netdev.c 182.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

65 66 67 68
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
69
	[board_82574]		= &e1000_82574_info,
70
	[board_82583]		= &e1000_82583_info,
71 72 73
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
74
	[board_ich10lan]	= &e1000_ich10_info,
75
	[board_pchlan]		= &e1000_pch_info,
76
	[board_pch2lan]		= &e1000_pch2_info,
77 78
};

79 80 81 82 83
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

84 85 86 87 88 89 90 91 92 93 94
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 96 97 98 99 100 101 102 103 104 105

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

106
	/* Rx Registers */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

122
	/* Tx Registers */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
140
	{0, NULL}
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
166 167
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
168 169 170 171
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 174 175
}

/*
176
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
177 178 179 180 181 182 183 184
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
185
	struct my_u0 {
186 187
		__le64 a;
		__le64 b;
188
	} *u0;
189 190 191
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
192
	union e1000_rx_desc_extended *rx_desc;
193
	struct my_u1 {
194 195 196 197
		__le64 a;
		__le64 b;
		__le64 c;
		__le64 d;
198
	} *u1;
199 200 201 202 203 204 205 206 207
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
208 209 210 211
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
212 213 214 215
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
216
	pr_info(" Register Name   Value\n");
217 218 219 220 221
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

222
	/* Print Tx Ring Summary */
223
	if (!netdev || !netif_running(netdev))
224
		return;
225

226
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229 230 231 232 233 234
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
235

236
	/* Print Tx Ring */
237 238 239
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

240
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
269 270 271
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273
		const char *next_desc;
274 275 276 277
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278
			next_desc = " NTC/U";
279
		else if (i == tx_ring->next_to_use)
280
			next_desc = " NTU";
281
		else if (i == tx_ring->next_to_clean)
282
			next_desc = " NTC";
283
		else
284 285 286 287 288 289 290 291 292 293 294
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
295 296 297

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298 299
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
300 301
	}

302
	/* Print Rx Ring Summary */
303
rx_ring_summary:
304
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305 306 307
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
308

309
	/* Print Rx Ring */
310
	if (!netif_msg_rx_status(adapter))
311
		return;
312

313
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
330
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331 332 333 334 335 336 337 338 339 340 341
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
342
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343
		for (i = 0; i < rx_ring->count; i++) {
344
			const char *next_desc;
345 346 347 348
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
349
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350 351 352 353 354 355 356 357

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

358 359
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
360 361 362 363 364 365 366
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
367
			} else {
368 369 370 371 372 373 374 375
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
376 377 378 379 380 381 382 383 384 385 386

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
387
		/* Extended Receive Descriptor (Read) Format
388
		 *
389 390 391 392 393
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
394
		 */
395
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396 397 398 399 400 401 402 403 404 405 406 407 408
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
409
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410 411

		for (i = 0; i < rx_ring->count; i++) {
412 413
			const char *next_desc;

414
			buffer_info = &rx_ring->buffer_info[i];
415 416 417
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418 419 420 421 422 423 424 425

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

426 427
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
428 429 430 431 432
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
433
			} else {
434 435 436 437 438 439
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
440 441 442 443 444 445 446 447 448 449

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
450 451 452 453
		}
	}
}

454 455 456 457 458 459 460 461 462 463 464 465
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
466
 * e1000_receive_skb - helper function to handle Rx indications
467 468 469 470 471 472
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
473
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
474
			      u8 status, __le16 vlan)
475
{
J
Jeff Kirsher 已提交
476
	u16 tag = le16_to_cpu(vlan);
477 478
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
479 480 481 482
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
483 484 485
}

/**
486
 * e1000_rx_checksum - Receive Checksum Offload
487 488 489 490
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
491 492
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
493
			      __le16 csum, struct sk_buff *skb)
494 495 496
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
497 498

	skb_checksum_none_assert(skb);
499

500 501 502 503
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

504 505 506
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
524 525 526
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
527 528
		 * and then put the value in host order for further stack use.
		 */
529
		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
A
Al Viro 已提交
530
		skb->csum = csum_unfold(~sum);
531 532 533 534 535
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
550
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

567
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
568
{
569
	struct e1000_adapter *adapter = rx_ring->adapter;
570 571
	struct e1000_hw *hw = &adapter->hw;

572
	if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
573 574 575 576 577 578 579
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

580
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
581
{
582
	struct e1000_adapter *adapter = tx_ring->adapter;
583 584
	struct e1000_hw *hw = &adapter->hw;

585
	if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
586 587 588 589 590 591 592
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

593
/**
594
 * e1000_alloc_rx_buffers - Replace used receive buffers
595
 * @rx_ring: Rx descriptor ring
596
 **/
597
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
598
				   int cleaned_count, gfp_t gfp)
599
{
600
	struct e1000_adapter *adapter = rx_ring->adapter;
601 602
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
603
	union e1000_rx_desc_extended *rx_desc;
604 605 606
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
607
	unsigned int bufsz = adapter->rx_buffer_len;
608 609 610 611 612 613 614 615 616 617 618

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

619
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
620 621 622 623 624 625 626 627
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
628
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
629
						  adapter->rx_buffer_len,
630 631
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
632
			dev_err(&pdev->dev, "Rx DMA map failed\n");
633 634 635 636
			adapter->rx_dma_failed++;
			break;
		}

637 638
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
639

640 641 642 643 644 645 646 647
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
648
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
649
				e1000e_update_rdt_wa(rx_ring, i);
650
			else
651
				writel(i, rx_ring->tail);
652
		}
653 654 655 656 657 658
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

659
	rx_ring->next_to_use = i;
660 661 662 663
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
664
 * @rx_ring: Rx descriptor ring
665
 **/
666
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
667
				      int cleaned_count, gfp_t gfp)
668
{
669
	struct e1000_adapter *adapter = rx_ring->adapter;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
685 686 687
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
688 689
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
690 691 692
				continue;
			}
			if (!ps_page->page) {
693
				ps_page->page = alloc_page(gfp);
694
				if (!ps_page->page) {
A
Auke Kok 已提交
695 696 697
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
698 699 700 701 702 703
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
704
					dev_err(&adapter->pdev->dev,
705
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
706 707
					adapter->rx_dma_failed++;
					goto no_buffers;
708 709
				}
			}
A
Auke Kok 已提交
710 711 712 713 714
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
715 716
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
717 718
		}

719 720 721
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
722 723 724 725 726 727 728

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
729
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
730
						  adapter->rx_ps_bsize0,
731 732
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
733
			dev_err(&pdev->dev, "Rx DMA map failed\n");
734 735 736 737 738 739 740 741 742
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

