007 2008 2009 2010 2011 2012 2013 2014
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2015
	}
2016
	if (adapter->flags & FLAG_MSI_ENABLED) {
2017
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2018 2019 2020
				  netdev->name, netdev);
		if (!err)
			return err;
2021

2022 2023 2024
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2025 2026
	}

2027
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2028 2029 2030 2031
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2032 2033 2034 2035 2036 2037 2038
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2051
	}
2052 2053

	free_irq(adapter->pdev->irq, netdev);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2064 2065
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2066
	e1e_flush();
2067 2068 2069 2070 2071 2072 2073 2074

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2075 2076 2077 2078 2079 2080 2081 2082 2083
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2084 2085 2086 2087 2088 2089
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2090
	e1e_flush();
2091 2092 2093
}

/**
2094
 * e1000e_get_hw_control - get control of the h/w from f/w
2095 2096
 * @adapter: address of board private structure
 *
2097
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2098 2099 2100 2101
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2102
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2114
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2115 2116 2117 2118
	}
}

/**
2119
 * e1000e_release_hw_control - release control of the h/w to f/w
2120 2121
 * @adapter: address of board private structure
 *
2122
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2123 2124 2125 2126 2127
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2128
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2140
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2172
	tx_ring->buffer_info = vzalloc(size);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2190
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2203 2204
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2205 2206

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2207
	rx_ring->buffer_info = vzalloc(size);
2208 2209 2210
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2211 2212 2213 2214 2215 2216 2217 2218
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2219 2220 2221 2222 2223 2224 2225 2226 2227

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2228
		goto err_pages;
2229 2230 2231 2232 2233 2234

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2235 2236 2237 2238 2239 2240

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2241 2242
err:
	vfree(rx_ring->buffer_info);
2243
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2307
	int i;
2308 2309 2310

	e1000_clean_rx_ring(adapter);

B
Bruce Allan 已提交
2311
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2312 2313
		kfree(rx_ring->buffer_info[i].ps_pages);

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2324 2325 2326 2327 2328
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2329 2330 2331 2332 2333 2334
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2335 2336
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2352
		else if ((packets < 5) && (bytes > 512))
2353 2354 2355 2356 2357
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2358
			if (bytes/packets > 8000)
2359
				retval = bulk_latency;
B
Bruce Allan 已提交
2360
			else if ((packets < 10) || ((bytes/packets) > 1200))
2361
				retval = bulk_latency;
B
Bruce Allan 已提交
2362
			else if ((packets > 35))
2363 2364 2365 2366 2367 2368 2369 2370 2371
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2372
			if (packets > 35)
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2397 2398 2399 2400 2401
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2437 2438
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2439
		 * by adding intermediate steps when interrupt rate is
2440 2441
		 * increasing
		 */
2442 2443 2444 2445
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2446 2447 2448 2449
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2450 2451 2452 2453
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2454 2455 2456
	}
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2479 2480
/**
 * e1000_clean - NAPI Rx polling callback
2481
 * @napi: struct associated with this polling callback
2482
 * @budget: amount of packets driver is allowed to process this poll
2483 2484 2485 2486
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2487
	struct e1000_hw *hw = &adapter->hw;
2488
	struct net_device *poll_dev = adapter->netdev;
2489
	int tx_cleaned = 1, work_done = 0;
2490

2491
	adapter = netdev_priv(poll_dev);
2492

2493 2494 2495 2496
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2497
	tx_cleaned = e1000_clean_tx_irq(adapter);
2498

2499
clean_rx:
2500
	adapter->clean_rx(adapter, &work_done, budget);
2501

2502
	if (!tx_cleaned)
2503
		work_done = budget;
2504

2505 2506
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2507 2508
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2509
		napi_complete(napi);
2510 2511 2512 2513 2514 2515
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	}

	return work_done;
}

static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
2532

2533
	/* add VID to filter table */
2534 2535 2536 2537 2538 2539
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2540 2541

	set_bit(vid, adapter->active_vlans);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
}

static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2554
		e1000e_release_hw_control(adapter);
2555 2556 2557 2558
		return;
	}

	/* remove VID from filter table */
2559 2560 2561 2562 2563 2564
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2565 2566

	clear_bit(vid, adapter->active_vlans);
2567 2568
}

J
Jeff Kirsher 已提交
2569 2570 2571 2572 2573
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2574 2575
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2576 2577
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2578

J
Jeff Kirsher 已提交
2579 2580 2581 2582 2583 2584 2585 2586 2587
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2588 2589 2590 2591
		}
	}
}

J
Jeff Kirsher 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2609

J
Jeff Kirsher 已提交
2610 2611 2612 2613 2614
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2615 2616
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2617
	u32 ctrl;
2618

J
Jeff Kirsher 已提交
2619 2620 2621 2622 2623
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2624

J
Jeff Kirsher 已提交
2625 2626 2627 2628 2629 2630 2631 2632
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2633

J
Jeff Kirsher 已提交
2634 2635 2636 2637 2638
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2639