743 744 745 746 747 748 749 750
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
751
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
752
				e1000e_update_rdt_wa(rx_ring, i << 1);
753
			else
754
				writel(i << 1, rx_ring->tail);
755 756
		}

757 758 759 760 761 762 763
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
764
	rx_ring->next_to_use = i;
765 766
}

767 768
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
769
 * @rx_ring: Rx descriptor ring
770 771 772
 * @cleaned_count: number of buffers to allocate this pass
 **/

773
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
774
					 int cleaned_count, gfp_t gfp)
775
{
776
	struct e1000_adapter *adapter = rx_ring->adapter;
777 778
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
779
	union e1000_rx_desc_extended *rx_desc;
780 781 782
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
783
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
784 785 786 787 788 789 790 791 792 793 794

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

795
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
796 797 798 799 800 801 802 803 804 805
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
806
			buffer_info->page = alloc_page(gfp);
807 808 809 810 811 812 813
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
814
			buffer_info->dma = dma_map_page(&pdev->dev,
815 816
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
817
							DMA_FROM_DEVICE);
818

819 820
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
837
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
838
			e1000e_update_rdt_wa(rx_ring, i);
839
		else
840
			writel(i, rx_ring->tail);
841 842 843
	}
}

844 845 846 847 848 849 850
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

851
/**
852 853
 * e1000_clean_rx_irq - Send received data up the network stack
 * @rx_ring: Rx descriptor ring
854 855 856 857
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
858 859
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
			       int work_to_do)
860
{
861
	struct e1000_adapter *adapter = rx_ring->adapter;
862 863
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
864
	struct e1000_hw *hw = &adapter->hw;
865
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
866
	struct e1000_buffer *buffer_info, *next_buffer;
867
	u32 length, staterr;
868 869
	unsigned int i;
	int cleaned_count = 0;
870
	bool cleaned = false;
871 872 873
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
874 875
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876 877
	buffer_info = &rx_ring->buffer_info[i];

878
	while (staterr & E1000_RXD_STAT_DD) {
879 880 881 882 883
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
884
		rmb();	/* read descriptor and rx_buffer_info after status DD */
885 886 887 888 889 890 891 892 893

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
894
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
895 896 897 898
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

899
		cleaned = true;
900
		cleaned_count++;
901
		dma_unmap_single(&pdev->dev,
902 903
				 buffer_info->dma,
				 adapter->rx_buffer_len,
904
				 DMA_FROM_DEVICE);
905 906
		buffer_info->dma = 0;

907
		length = le16_to_cpu(rx_desc->wb.upper.length);
908

909 910 911 912 913 914 915
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
916
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
917 918 919
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
920
			/* All receives must fit into a single buffer */
921
			e_dbg("Receive packet consumed multiple buffers\n");
922 923
			/* recycle */
			buffer_info->skb = skb;
924
			if (staterr & E1000_RXD_STAT_EOP)
925
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
926 927 928
			goto next_desc;
		}

B
Ben Greear 已提交
929 930
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
931 932 933 934 935
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
936
		/* adjust length to remove Ethernet CRC */
B
Ben Greear 已提交
937 938 939 940 941 942 943 944 945 946
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			/* If configured to store CRC, don't subtract FCS,
			 * but keep the FCS bytes out of the total_rx_bytes
			 * counter
			 */
			if (netdev->features & NETIF_F_RXFCS)
				total_rx_bytes -= 4;
			else
				length -= 4;
		}
J
Jeff Kirsher 已提交
947

948 949 950
		total_rx_bytes += length;
		total_rx_packets++;

951 952
		/*
		 * code added for copybreak, this should improve
953
		 * performance for small packets with large amounts
954 955
		 * of reassembly being done in the stack
		 */
956 957
		if (length < copybreak) {
			struct sk_buff *new_skb =
958
			    netdev_alloc_skb_ip_align(netdev, length);
959
			if (new_skb) {
960 961 962 963 964 965
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
966 967 968 969 970 971 972 973 974 975
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
976
		e1000_rx_checksum(adapter, staterr,
977
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
978

979 980
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

981 982
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
983 984

next_desc:
985
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
986 987 988

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
989
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
990
					      GFP_ATOMIC);
991 992 993 994 995 996
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
997 998

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
999 1000 1001 1002 1003
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1004
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1005 1006

	adapter->total_rx_bytes += total_rx_bytes;
1007
	adapter->total_rx_packets += total_rx_packets;
1008 1009 1010
	return cleaned;
}

1011 1012
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
			    struct e1000_buffer *buffer_info)
1013
{
1014 1015
	struct e1000_adapter *adapter = tx_ring->adapter;

1016 1017
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1018 1019
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1020
		else
1021 1022
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1023 1024
		buffer_info->dma = 0;
	}
1025 1026 1027 1028
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1029
	buffer_info->time_stamp = 0;
1030 1031
}

1032
static void e1000_print_hw_hang(struct work_struct *work)
1033
{
1034 1035 1036
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1037
	struct net_device *netdev = adapter->netdev;
1038 1039 1040 1041
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1042 1043 1044 1045
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1046 1047 1048
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
		/* May be block on write-back, flush and detect again
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1064 1065 1066
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1067

1068 1069 1070 1071
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1072 1073 1074 1075 1076 1077 1078 1079
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1080 1081 1082 1083 1084 1085
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1086 1087
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1088 1089 1090 1091 1092
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1093 1094 1095 1096 1097 1098
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1099 1100 1101 1102
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1103
 * @tx_ring: Tx descriptor ring
1104 1105 1106 1107
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1108
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1109
{
1110
	struct e1000_adapter *adapter = tx_ring->adapter;
1111 1112 1113 1114 1115 1116 1117
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1118
	unsigned int bytes_compl = 0, pkts_compl = 0;
1119 1120 1121 1122 1123

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1124 1125
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1126
		bool cleaned = false;
1127
		rmb(); /* read buffer_info after eop_desc */
1128
		for (; !cleaned; count++) {
1129 1130 1131 1132 1133
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1134 1135
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1136 1137 1138 1139
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1140 1141
			}

1142
			e1000_put_txbuf(tx_ring, buffer_info);
1143 1144 1145 1146 1147 1148 1149
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1150 1151
		if (i == tx_ring->next_to_use)
			break;
1152 1153 1154 1155 1156 1157
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1158 1159
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1160
#define TX_WAKE_THRESHOLD 32
1161 1162
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1176 1177 1178 1179
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1180
		adapter->detect_tx_hung = false;
1181 1182
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1183
			       + (adapter->tx_timeout_factor * HZ)) &&
1184
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1185
			schedule_work(&adapter->print_hang_task);
1186 1187
		else
			adapter->tx_hang_recheck = false;
1188 1189 1190
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1191
	return count < tx_ring->count;
1192 1193 1194 1195
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1196
 * @rx_ring: Rx descriptor ring
1197 1198 1199 1200
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1201 1202
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
				  int work_to_do)
1203
{
1204
	struct e1000_adapter *adapter = rx_ring->adapter;
1205
	struct e1000_hw *hw = &adapter->hw;
1206 1207 1208 1209 1210 1211 1212 1213 1214
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1215
	bool cleaned = false;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1228
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1241
		cleaned = true;
1242
		cleaned_count++;
1243
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1244
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1245 1246
		buffer_info->dma = 0;

1247
		/* see !EOP comment in other Rx routine */
1248 1249 1250 1251
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1252
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1253
			dev_kfree_skb_irq(skb);
1254 1255
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1256 1257 1258
			goto next_desc;
		}

B
Ben Greear 已提交
1259 1260
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
1261 1262 1263 1264 1265 1266 1267
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1268
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1269 1270 1271 1272 1273 1274 1275 1276
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1277 1278 1279 1280 1281
			/*
			 * this looks ugly, but it seems compiler issues make
			 * it more efficient than reusing j
			 */
			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1282

1283
			/*
1284 1285 1286 1287
			 * page alloc/put takes too long and effects small
			 * packet throughput, so unsplit small packets and
			 * save the alloc/put only valid in softirq (napi)
			 * context to call kmap_*
1288
			 */
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
			if (l1 && (l1 <= copybreak) &&
			    ((length + l1) <= adapter->rx_ps_bsize0)) {
				u8 *vaddr;

				ps_page = &buffer_info->ps_pages[0];

				/*
				 * there is no documentation about how to call
				 * kmap_atomic, so we can't hold the mapping
				 * very long
				 */
				dma_sync_single_for_cpu(&pdev->dev,
							ps_page->dma,
							PAGE_SIZE,
							DMA_FROM_DEVICE);
				vaddr = kmap_atomic(ps_page->page,
						    KM_SKB_DATA_SOFTIRQ);
				memcpy(skb_tail_pointer(skb), vaddr, l1);
				kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
				dma_sync_single_for_device(&pdev->dev,
							   ps_page->dma,
							   PAGE_SIZE,
							   DMA_FROM_DEVICE);

				/* remove the CRC */
B
Ben Greear 已提交
1314 1315 1316 1317
				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
					if (!(netdev->features & NETIF_F_RXFCS))
						l1 -= 4;
				}
1318 1319 1320 1321

				skb_put(skb, l1);
				goto copydone;
			} /* if */
1322 1323 1324 1325 1326 1327 1328
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1329
			ps_page = &buffer_info->ps_pages[j];
1330 1331
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1332 1333 1334 1335 1336
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1337
			skb->truesize += PAGE_SIZE;
1338 1339
		}

J
Jeff Kirsher 已提交
1340 1341 1342
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
B
Ben Greear 已提交
1343 1344 1345 1346
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			if (!(netdev->features & NETIF_F_RXFCS))
				pskb_trim(skb, skb->len - 4);
		}
J
Jeff Kirsher 已提交
1347

1348 1349 1350 1351
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1352 1353
		e1000_rx_checksum(adapter, staterr,
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1354

1355 1356
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1370
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1371
					      GFP_ATOMIC);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1385
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1386 1387

	adapter->total_rx_bytes += total_rx_bytes;
1388
	adapter->total_rx_packets += total_rx_packets;
1389 1390 1391
	return cleaned;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1401
	skb->truesize += PAGE_SIZE;
1402 1403 1404 1405 1406 1407 1408 1409 1410
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1411 1412
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
				     int work_to_do)
1413
{
1414
	struct e1000_adapter *adapter = rx_ring->adapter;
1415 1416
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
1417
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1418
	struct e1000_buffer *buffer_info, *next_buffer;
1419
	u32 length, staterr;
1420 1421 1422 1423 1424 1425
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1426 1427
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1428 1429
	buffer_info = &rx_ring->buffer_info[i];

1430
	while (staterr & E1000_RXD_STAT_DD) {
1431 1432 1433 1434 1435
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1436
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1437 1438 1439 1440 1441 1442 1443

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1444
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1445 1446 1447 1448 1449 1450
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1451 1452
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1453 1454
		buffer_info->dma = 0;

1455
		length = le16_to_cpu(rx_desc->wb.upper.length);
1456 1457

		/* errors is only valid for DD + EOP descriptors */
1458
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
B
Ben Greear 已提交
1459 1460
			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			      !(netdev->features & NETIF_F_RXALL)))) {
1461 1462 1463 1464 1465 1466 1467
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1468 1469
		}

1470
#define rxtop (rx_ring->rx_skb_top)
1471
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1526
		e1000_rx_checksum(adapter, staterr,
1527
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1528

1529 1530
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1531 1532 1533 1534 1535 1536
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1537
			e_err("pskb_may_pull failed.\n");
1538
			dev_kfree_skb_irq(skb);
1539 1540 1541
			goto next_desc;
		}

1542 1543
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1544 1545

next_desc:
1546
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1547 1548 1549

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1550
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1551
					      GFP_ATOMIC);
1552 1553 1554 1555 1556 1557
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1558 1559

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1560 1561 1562 1563 1564
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1565
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1566 1567 1568 1569 1570 1571

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1572 1573
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1574
 * @rx_ring: Rx descriptor ring
1575
 **/
1576
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1577
{
1578
	struct e1000_adapter *adapter = rx_ring->adapter;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1589
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1590
						 adapter->rx_buffer_len,
1591
						 DMA_FROM_DEVICE);
1592
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1593
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1594
				               PAGE_SIZE,
1595
					       DMA_FROM_DEVICE);
1596
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1597
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1598
						 adapter->rx_ps_bsize0,
1599
						 DMA_FROM_DEVICE);
1600 1601 1602
			buffer_info->dma = 0;
		}

1603 1604 1605 1606 1607
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1608 1609 1610 1611 1612 1613
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1614
			ps_page = &buffer_info->ps_pages[j];
1615 1616
			if (!ps_page->page)
				break;
1617 1618
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1636
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1637

1638 1639
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
1640 1641
}

1642 1643 1644 1645 1646
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1647 1648 1649
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1650 1651 1652
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1665 1666 1667
	/*
	 * read ICR disables interrupts using IAM
	 */
1668