J
Jeff Kirsher 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2650 2651
	}

J
Jeff Kirsher 已提交
2652 2653
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2654 2655 2656 2657 2658 2659
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2660
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2661

J
Jeff Kirsher 已提交
2662
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2663 2664 2665
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2666
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2667 2668
{
	struct e1000_hw *hw = &adapter->hw;
2669
	u32 manc, manc2h, mdef, i, j;
2670 2671 2672 2673 2674 2675

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2676 2677
	/*
	 * enable receiving management packets to the host. this will probably
2678
	 * generate destination unreachable messages from the host OS, but
2679 2680
	 * the packets will be handled on SMBUS
	 */
2681 2682
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2698
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2726 2727 2728 2729 2730
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2731
 * e1000_configure_tx - Configure Transmit Unit after Reset
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2747
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2769
	/* Tx irq moderation */
2770 2771
	ew32(TADV, adapter->tx_abs_int_delay);

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2784
		 * there are Tx hangs or other Tx related bugs
2785 2786 2787 2788 2789 2790 2791
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
		/* erratum work around: set txdctl the same for both queues */
		ew32(TXDCTL(1), txdctl);
	}

2792 2793 2794 2795 2796 2797 2798
	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2799
		tarc = er32(TARC(0));
2800 2801 2802 2803
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2804 2805
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2806
		ew32(TARC(0), tarc);
2807 2808 2809 2810
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2811
		tarc = er32(TARC(0));
2812
		tarc |= 1;
2813 2814
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2815
		tarc |= 1;
2816
		ew32(TARC(1), tarc);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2831
	e1000e_config_collision_dist(hw);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2846 2847 2848 2849 2850 2851 2852 2853
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2854 2855 2856

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2857 2858
	}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2875 2876 2877 2878 2879 2880
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2881

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2919 2920 2921 2922
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2939
	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2940
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2941
		adapter->rx_ps_pages = pages;
2942 2943
	else
		adapter->rx_ps_pages = 0;
2944 2945

	if (adapter->rx_ps_pages) {
2946 2947
		u32 psrctl = 0;

2948 2949 2950 2951
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2952 2953 2954
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2955 2956
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

2977
	ew32(RFCTL, rfctl);
2978
	ew32(RCTL, rctl);
2979 2980
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
2999
		    sizeof(union e1000_rx_desc_packet_split);
3000 3001
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3002
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3003
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3004 3005
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3006
	} else {
3007
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3008 3009 3010 3011 3012 3013
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3014 3015
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3016
	e1e_flush();
3017
	usleep_range(10000, 20000);
3018

3019 3020 3021 3022
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3023
		 * enable prefetching of 0x20 Rx descriptors
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3042 3043 3044 3045 3046
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3047
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3048
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3049 3050 3051 3052 3053 3054 3055 3056

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3057 3058 3059 3060
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3061
	rdba = rx_ring->dma;
3062
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3063 3064 3065 3066 3067 3068 3069 3070 3071
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3072
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3073 3074
		rxcsum |= E1000_RXCSUM_TUOFL;

3075 3076 3077 3078
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3079 3080 3081 3082 3083 3084 3085 3086
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3087 3088
	/*
	 * Enable early receives on supported devices, only takes effect when
3089
	 * packet size is equal or larger than the specified value (in 8 byte
3090 3091
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
3092 3093
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan)) {
3094 3095 3096
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3097 3098
			if (adapter->flags & FLAG_HAS_ERT)
				ew32(ERT, E1000_ERT_2048 | (1 << 13));
3099 3100 3101 3102 3103
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
3104
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3105
		} else {
3106 3107
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3108
		}
3109
	}
3110 3111 3112 3113 3114 3115

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3116
 *  e1000_update_mc_addr_list - Update Multicast addresses
3117 3118 3119 3120
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
3121
 *  Updates the Multicast Table Array.
3122 3123
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
3124
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3125
				      u32 mc_addr_count)
3126
{
3127
	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3143
	struct netdev_hw_addr *ha;
3144 3145 3146 3147 3148 3149 3150 3151 3152
	u8  *mta_list;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */

	rctl = er32(RCTL);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3153
		rctl &= ~E1000_RCTL_VFE;
J
Jeff Kirsher 已提交
3154 3155
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3156
	} else {
3157 3158 3159 3160 3161 3162
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else {
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
		}
J
Jeff Kirsher 已提交
3163
		e1000e_vlan_filter_enable(adapter);
3164 3165 3166 3167
	}

	ew32(RCTL, rctl);

3168
	if (!netdev_mc_empty(netdev)) {
3169 3170
		int i = 0;

3171
		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3172 3173 3174 3175
		if (!mta_list)
			return;

		/* prepare a packed array of only addresses. */
3176 3177
		netdev_for_each_mc_addr(ha, netdev)
			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3178