1669
	if (icr & E1000_ICR_LSC) {
1670
		hw->mac.get_link_status = true;
1671 1672 1673 1674
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1675 1676
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1677
			schedule_work(&adapter->downshift_task);
1678

1679 1680
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1681
		 * link down event; disable receives here in the ISR and reset
1682 1683
		 * adapter in watchdog
		 */
1684 1685 1686 1687 1688
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1689
			adapter->flags |= FLAG_RX_RESTART_NOW;
1690 1691 1692 1693 1694 1695
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1696
	if (napi_schedule_prep(&adapter->napi)) {
1697 1698 1699 1700
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1701
		__napi_schedule(&adapter->napi);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1718

1719
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1720 1721
		return IRQ_NONE;  /* Not our interrupt */

1722 1723 1724 1725
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1726 1727 1728
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1729 1730 1731 1732 1733
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1734

1735
	if (icr & E1000_ICR_LSC) {
1736
		hw->mac.get_link_status = true;
1737 1738 1739 1740
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1741 1742
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1743
			schedule_work(&adapter->downshift_task);
1744

1745 1746
		/*
		 * 80003ES2LAN workaround--
1747 1748 1749 1750 1751 1752 1753 1754 1755
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1756
			adapter->flags |= FLAG_RX_RESTART_NOW;
1757 1758 1759 1760 1761 1762
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1763
	if (napi_schedule_prep(&adapter->napi)) {
1764 1765 1766 1767
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1768
		__napi_schedule(&adapter->napi);
1769 1770 1771 1772 1773
	}

	return IRQ_HANDLED;
}

1774 1775 1776 1777 1778 1779 1780 1781
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1782 1783
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1784 1785 1786 1787 1788 1789 1790 1791 1792
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
1793
		hw->mac.get_link_status = true;
1794 1795 1796 1797 1798 1799
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1800 1801
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

1818
	if (!e1000_clean_tx_irq(tx_ring))
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
1829
	struct e1000_ring *rx_ring = adapter->rx_ring;
1830 1831 1832 1833

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
1834 1835 1836 1837
	if (rx_ring->set_itr) {
		writel(1000000000 / (rx_ring->itr_val * 256),
		       rx_ring->itr_register);
		rx_ring->set_itr = 0;
1838 1839
	}

1840
	if (napi_schedule_prep(&adapter->napi)) {
1841 1842
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1843
		__napi_schedule(&adapter->napi);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1877
		       rx_ring->itr_register);
1878
	else
1879
		writel(1, rx_ring->itr_register);
1880 1881 1882 1883 1884 1885 1886
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1887
		       tx_ring->itr_register);
1888
	else
1889
		writel(1, tx_ring->itr_register);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1940
	int i;
1941 1942 1943 1944

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1945 1946
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1947 1948 1949
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1950
				for (i = 0; i < adapter->num_vectors; i++)
1951 1952 1953 1954
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1955
						      adapter->num_vectors);
B
Bruce Allan 已提交
1956
				if (err == 0)
1957 1958 1959
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1960
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1961 1962 1963 1964 1965 1966 1967 1968 1969
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1970
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1971 1972 1973 1974 1975 1976
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1977 1978 1979

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1994 1995 1996
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1997 1998 1999
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2000
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2001 2002
			  netdev);
	if (err)
2003
		return err;
2004 2005
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2006 2007 2008 2009
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2010 2011 2012
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
2013 2014 2015
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2016
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2017 2018
			  netdev);
	if (err)
2019
		return err;
2020 2021
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2022 2023 2024 2025
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2026
			  e1000_msix_other, 0, netdev->name, netdev);
2027
	if (err)
2028
		return err;
2029 2030

	e1000_configure_msix(adapter);
2031

2032 2033 2034
	return 0;
}

2035 2036 2037 2038 2039 2040
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2041 2042 2043 2044 2045
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2046 2047 2048 2049 2050 2051 2052 2053
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2054
	}
2055
	if (adapter->flags & FLAG_MSI_ENABLED) {
2056
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2057 2058 2059
				  netdev->name, netdev);
		if (!err)
			return err;
2060

2061 2062 2063
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2064 2065
	}

2066
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2067 2068 2069 2070
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2071 2072 2073 2074 2075 2076 2077
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2090
	}
2091 2092

	free_irq(adapter->pdev->irq, netdev);
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2103 2104
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2105
	e1e_flush();
2106 2107 2108 2109 2110 2111 2112 2113

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2114 2115 2116 2117 2118 2119 2120 2121 2122
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2123 2124 2125 2126 2127 2128
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2129
	e1e_flush();
2130 2131 2132
}

/**
2133
 * e1000e_get_hw_control - get control of the h/w from f/w
2134 2135
 * @adapter: address of board private structure
 *
2136
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2137 2138 2139 2140
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2141
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2153
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2154 2155 2156 2157
	}
}

/**
2158
 * e1000e_release_hw_control - release control of the h/w to f/w
2159 2160
 * @adapter: address of board private structure
 *
2161
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2162 2163 2164 2165 2166
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2167
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2179
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2201
 * @tx_ring: Tx descriptor ring
2202 2203 2204
 *
 * Return 0 on success, negative on failure
 **/
2205
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2206
{
2207
	struct e1000_adapter *adapter = tx_ring->adapter;
2208 2209 2210
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2211
	tx_ring->buffer_info = vzalloc(size);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2229
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2230 2231 2232 2233 2234
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2235
 * @rx_ring: Rx descriptor ring
2236 2237 2238
 *
 * Returns 0 on success, negative on failure
 **/
2239
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2240
{
2241
	struct e1000_adapter *adapter = rx_ring->adapter;
A
Auke Kok 已提交
2242 2243
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2244 2245

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2246
	rx_ring->buffer_info = vzalloc(size);
2247 2248 2249
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2250 2251 2252 2253 2254 2255 2256 2257
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2258 2259 2260 2261 2262 2263 2264 2265 2266

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2267
		goto err_pages;
2268 2269 2270 2271 2272 2273

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2274 2275 2276 2277 2278 2279

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2280 2281
err:
	vfree(rx_ring->buffer_info);
2282
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2283 2284 2285 2286 2287
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
2288
 * @tx_ring: Tx descriptor ring
2289
 **/
2290
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2291
{
2292
	struct e1000_adapter *adapter = tx_ring->adapter;
2293 2294 2295 2296 2297 2298
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2299
		e1000_put_txbuf(tx_ring, buffer_info);
2300 2301
	}

2302
	netdev_reset_queue(adapter->netdev);
2303 2304 2305 2306 2307 2308 2309 2310
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2311 2312
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2313 2314 2315 2316
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
2317
 * @tx_ring: Tx descriptor ring
2318 2319 2320
 *
 * Free all transmit software resources
 **/
2321
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2322
{
2323
	struct e1000_adapter *adapter = tx_ring->adapter;
2324 2325
	struct pci_dev *pdev = adapter->pdev;

2326
	e1000_clean_tx_ring(tx_ring);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
2338
 * @rx_ring: Rx descriptor ring
2339 2340 2341
 *
 * Free all receive software resources
 **/
2342
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2343
{
2344
	struct e1000_adapter *adapter = rx_ring->adapter;
2345
	struct pci_dev *pdev = adapter->pdev;
A
Auke Kok 已提交
2346
	int i;
2347

2348
	e1000_clean_rx_ring(rx_ring);
2349

B
Bruce Allan 已提交
2350
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2351 2352
		kfree(rx_ring->buffer_info[i].ps_pages);

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2363 2364 2365 2366 2367
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2368 2369 2370 2371 2372 2373
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2374 2375
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2376 2377 2378 2379 2380 2381 2382 2383
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
2384
		return itr_setting;
2385 2386 2387 2388 2389 2390

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2391
		else if ((packets < 5) && (bytes > 512))
2392 2393 2394 2395 2396
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2397
			if (bytes/packets > 8000)
2398
				retval = bulk_latency;
B
Bruce Allan 已提交
2399
			else if ((packets < 10) || ((bytes/packets) > 1200))
2400
				retval = bulk_latency;
B
Bruce Allan 已提交
2401
			else if ((packets > 35))
2402 2403 2404 2405 2406 2407 2408 2409 2410
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2411
			if (packets > 35)
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2435 2436 2437 2438 2439
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2475 2476
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2477
		 * by adding intermediate steps when interrupt rate is
2478 2479
		 * increasing
		 */
2480 2481 2482 2483
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2484 2485 2486 2487
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2488 2489 2490 2491
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2492 2493 2494
	}
}

2495 2496 2497 2498 2499 2500
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
2501 2502 2503
	int size = sizeof(struct e1000_ring);

	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2504 2505
	if (!adapter->tx_ring)
		goto err;
2506 2507
	adapter->tx_ring->count = adapter->tx_ring_count;
	adapter->tx_ring->adapter = adapter;
2508

2509
	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2510 2511
	if (!adapter->rx_ring)
		goto err;
2512 2513
	adapter->rx_ring->count = adapter->rx_ring_count;
	adapter->rx_ring->adapter = adapter;
2514 2515 2516 2517 2518 2519 2520 2521 2522

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2523 2524
/**
 * e1000_clean - NAPI Rx polling callback
2525
 * @napi: struct associated with this polling callback
2526
 * @budget: amount of packets driver is allowed to process this poll
2527 2528 2529 2530
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2531
	struct e1000_hw *hw = &adapter->hw;
2532
	struct net_device *poll_dev = adapter->netdev;
2533
	int tx_cleaned = 1, work_done = 0;
2534

2535
	adapter = netdev_priv(poll_dev);
2536

2537 2538 2539 2540
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2541
	tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2542

2543
clean_rx:
2544
	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2545

2546
	if (!tx_cleaned)
2547
		work_done = budget;
2548

2549 2550
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2551 2552
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2553
		napi_complete(napi);
2554 2555 2556 2557 2558 2559
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2560 2561 2562 2563 2564
	}

	return work_done;
}

2565
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2566 2567 2568 2569 2570 2571 2572 2573 2574
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2575
		return 0;
2576

2577
	/* add VID to filter table */
2578 2579 2580 2581 2582 2583
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2584 2585

	set_bit(vid, adapter->active_vlans);
2586 2587

	return 0;
2588 2589
}

2590
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2591 2592 2593 2594 2595 2596 2597 2598 2599
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2600
		e1000e_release_hw_control(adapter);
2601
		return 0;
2602 2603 2604
	}

	/* remove VID from filter table */
2605 2606 2607 2608 2609 2610
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2611 2612

	clear_bit(vid, adapter->active_vlans);
2613 2614

	return 0;
2615 2616
}

J
Jeff Kirsher 已提交
2617 2618 2619 2620 2621
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2622 2623
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2624 2625
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2626

J
Jeff Kirsher 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2636 2637 2638 2639
		}
	}
}

J
Jeff Kirsher 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2657

J
Jeff Kirsher 已提交
2658 2659 2660 2661 2662
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2663 2664
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2665
	u32 ctrl;
2666

J
Jeff Kirsher 已提交
2667 2668 2669 2670 2671
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2672

J
Jeff Kirsher 已提交
2673 2674 2675 2676 2677 2678 2679 2680
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2681

J
Jeff Kirsher 已提交
2682 2683 2684 2685 2686
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2687

J
Jeff Kirsher 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2698 2699
	}

J
Jeff Kirsher 已提交
2700 2701
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2702 2703 2704 2705 2706 2707
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2708
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2709

J
Jeff Kirsher 已提交
2710
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2711 2712 2713
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2714
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2715 2716
{
	struct e1000_hw *hw = &adapter->hw;
2717
	u32 manc, manc2h, mdef, i, j;
2718 2719 2720 2721 2722 2723

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2724 2725
	/*
	 * enable receiving management packets to the host. this will probably
2726
	 * generate destination unreachable messages from the host OS, but
2727 2728
	 * the packets will be handled on SMBUS
	 */
2729 2730
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2746
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2774 2775 2776 2777 2778
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2779
 * e1000_configure_tx - Configure Transmit Unit after Reset
2780 2781 2782 2783 2784 2785 2786 2787 2788
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
2789
	u32 tdlen, tarc;
2790 2791 2792 2793

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2794
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2795 2796 2797 2798
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
2799 2800
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2801 2802 2803

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2804
	/* Tx irq moderation */
2805 2806
	ew32(TADV, adapter->tx_abs_int_delay);

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2819
		 * there are Tx hangs or other Tx related bugs
2820 2821 2822 2823
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
	}
2824 2825
	/* erratum work around: set txdctl the same for both queues */
	ew32(TXDCTL(1), er32(TXDCTL(0)));
2826

2827
	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2828
		tarc = er32(TARC(0));
2829 2830 2831 2832
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2833 2834
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2835
		ew32(TARC(0), tarc);
2836 2837 2838 2839
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2840
		tarc = er32(TARC(0));
2841
		tarc |= 1;
2842 2843
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2844
		tarc |= 1;
2845
		ew32(TARC(1), tarc);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

2858
	hw->mac.ops.config_collision_dist(hw);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2873 2874 2875 2876 2877 2878 2879 2880
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2881 2882 2883