3179
		e1000_update_mc_addr_list(hw, mta_list, i);
3180 3181 3182 3183 3184 3185
		kfree(mta_list);
	} else {
		/*
		 * if we're called from probe, we might not have
		 * anything to do here, so clear out the list
		 */
3186
		e1000_update_mc_addr_list(hw, NULL, 0);
3187
	}
J
Jeff Kirsher 已提交
3188 3189 3190 3191 3192

	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3193 3194 3195
}

/**
3196
 * e1000_configure - configure the hardware for Rx and Tx
3197 3198 3199 3200 3201 3202 3203
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
	e1000_set_multi(adapter->netdev);

	e1000_restore_vlan(adapter);
3204
	e1000_init_manageability_pt(adapter);
3205 3206 3207 3208

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3209 3210
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
			      GFP_KERNEL);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3223 3224
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3225 3226 3227 3228 3229 3230 3231

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3232 3233
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3234 3235 3236 3237
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3238
	if (adapter->wol)
3239 3240
		return;

3241 3242
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3243 3244 3245 3246 3247 3248 3249 3250
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3251
 * properly configured for Rx, Tx etc.
3252 3253 3254 3255
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3256
	struct e1000_fc_info *fc = &adapter->hw.fc;
3257 3258
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3259
	u32 pba = adapter->pba;
3260 3261
	u16 hwm;

3262
	/* reset Packet Buffer Allocation to default */
3263
	ew32(PBA, pba);
3264

3265
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3266 3267
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3268 3269 3270 3271
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3272 3273
		 * expressed in KB.
		 */
3274
		pba = er32(PBA);
3275
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3276
		tx_space = pba >> 16;
3277
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3278
		pba &= 0xffff;
3279
		/*
3280
		 * the Tx fifo also stores 16 bytes of information about the Tx
3281
		 * but don't include ethernet FCS because hardware appends it
3282 3283
		 */
		min_tx_space = (adapter->max_frame_size +
3284 3285 3286 3287 3288
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3289
		min_rx_space = adapter->max_frame_size;
3290 3291 3292
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3293 3294
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3295
		 * and the min Tx FIFO size is less than the current Rx FIFO
3296 3297
		 * allocation, take space away from current Rx allocation
		 */
3298 3299 3300
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3301

3302
			/*
3303
			 * if short on Rx space, Rx wins and must trump Tx
3304 3305
			 * adjustment or use Early Receive if available
			 */
3306
			if ((pba < min_rx_space) &&
3307 3308
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
3309
				pba = min_rx_space;
3310
		}
3311 3312

		ew32(PBA, pba);
3313 3314
	}

3315 3316 3317
	/*
	 * flow control settings
	 *
3318
	 * The high water mark must be low enough to fit one full frame
3319 3320 3321 3322 3323
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3324
	 * - the full Rx FIFO size minus one full frame
3325
	 */
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
	default:
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3358
		fc->refresh_time = 0x1000;
3359 3360 3361 3362 3363 3364
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3365 3366 3367 3368
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3369
		break;
3370
	}
3371

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
	 * fit in receive buffer and early-receive not supported.
	 */
	if (adapter->itr_setting & 0x3) {
		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
		    !(adapter->flags & FLAG_HAS_ERT)) {
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3394 3395
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3396 3397 3398 3399 3400

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3401
	if (adapter->flags & FLAG_HAS_AMT)
3402
		e1000e_get_hw_control(adapter);
3403

3404 3405 3406
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3407
		e_err("Hardware Error\n");
3408 3409 3410 3411 3412 3413 3414

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3415 3416 3417 3418 3419 3420 3421

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3422 3423
	e1000_get_phy_info(hw);

3424 3425
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3426
		u16 phy_data = 0;
3427 3428
		/*
		 * speed up time to link by disabling smart power down, ignore
3429
		 * the return value of this function because there is nothing
3430 3431
		 * different we would do if it failed
		 */
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);
3448 3449
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3450 3451
	e1000_irq_enable(adapter);

3452
	netif_start_queue(adapter->netdev);
3453

3454
	/* fire a link change interrupt to start the watchdog */
3455 3456 3457 3458 3459
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3460 3461 3462
	return 0;
}

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3478 3479
static void e1000e_update_stats(struct e1000_adapter *adapter);

3480 3481 3482 3483 3484 3485
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3486 3487 3488 3489
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3490 3491 3492 3493
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3494 3495
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3496 3497
	/* flush and sleep below */

3498
	netif_stop_queue(netdev);
3499 3500 3501 3502 3503

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3504

3505 3506
	/* flush both disables and wait for them to finish */
	e1e_flush();
3507
	usleep_range(10000, 20000);
3508 3509 3510 3511 3512 3513 3514 3515

	napi_disable(&adapter->napi);
	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3516 3517 3518 3519 3520

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3521 3522 3523 3524
	e1000e_flush_descriptors(adapter);
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

3525 3526 3527
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3528 3529
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3541
		usleep_range(1000, 2000);
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3561 3562
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3563

J
Jeff Kirsher 已提交
3564 3565
	spin_lock_init(&adapter->stats64_lock);