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2884 2885
	}

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2902 2903 2904 2905 2906 2907
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2946 2947 2948 2949
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2966
	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2967
		adapter->rx_ps_pages = pages;
2968 2969
	else
		adapter->rx_ps_pages = 0;
2970 2971

	if (adapter->rx_ps_pages) {
2972 2973
		u32 psrctl = 0;

2974 2975 2976 2977
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2978 2979 2980
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2981 2982
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

B
Ben Greear 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3019
	ew32(RFCTL, rfctl);
3020
	ew32(RCTL, rctl);
3021 3022
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3041
		    sizeof(union e1000_rx_desc_packet_split);
3042 3043
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3044
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3045
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3046 3047
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3048
	} else {
3049
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3050 3051 3052 3053 3054 3055
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3056 3057
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3058
	e1e_flush();
3059
	usleep_range(10000, 20000);
3060

3061 3062 3063 3064
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3065
		 * enable prefetching of 0x20 Rx descriptors
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3084 3085 3086 3087 3088
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3089
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3090
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3091 3092 3093 3094 3095 3096 3097 3098

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3099 3100 3101 3102
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3103
	rdba = rx_ring->dma;
3104
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3105 3106 3107 3108
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
3109 3110
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3111 3112 3113

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3114
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3115 3116
		rxcsum |= E1000_RXCSUM_TUOFL;

3117 3118 3119 3120
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3121 3122 3123 3124 3125 3126 3127 3128
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3129 3130 3131 3132 3133
	if (adapter->hw.mac.type == e1000_pch2lan) {
		/*
		 * With jumbo frames, excessive C-state transition
		 * latencies result in dropped transactions.
		 */
3134 3135 3136
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3137
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3138
		} else {
3139 3140
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3141
		}
3142
	}
3143 3144 3145 3146 3147 3148

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3149 3150
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3151
 *
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3189
 *
3190 3191 3192 3193
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3194
 **/
3195
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3196
{
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
			e1000e_rar_set(hw, ha->addr, rar_entries--);
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3236 3237 3238
}

/**
3239
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3240 3241
 * @netdev: network interface device structure
 *
3242 3243 3244
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3245 3246
 * promiscuous mode, and all-multi behavior.
 **/
3247
static void e1000e_set_rx_mode(struct net_device *netdev)
3248 3249 3250 3251 3252 3253 3254 3255
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3256 3257 3258
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3259 3260
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3261 3262
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3263
	} else {
3264
		int count;
3265 3266 3267
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3268 3269 3270 3271 3272 3273 3274 3275
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3276
		}
J
Jeff Kirsher 已提交
3277
		e1000e_vlan_filter_enable(adapter);
3278
		/*
3279 3280 3281
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3282
		 */
3283 3284 3285
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3286
	}
J
Jeff Kirsher 已提交
3287

3288 3289
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3290 3291 3292 3293
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3294 3295
}

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3332
/**
3333
 * e1000_configure - configure the hardware for Rx and Tx
3334 3335 3336 3337
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3338 3339
	struct e1000_ring *rx_ring = adapter->rx_ring;

3340
	e1000e_set_rx_mode(adapter->netdev);
3341 3342

	e1000_restore_vlan(adapter);
3343
	e1000_init_manageability_pt(adapter);
3344 3345

	e1000_configure_tx(adapter);
3346 3347 3348

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3349 3350
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3351
	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3364 3365
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3366 3367 3368 3369 3370 3371 3372

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3373 3374
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3375 3376 3377 3378
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3379
	if (adapter->wol)
3380 3381
		return;

3382 3383
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3384 3385 3386 3387 3388 3389 3390 3391
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3392
 * properly configured for Rx, Tx etc.
3393 3394 3395 3396
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3397
	struct e1000_fc_info *fc = &adapter->hw.fc;
3398 3399
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3400
	u32 pba = adapter->pba;
3401 3402
	u16 hwm;

3403
	/* reset Packet Buffer Allocation to default */
3404
	ew32(PBA, pba);
3405

3406
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3407 3408
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3409 3410 3411 3412
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3413 3414
		 * expressed in KB.
		 */
3415
		pba = er32(PBA);
3416
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3417
		tx_space = pba >> 16;
3418
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3419
		pba &= 0xffff;
3420
		/*
3421
		 * the Tx fifo also stores 16 bytes of information about the Tx
3422
		 * but don't include ethernet FCS because hardware appends it
3423 3424
		 */
		min_tx_space = (adapter->max_frame_size +
3425 3426 3427 3428 3429
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3430
		min_rx_space = adapter->max_frame_size;
3431 3432 3433
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3434 3435
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3436
		 * and the min Tx FIFO size is less than the current Rx FIFO
3437 3438
		 * allocation, take space away from current Rx allocation
		 */
3439 3440 3441
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3442

3443
			/*
3444
			 * if short on Rx space, Rx wins and must trump Tx
3445 3446
			 * adjustment or use Early Receive if available
			 */
3447
			if (pba < min_rx_space)
3448
				pba = min_rx_space;
3449
		}
3450 3451

		ew32(PBA, pba);
3452 3453
	}

3454 3455 3456
	/*
	 * flow control settings
	 *
3457
	 * The high water mark must be low enough to fit one full frame
3458 3459 3460
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
3461
	 * - the full Rx FIFO size minus one full frame
3462
	 */
3463 3464 3465 3466 3467 3468 3469 3470
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	case e1000_ich9lan:
	case e1000_ich10lan:
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
			fc->high_water = 0x2800;
			fc->low_water = fc->high_water - 8;
			break;
		}
		/* fall-through */
3481
	default:
3482 3483
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - adapter->max_frame_size));
3484 3485 3486 3487 3488

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3500
		fc->refresh_time = 0x1000;
3501 3502 3503 3504 3505 3506
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3507 3508 3509 3510
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3511
		break;
3512
	}
3513

3514 3515
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3516
	 * fit in receive buffer.
3517 3518
	 */
	if (adapter->itr_setting & 0x3) {
3519
		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3535 3536
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3537 3538 3539 3540 3541

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3542
	if (adapter->flags & FLAG_HAS_AMT)
3543
		e1000e_get_hw_control(adapter);
3544

3545 3546 3547
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3548
		e_err("Hardware Error\n");
3549 3550 3551 3552 3553 3554 3555

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3556 3557 3558 3559 3560 3561 3562

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3563 3564
	e1000_get_phy_info(hw);

3565 3566
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3567
		u16 phy_data = 0;
3568 3569
		/*
		 * speed up time to link by disabling smart power down, ignore
3570
		 * the return value of this function because there is nothing
3571 3572
		 * different we would do if it failed
		 */
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3588 3589
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3590 3591
	e1000_irq_enable(adapter);

3592
	netif_start_queue(adapter->netdev);
3593

3594
	/* fire a link change interrupt to start the watchdog */
3595 3596 3597 3598 3599
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3600 3601 3602
	return 0;
}

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3618 3619
static void e1000e_update_stats(struct e1000_adapter *adapter);

3620 3621 3622 3623 3624 3625
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3626 3627 3628 3629
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3630 3631 3632 3633
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3634 3635
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3636 3637
	/* flush and sleep below */

3638
	netif_stop_queue(netdev);
3639 3640 3641 3642 3643

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3644

3645 3646
	/* flush both disables and wait for them to finish */
	e1e_flush();
3647
	usleep_range(10000, 20000);
3648 3649 3650 3651 3652 3653 3654

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3655 3656 3657 3658 3659

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3660
	e1000e_flush_descriptors(adapter);
3661 3662
	e1000_clean_tx_ring(adapter->tx_ring);
	e1000_clean_rx_ring(adapter->rx_ring);
3663

3664 3665 3666
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3667 3668
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3669

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3680
		usleep_range(1000, 2000);
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3700 3701
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3702 3703
	adapter->tx_ring_count = E1000_DEFAULT_TXD;
	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3704

J
Jeff Kirsher 已提交
3705 3706
	spin_lock_init(&adapter->stats64_lock);

3707
	e1000e_set_interrupt_capability(adapter);
3708

3709 3710
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3711 3712 3713 3714 3715 3716 3717 3718

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3731
	e_dbg("icr is %08X\n", icr);
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3758
	e1000e_reset_interrupt_capability(adapter);
3759 3760 3761 3762 3763 3764 3765 3766 3767

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3768
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3789
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3790
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3791
	} else {
3792
		e_dbg("MSI interrupt test succeeded!\n");
3793
	}
3794 3795 3796 3797 3798

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3799
	e1000e_set_interrupt_capability(adapter);
3800
	return e1000_request_irq(adapter);
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3819 3820 3821
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3822 3823 3824

	err = e1000_test_msi_interrupt(adapter);

3825 3826 3827 3828 3829 3830
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3831 3832 3833 3834

	return err;
}

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3851
	struct pci_dev *pdev = adapter->pdev;
3852 3853 3854 3855 3856 3857
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3858 3859
	pm_runtime_get_sync(&pdev->dev);

3860 3861
	netif_carrier_off(netdev);

3862
	/* allocate transmit descriptors */
3863
	err = e1000e_setup_tx_resources(adapter->tx_ring);
3864 3865 3866 3867
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
3868
	err = e1000e_setup_rx_resources(adapter->rx_ring);
3869 3870 3871
	if (err)
		goto err_setup_rx;

3872 3873 3874 3875 3876
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3877
		e1000e_get_hw_control(adapter);
3878 3879 3880
		e1000e_reset(adapter);
	}

3881 3882 3883 3884 3885 3886 3887
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3888 3889
	/* DMA latency requirement to workaround jumbo issue */
	if (adapter->hw.mac.type == e1000_pch2lan)
3890 3891 3892
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3893

3894 3895
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3896 3897
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3898 3899
	 * clean_rx handler before we do so.
	 */
3900 3901 3902 3903 3904 3905
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3906 3907 3908 3909 3910
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3911
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3912 3913 3914 3915 3916 3917 3918
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3919 3920 3921 3922 3923 3924 3925
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3926
	adapter->tx_hang_recheck = false;
3927
	netif_start_queue(netdev);
3928

3929 3930 3931
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3932
	/* fire a link status change interrupt to start the watchdog */
3933 3934 3935 3936
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3937 3938 3939 3940

	return 0;

err_req_irq:
3941
	e1000e_release_hw_control(adapter);
3942
	e1000_power_down_phy(adapter);
3943
	e1000e_free_rx_resources(adapter->rx_ring);
3944
err_setup_rx:
3945
	e1000e_free_tx_resources(adapter->tx_ring);
3946 3947
err_setup_tx:
	e1000e_reset(adapter);
3948
	pm_runtime_put_sync(&pdev->dev);
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3967
	struct pci_dev *pdev = adapter->pdev;
3968 3969

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3970 3971 3972

	pm_runtime_get_sync(&pdev->dev);

3973 3974
	napi_disable(&adapter->napi);

3975 3976 3977 3978
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3979 3980
	e1000_power_down_phy(adapter);

3981 3982
	e1000e_free_tx_resources(adapter->tx_ring);
	e1000e_free_rx_resources(adapter->rx_ring);
3983

3984 3985 3986 3987
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3988 3989
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3990 3991
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3992 3993 3994 3995
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3996 3997 3998
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3999

4000
	if (adapter->hw.mac.type == e1000_pch2lan)
4001
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4002

4003 4004
	pm_runtime_put_sync(&pdev->dev);

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4031 4032
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4033 4034 4035 4036
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4037 4038
		 * RAR[14]
		 */
4039 4040 4041 4042 4043 4044 4045 4046
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4059 4060 4061 4062

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4063 4064 4065
	e1000_get_phy_info(&adapter->hw);
}

4066 4067 4068 4069
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4070 4071 4072
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4073 4074 4075 4076

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4077
	schedule_work(&adapter->update_phy_task);
4078 4079
}

4080 4081 4082
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4083 4084
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4100
	hw->phy.addr = 1;
4101 4102 4103 4104
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4105 4106 4107
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4108 4109 4110 4111 4112
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4113 4114
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4115 4116 4117 4118
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4119 4120
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4121 4122 4123 4124
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4125 4126
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4127 4128 4129 4130
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4131 4132
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4133 4134 4135 4136
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4137 4138
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4139 4140 4141 4142
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4143 4144
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4145 4146 4147 4148
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4149 4150
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4151 4152 4153 4154 4155 4156 4157
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4158 4159 4160 4161
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4162
static void e1000e_update_stats(struct e1000_adapter *adapter)
4163
{
4164
	struct net_device *netdev = adapter->netdev;
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4179 4180
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4181 4182 4183 4184 4185
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4205
	}
4206

4207 4208 4209 4210 4211
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4212 4213
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4232 4233
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4234 4235 4236

	/* Rx Errors */

4237 4238 4239 4240
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4241
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4242 4243 4244
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4245
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4246
					      adapter->stats.roc;
4247 4248 4249
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4250 4251