3566
	e1000e_set_interrupt_capability(adapter);
3567

3568 3569
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3570 3571 3572 3573 3574 3575 3576 3577

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3590
	e_dbg("icr is %08X\n", icr);
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3617
	e1000e_reset_interrupt_capability(adapter);
3618 3619 3620 3621 3622 3623 3624 3625 3626

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3627
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3648
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3649 3650 3651
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
	} else
		e_dbg("MSI interrupt test succeeded!\n");
3652 3653 3654 3655 3656

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3657
	e1000e_set_interrupt_capability(adapter);
3658
	return e1000_request_irq(adapter);
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3677 3678 3679
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3680 3681 3682

	err = e1000_test_msi_interrupt(adapter);

3683 3684 3685 3686 3687 3688
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3689 3690 3691 3692

	return err;
}

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3709
	struct pci_dev *pdev = adapter->pdev;
3710 3711 3712 3713 3714 3715
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3716 3717
	pm_runtime_get_sync(&pdev->dev);

3718 3719
	netif_carrier_off(netdev);

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3730 3731 3732 3733 3734
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3735
		e1000e_get_hw_control(adapter);
3736 3737 3738
		e1000e_reset(adapter);
	}

3739 3740 3741 3742 3743 3744 3745
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3746
	/* DMA latency requirement to workaround early-receive/jumbo issue */
3747 3748
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3749 3750 3751
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3752

3753 3754
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3755 3756
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3757 3758
	 * clean_rx handler before we do so.
	 */
3759 3760 3761 3762 3763 3764
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3765 3766 3767 3768 3769
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3770
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3771 3772 3773 3774 3775 3776 3777
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3778 3779 3780 3781 3782 3783 3784
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3785
	netif_start_queue(netdev);
3786

3787 3788 3789
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3790
	/* fire a link status change interrupt to start the watchdog */
3791 3792 3793 3794
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3795 3796 3797 3798

	return 0;

err_req_irq:
3799
	e1000e_release_hw_control(adapter);
3800 3801 3802 3803 3804 3805
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);
3806
	pm_runtime_put_sync(&pdev->dev);
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3825
	struct pci_dev *pdev = adapter->pdev;
3826 3827

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3828 3829 3830 3831 3832 3833 3834

	pm_runtime_get_sync(&pdev->dev);

	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3835 3836 3837 3838 3839
	e1000_power_down_phy(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3840 3841 3842 3843
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3844 3845
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3846 3847
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3848 3849 3850 3851
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3852 3853 3854
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3855

3856 3857
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3858
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3859

3860 3861
	pm_runtime_put_sync(&pdev->dev);

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3888 3889
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3890 3891 3892 3893
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3894 3895
		 * RAR[14]
		 */
3896 3897 3898 3899 3900 3901 3902 3903
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
3916 3917 3918 3919

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

3920 3921 3922
	e1000_get_phy_info(&adapter->hw);
}

3923 3924 3925 3926
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
3927 3928 3929
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3930 3931 3932 3933

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

3934
	schedule_work(&adapter->update_phy_task);
3935 3936
}

3937 3938 3939
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
3940 3941
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
3957
	hw->phy.addr = 1;
3958 3959 3960 3961
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
3962 3963 3964
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
3965 3966 3967 3968 3969
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
3970 3971
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3972 3973 3974 3975
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
3976 3977
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3978 3979 3980 3981
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
3982 3983
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3984 3985 3986 3987
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
3988 3989
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3990 3991 3992 3993
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
3994 3995
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3996 3997 3998 3999
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4000 4001
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4002 4003 4004 4005
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4006 4007
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4008 4009 4010 4011 4012 4013 4014
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4015 4016 4017 4018
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4019
static void e1000e_update_stats(struct e1000_adapter *adapter)
4020
{
4021
	struct net_device *netdev = adapter->netdev;
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4036 4037
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4038 4039 4040 4041 4042
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4062
	}
4063

4064 4065 4066 4067 4068
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4069 4070
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4089 4090
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4091 4092 4093

	/* Rx Errors */

4094 4095 4096 4097
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4098
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4099 4100 4101
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4102
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4103
					      adapter->stats.roc;
4104 4105 4106
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4107 4108

	/* Tx Errors */
4109
	netdev->stats.tx_errors = adapter->stats.ecol +
4110
				       adapter->stats.latecol;
4111 4112 4113
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4114 4115 4116 4117 4118 4119 4120 4121 4122

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4134 4135
		int ret_val;

4136 4137 4138 4139 4140 4141 4142 4143 4144
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4145
			e_warn("Error reading PHY register\n");
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4165 4166 4167 4168 4169
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4170 4171 4172 4173
	/* Link status message must follow this format for user tools */
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
	       "Flow Control: %s\n",
	       adapter->netdev->name,
4174 4175
	       adapter->link_speed,
	       (adapter->link_duplex == FULL_DUPLEX) ?
4176
	       "Full Duplex" : "Half Duplex",
4177
	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4178 4179 4180
	       "Rx/Tx" :
	       ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
		((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4181 4182
}

4183
static bool e1000e_has_link(struct e1000_adapter *adapter)
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = 0;
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = 1;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4220
		e_info("Gigabit has been disabled, downgrading speed\n");
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4277
	struct e1000_phy_info *phy = &adapter->hw.phy;
4278 4279 4280 4281
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4282 4283 4284
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4285
	link = e1000e_has_link(adapter);
4286
	if ((netif_carrier_ok(netdev)) && link) {
4287 4288 4289
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4290
		e1000e_enable_receives(adapter);
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			bool txb2b = 1;
4301 4302 4303 4304

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4305
			/* update snapshot of PHY registers on LSC */
4306
			e1000_phy_read_status(adapter);
4307 4308 4309 4310
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
					e_info("Autonegotiated half duplex but"
					       " link partner cannot autoneg. "
					       " Try forcing full duplex if "
					       "link gets many collisions.\n");
			}

4332
			/* adjust timeout factor according to speed/duplex */
4333 4334 4335 4336
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				txb2b = 0;
4337
				adapter->tx_timeout_factor = 16;
4338 4339 4340
				break;
			case SPEED_100:
				txb2b = 0;
4341
				adapter->tx_timeout_factor = 10;
4342 4343 4344
				break;
			}

4345 4346 4347 4348
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4349 4350 4351
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4352
				tarc0 = er32(TARC(0));
4353
				tarc0 &= ~SPEED_MODE_BIT;
4354
				ew32(TARC(0), tarc0);
4355 4356
			}

4357 4358 4359 4360
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4361 4362 4363 4364
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4365
					e_info("10/100 speed: disabling TSO\n");
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4379 4380 4381 4382
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4383 4384 4385 4386
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4387 4388 4389 4390 4391 4392 4393
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4404 4405 4406
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4407 4408 4409 4410 4411 4412 4413
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4414 4415 4416
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4417 4418 4419 4420
		}
	}

link_up:
J
Jeff Kirsher 已提交
4421
	spin_lock(&adapter->stats64_lock);
4422 4423 4424 4425 4426 4427 4428
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4429 4430 4431 4432
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4433
	spin_unlock(&adapter->stats64_lock);
4434 4435 4436

	e1000e_update_adaptive(&adapter->hw);

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4448 4449
	}

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4466
	/* Cause software interrupt to ensure Rx ring is cleaned */
4467 4468 4469 4470
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4471

4472 4473 4474
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4475 4476 4477
	/* Force detection of hung controller every watchdog period */
	adapter->detect_tx_hung = 1;

4478 4479 4480 4481
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4482 4483 4484
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4485 4486 4487
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4512 4513
	if (!skb_is_gso(skb))
		return 0;
4514

4515
	if (skb_header_cloned(skb)) {
4516 4517
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4518 4519
		if (err)
			return err;
4520 4521
	}

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4532
	} else if (skb_is_gso_v6(skb)) {
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4571 4572 4573 4574 4575 4576 4577 4578 4579
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4580
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4581
	__be16 protocol;
4582

4583 4584
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4585

4586 4587 4588 4589 4590
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4591
	switch (protocol) {
4592
	case cpu_to_be16(ETH_P_IP):
4593 4594 4595
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4596
	case cpu_to_be16(ETH_P_IPV6):
4597 4598 4599 4600 4601 4602
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4603 4604
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4605
		break;
4606 4607
	}

4608
	css = skb_checksum_start_offset(skb);
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
4642
	struct pci_dev *pdev = adapter->pdev;
4643
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4644
	unsigned int len = skb_headlen(skb);
4645
	unsigned int offset = 0, size, count = 0, i;
4646
	unsigned int f, bytecount, segs;
4647 4648 4649 4650

	i = tx_ring->next_to_use;

	while (len) {
4651
		buffer_info = &tx_ring->buffer_info[i];
4652 4653 4654 4655 4656
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4657 4658
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4659
						  size, DMA_TO_DEVICE);
4660
		buffer_info->mapped_as_page = false;
4661
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4662
			goto dma_error;
4663 4664 4665

		len -= size;
		offset += size;
4666
		count++;
4667 4668 4669 4670 4671 4672

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4673 4674 4675 4676 4677 4678 4679
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
4680
		offset = frag->page_offset;
4681 4682

		while (len) {
4683 4684 4685 4686
			i++;
			if (i == tx_ring->count)
				i = 0;

4687 4688 4689 4690 4691 4692
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4693
			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4694
							offset, size,
4695
							DMA_TO_DEVICE);
4696
			buffer_info->mapped_as_page = true;
4697
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4698
				goto dma_error;
4699 4700 4701 4702 4703 4704 4705

			len -= size;
			offset += size;
			count++;
		}
	}

4706
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4707 4708 4709
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4710
	tx_ring->buffer_info[i].skb = skb;
4711 4712
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4713 4714 4715
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4716 4717

dma_error:
4718
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4719
	buffer_info->dma = 0;
4720
	if (count)
4721
		count--;
4722 4723

	while (count--) {
4724
		if (i == 0)
4725
			i += tx_ring->count;
4726
		i--;
4727
		buffer_info = &tx_ring->buffer_info[i];
4728
		e1000_put_txbuf(adapter, buffer_info);
4729 4730 4731
	}

	return 0;
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

4764
	do {
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4775
	} while (--count > 0);
4776 4777 4778