	/* Tx Errors */
4252
	netdev->stats.tx_errors = adapter->stats.ecol +
4253
				       adapter->stats.latecol;
4254 4255 4256
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4257 4258 4259 4260 4261 4262 4263 4264 4265

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4277 4278
		int ret_val;

4279 4280 4281 4282 4283 4284 4285 4286 4287
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4288
			e_warn("Error reading PHY register\n");
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4308 4309 4310 4311 4312
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4313
	/* Link status message must follow this format for user tools */
4314 4315 4316 4317 4318 4319 4320
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4321 4322
}

4323
static bool e1000e_has_link(struct e1000_adapter *adapter)
4324 4325
{
	struct e1000_hw *hw = &adapter->hw;
4326
	bool link_active = false;
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4341
			link_active = true;
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4360
		e_info("Gigabit has been disabled, downgrading speed\n");
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4417
	struct e1000_phy_info *phy = &adapter->hw.phy;
4418 4419 4420 4421
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4422 4423 4424
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4425
	link = e1000e_has_link(adapter);
4426
	if ((netif_carrier_ok(netdev)) && link) {
4427 4428 4429
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4430
		e1000e_enable_receives(adapter);
4431 4432 4433 4434 4435 4436 4437 4438 4439
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4440
			bool txb2b = true;
4441 4442 4443 4444

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4445
			/* update snapshot of PHY registers on LSC */
4446
			e1000_phy_read_status(adapter);
4447 4448 4449 4450
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4466
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4467 4468
			}

4469
			/* adjust timeout factor according to speed/duplex */
4470 4471 4472
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4473
				txb2b = false;
4474
				adapter->tx_timeout_factor = 16;
4475 4476
				break;
			case SPEED_100:
4477
				txb2b = false;
4478
				adapter->tx_timeout_factor = 10;
4479 4480 4481
				break;
			}

4482 4483 4484 4485
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4486 4487 4488
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4489
				tarc0 = er32(TARC(0));
4490
				tarc0 &= ~SPEED_MODE_BIT;
4491
				ew32(TARC(0), tarc0);
4492 4493
			}

4494 4495 4496 4497
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4498 4499 4500 4501
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4502
					e_info("10/100 speed: disabling TSO\n");
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4516 4517 4518 4519
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4520 4521 4522 4523
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4524 4525 4526 4527 4528 4529 4530
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4541 4542 4543
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4544 4545 4546 4547 4548 4549 4550
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4551 4552 4553
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4554 4555 4556 4557
		}
	}

link_up:
J
Jeff Kirsher 已提交
4558
	spin_lock(&adapter->stats64_lock);
4559 4560 4561 4562 4563 4564 4565
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4566 4567 4568 4569
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4570
	spin_unlock(&adapter->stats64_lock);
4571 4572 4573

	e1000e_update_adaptive(&adapter->hw);

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4585 4586
	}

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4603
	/* Cause software interrupt to ensure Rx ring is cleaned */
4604 4605 4606 4607
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4608

4609 4610 4611
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4612
	/* Force detection of hung controller every watchdog period */
4613
	adapter->detect_tx_hung = true;
4614

4615 4616 4617 4618
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4619 4620 4621
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4622 4623 4624
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
4635
#define E1000_TX_FLAGS_NO_FCS		0x00000010
4636 4637 4638
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

4639
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4640 4641 4642 4643 4644 4645 4646 4647
{
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4648 4649
	if (!skb_is_gso(skb))
		return 0;
4650

4651
	if (skb_header_cloned(skb)) {
4652 4653
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4654 4655
		if (err)
			return err;
4656 4657
	}

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4668
	} else if (skb_is_gso_v6(skb)) {
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4707 4708
}

4709
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4710
{
4711
	struct e1000_adapter *adapter = tx_ring->adapter;
4712 4713 4714 4715
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4716
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4717
	__be16 protocol;
4718

4719 4720
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4721

4722 4723 4724 4725 4726
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4727
	switch (protocol) {
4728
	case cpu_to_be16(ETH_P_IP):
4729 4730 4731
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4732
	case cpu_to_be16(ETH_P_IPV6):
4733 4734 4735 4736 4737 4738
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4739 4740
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4741
		break;
4742 4743
	}

4744
	css = skb_checksum_start_offset(skb);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4767 4768 4769 4770 4771
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

4772 4773 4774
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
			unsigned int first, unsigned int max_per_txd,
			unsigned int nr_frags, unsigned int mss)
4775
{
4776
	struct e1000_adapter *adapter = tx_ring->adapter;
4777
	struct pci_dev *pdev = adapter->pdev;
4778
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4779
	unsigned int len = skb_headlen(skb);
4780
	unsigned int offset = 0, size, count = 0, i;
4781
	unsigned int f, bytecount, segs;
4782 4783 4784 4785

	i = tx_ring->next_to_use;

	while (len) {
4786
		buffer_info = &tx_ring->buffer_info[i];
4787 4788 4789 4790 4791
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4792 4793
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4794
						  size, DMA_TO_DEVICE);
4795
		buffer_info->mapped_as_page = false;
4796
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4797
			goto dma_error;
4798 4799 4800

		len -= size;
		offset += size;
4801
		count++;
4802 4803 4804 4805 4806 4807

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4808 4809 4810
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4811
		const struct skb_frag_struct *frag;
4812 4813

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4814
		len = skb_frag_size(frag);
4815
		offset = 0;
4816 4817

		while (len) {
4818 4819 4820 4821
			i++;
			if (i == tx_ring->count)
				i = 0;

4822 4823 4824 4825 4826 4827
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4828 4829
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4830
			buffer_info->mapped_as_page = true;
4831
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4832
				goto dma_error;
4833 4834 4835 4836 4837 4838 4839

			len -= size;
			offset += size;
			count++;
		}
	}

4840
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4841 4842 4843
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4844
	tx_ring->buffer_info[i].skb = skb;
4845 4846
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4847 4848 4849
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4850 4851

dma_error:
4852
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4853
	buffer_info->dma = 0;
4854
	if (count)
4855
		count--;
4856 4857

	while (count--) {
4858
		if (i == 0)
4859
			i += tx_ring->count;
4860
		i--;
4861
		buffer_info = &tx_ring->buffer_info[i];
4862
		e1000_put_txbuf(tx_ring, buffer_info);
4863 4864 4865
	}

	return 0;
4866 4867
}

4868
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4869
{
4870
	struct e1000_adapter *adapter = tx_ring->adapter;
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

4895 4896 4897
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		txd_lower &= ~(E1000_TXD_CMD_IFCS);

4898 4899
	i = tx_ring->next_to_use;

4900
	do {
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