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4779 4780
	/*
	 * Force memory writes to complete before letting h/w
4781 4782
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4783 4784
	 * such as IA-64).
	 */
4785 4786 4787
	wmb();

	tx_ring->next_to_use = i;
4788 4789 4790 4791 4792 4793

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
		e1000e_update_tdt_wa(adapter, i);
	else
		writel(i, adapter->hw.hw_addr + tx_ring->tail);

4794 4795 4796 4797
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4809 4810
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4845 4846
	/*
	 * Herbert's original patch had:
4847
	 *  smp_mb__after_netif_stop_queue();
4848 4849
	 * but since that doesn't exist yet, just open code it.
	 */
4850 4851
	smp_mb();

4852 4853 4854 4855
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4875 4876
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4877 4878 4879 4880 4881 4882 4883
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
4884
	unsigned int len = skb_headlen(skb);
4885 4886
	unsigned int nr_frags;
	unsigned int mss;
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4902 4903
	/*
	 * The controller does a simple calculation to
4904 4905 4906 4907
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4908 4909
	 * drops.
	 */
4910 4911 4912 4913 4914
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4915 4916 4917 4918 4919
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4920
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4921 4922 4923 4924
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4925
		if (skb->data_len && (hdr_len == len)) {
4926 4927 4928 4929
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
4930
				e_err("__pskb_pull_tail failed.\n");
4931 4932 4933
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
4934
			len = skb_headlen(skb);
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

4953 4954 4955 4956
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
4957
	if (e1000_maybe_stop_tx(netdev, count + 2))
4958 4959
		return NETDEV_TX_BUSY;

4960
	if (vlan_tx_tag_present(skb)) {
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

4978 4979
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4980
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4981 4982
	 * no longer assume, we must.
	 */
4983 4984 4985
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

L
Lucas De Marchi 已提交
4986
	/* if count is 0 then mapping error has occurred */
4987
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4988 4989 4990 4991 4992 4993
	if (count) {
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
4994
		dev_kfree_skb_any(skb);
4995 4996
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5020 5021 5022 5023
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5024 5025 5026 5027 5028
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5029 5030 5031 5032
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5033
 * e1000_get_stats64 - Get System Network Statistics
5034
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5035
 * @stats: rtnl_link_stats64 pointer
5036 5037 5038
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5039 5040
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5041
{
J
Jeff Kirsher 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5096 5097 5098 5099
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
5100 5101 5102
		return -EINVAL;
	}

5103 5104 5105 5106
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5107 5108 5109
		return -EINVAL;
	}

5110 5111 5112 5113 5114 5115 5116 5117 5118
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
		e_err("Jumbo Frames not supported on 82579 when CRC "
		      "stripping is disabled.\n");
		return -EINVAL;
	}

5119 5120 5121 5122 5123 5124 5125 5126
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5127
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5128
		usleep_range(1000, 2000);
5129
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5130
	adapter->max_frame_size = max_frame;
5131 5132
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5133 5134 5135
	if (netif_running(netdev))
		e1000e_down(adapter);

5136 5137
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5138 5139
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5140
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5141 5142
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5143
	 */
5144

5145
	if (max_frame <= 2048)
5146 5147 5148 5149 5150 5151 5152 5153
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5154
					 + ETH_FCS_LEN;
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5172
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5173 5174 5175 5176 5177 5178 5179
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5180 5181
		e1000_phy_read_status(adapter);

5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5236 5237 5238 5239
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5240
	u16 phy_reg, wuc_enable;
5241 5242 5243
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5244
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5245

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
		goto out;

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5258 5259
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5260 5261 5262 5263
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5264 5265 5266
	}

	/* configure PHY Rx Control register */
5267
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5284
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5285 5286 5287 5288 5289 5290

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5291 5292
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5293 5294

	/* activate PHY wakeup */
5295 5296
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5297 5298 5299
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
5300
	hw->phy.ops.release(hw);
5301 5302 5303 5304

	return retval;
}

5305 5306
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5307 5308 5309 5310 5311
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5312 5313
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5314 5315 5316 5317 5318 5319 5320 5321 5322
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5323
	e1000e_reset_interrupt_capability(adapter);
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5349 5350 5351
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5352 5353
		ew32(CTRL, ctrl);

5354 5355 5356
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5357 5358
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5359
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5360 5361 5362
			ew32(CTRL_EXT, ctrl_ext);
		}

5363
		if (adapter->flags & FLAG_IS_ICH)
5364
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5365

5366 5367 5368
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5369
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5370 5371 5372 5373 5374 5375 5376 5377 5378
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5379 5380 5381 5382 5383
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5384 5385
	*enable_wake = !!wufc;

5386
	/* make sure adapter isn't asleep if manageability is enabled */
5387 5388
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5389
		*enable_wake = true;
5390 5391 5392 5393

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5394 5395 5396 5397
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5398
	e1000e_release_hw_control(adapter);
5399 5400 5401

	pci_disable_device(pdev);

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5422 5423 5424 5425 5426 5427 5428 5429
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5430
		int pos = pci_pcie_cap(us_dev);
5431 5432 5433 5434 5435 5436
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5437
		e1000_power_off(pdev, sleep, wake);
5438 5439 5440

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5441
		e1000_power_off(pdev, sleep, wake);
5442
	}
5443 5444
}

5445 5446 5447
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5448
	pci_disable_link_state_locked(pdev, state);
5449 5450 5451
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5452 5453
{
	int pos;
5454
	u16 reg16;
5455 5456

	/*
5457 5458
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5459
	 */
5460 5461 5462 5463 5464
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5465 5466 5467
	if (!pdev->bus->self)
		return;

5468 5469 5470 5471 5472 5473
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5474
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5475 5476 5477 5478 5479 5480
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5481 5482
}

R
Rafael J. Wysocki 已提交
5483
#ifdef CONFIG_PM
5484
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5485
{
5486
	return !!adapter->tx_ring->buffer_info;
5487 5488
}

5489
static int __e1000_resume(struct pci_dev *pdev)
5490 5491 5492 5493
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5494
	u16 aspm_disable_flag = 0;
5495 5496
	u32 err;

5497 5498 5499 5500 5501 5502 5503
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5504 5505
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5506
	pci_save_state(pdev);
T
Taku Izumi 已提交
5507

5508
	e1000e_set_interrupt_capability(adapter);
5509 5510 5511 5512 5513 5514
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5515 5516 5517
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5518
	e1000e_power_up_phy(adapter);
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
				phy_data & E1000_WUS_LNKC ? "Link Status "
				" Change" : "other");
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5549 5550
	e1000e_reset(adapter);

5551
	e1000_init_manageability_pt(adapter);
5552 5553 5554 5555 5556 5557

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5558 5559
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5560
	 * is up.  For all other cases, let the f/w know that the h/w is now
5561 5562
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5563
	if (!(adapter->flags & FLAG_HAS_AMT))
5564
		e1000e_get_hw_control(adapter);
5565 5566 5567

	return 0;
}
5568

5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5642
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5643
#endif /* CONFIG_PM */
5644 5645 5646

static void e1000_shutdown(struct pci_dev *pdev)
{
5647 5648
	bool wake = false;

5649
	__e1000_shutdown(pdev, &wake, false);
5650 5651 5652

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5653 5654 5655
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5656 5657 5658 5659 5660 5661 5662

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5663 5664
		int vector, msix_irq;

5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5687 5688 5689 5690 5691 5692 5693 5694 5695
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5730 5731 5732
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5753
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5754
	int err;
J
Jesse Brandeburg 已提交
5755
	pci_ers_result_t result;
5756

5757 5758
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5759
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5760 5761 5762 5763
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5764
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5765
	if (err) {
5766 5767
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5768 5769 5770
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5771
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5772
		pci_restore_state(pdev);
5773

J
Jesse Brandeburg 已提交
5774 5775
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5776

J
Jesse Brandeburg 已提交
5777 5778 5779 5780
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5781

J
Jesse Brandeburg 已提交
5782 5783 5784
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5800
	e1000_init_manageability_pt(adapter);
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5812 5813
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5814
	 * is up.  For all other cases, let the f/w know that the h/w is now
5815 5816
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5817
	if (!(adapter->flags & FLAG_HAS_AMT))
5818
		e1000e_get_hw_control(adapter);
5819 5820 5821 5822 5823 5824 5825

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5826 5827
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5828 5829

	/* print bus type/speed/width info */
5830
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5831 5832 5833 5834
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5835
	       netdev->dev_addr);
5836 5837
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5838 5839 5840
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5841
		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5842 5843
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5844 5845
}

5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5856
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5857
		/* Deep Smart Power Down (DSPD) */
5858 5859
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5860 5861 5862
	}
}

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
static int e1000_set_features(struct net_device *netdev, u32 features)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	u32 changed = features ^ netdev->features;

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
			 NETIF_F_RXCSUM)))
		return 0;

	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

5883 5884 5885
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
5886
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
5887
	.ndo_get_stats64	= e1000e_get_stats64,
5888
	.ndo_set_rx_mode	= e1000_set_multi,
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
5900
	.ndo_set_features = e1000_set_features,
5901 5902
};

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5921 5922
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
5923 5924

	static int cards_found;
5925
	u16 aspm_disable_flag = 0;
5926 5927 5928 5929
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

5930 5931
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5932
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5933 5934 5935
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
5936

5937
	err = pci_enable_device_mem(pdev);
5938 5939 5940 5941
	if (err)
		return err;

	pci_using_dac = 0;
5942
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5943
	if (!err) {
5944
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5945 5946 5947
		if (!err)
			pci_using_dac = 1;
	} else {
5948
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5949
		if (err) {
5950 5951
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
5952 5953 5954 5955 5956 5957 5958 5959
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

5960
	err = pci_request_selected_regions_exclusive(pdev,
5961 5962
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
5963 5964 5965
	if (err)
		goto err_pci_reg;

5966
	/* AER (Advanced Error Reporting) hooks */
5967
	pci_enable_pcie_error_reporting(pdev);
5968

5969
	pci_set_master(pdev);
5970 5971 5972 5973
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
5974 5975 5976 5977 5978 5979 5980 5981

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

5982 5983
	netdev->irq = pdev->irq;

5984 5985 5986 5987 5988 5989 5990 5991
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
5992
	adapter->flags2 = ei->flags2;
5993 5994
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
5995
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6016
	netdev->netdev_ops		= &e1000e_netdev_ops;
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6027 6028
	e1000e_check_options(adapter);

6029 6030 6031 6032 6033 6034 6035 6036 6037
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6038
	err = ei->get_variants(adapter);
6039 6040 6041
	if (err)
		goto err_hw_init;

6042 6043 6044 6045
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6046 6047
	hw->mac.ops.get_bus_info(&adapter->hw);

6048
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6049 6050

	/* Copper options */
6051
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6052 6053 6054 6055 6056 6057
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
6058
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6059

6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
6071 6072 6073 6074

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6075 6076 6077 6078
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6079

6080
	if (pci_using_dac) {
6081
		netdev->features |= NETIF_F_HIGHDMA;
6082 6083
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6084 6085 6086 6087

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6088 6089 6090 6091
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6102
			e_err("The NVM Checksum Is Not Valid\n");
6103 6104 6105 6106 6107
			err = -EIO;
			goto err_eeprom;
		}
	}

6108 6109
	e1000_eeprom_checks(adapter);

6110
	/* copy the MAC address */
6111
	if (e1000e_read_mac_addr(&adapter->hw))
6112
		e_err("NVM Read Error while reading MAC address\n");
6113 6114 6115 6116 6117

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6118
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6119 6120 6121 6122 6123
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6124
	adapter->watchdog_timer.function = e1000_watchdog;
6125 6126 6127
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6128
	adapter->phy_info_timer.function = e1000_update_phy_info;
6129 6130 6131 6132
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6133 6134
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6135
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6136 6137 6138

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6139
	adapter->fc_autoneg = 1;
6140 6141
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6156 6157
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6158
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6183
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6184

6185 6186 6187
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6188 6189 6190
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6191 6192
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6193
	 * is up.  For all other cases, let the f/w know that the h/w is now
6194 6195
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6196
	if (!(adapter->flags & FLAG_HAS_AMT))
6197
		e1000e_get_hw_control(adapter);
6198

6199
	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6200 6201 6202 6203
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6204 6205 6206
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6207 6208
	e1000_print_device_info(adapter);

6209 6210
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6211

6212 6213 6214
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6215
	if (!(adapter->flags & FLAG_HAS_AMT))
6216
		e1000e_release_hw_control(adapter);
6217 6218 6219
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6220
err_hw_init:
6221 6222 6223
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6224 6225
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6226
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6227
err_flashmap:
6228 6229 6230 6231
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6232 6233
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6253 6254
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6255
	/*
6256 6257
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6258
	 */
6259 6260
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6261 6262 6263
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6264 6265 6266 6267 6268
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6269

6270 6271 6272
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6273 6274 6275
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6276 6277
	unregister_netdev(netdev);

6278 6279
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6280

6281 6282 6283 6284
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6285
	e1000e_release_hw_control(adapter);
6286

6287
	e1000e_reset_interrupt_capability(adapter);
6288 6289 6290 6291 6292 6293
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6294 6295
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6296 6297 6298

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6299
	/* AER disable */
6300
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6301

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6312
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6313 6314 6315 6316 6317 6318
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6319 6320 6321
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6322

6323 6324 6325 6326
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6327

6328 6329 6330
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6331

6332
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6333
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6334
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6335

6336 6337 6338 6339 6340 6341 6342 6343
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6344

6345 6346 6347 6348 6349 6350 6351
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6352
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6353

6354 6355 6356 6357 6358
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6359
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6360 6361 6362 6363 6364 6365 6366
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6367

6368 6369
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6370
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6371

6372 6373 6374 6375 6376
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6377 6378 6379
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6380 6381 6382 6383
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6384
#ifdef CONFIG_PM
6385
static const struct dev_pm_ops e1000_pm_ops = {
6386 6387 6388
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6389
};
6390
#endif
6391

6392 6393 6394 6395 6396 6397
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6398
#ifdef CONFIG_PM
6399
	.driver.pm = &e1000_pm_ops,
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6414 6415
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6416
	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6417
	ret = pci_register_driver(&e1000_driver);
6418

6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */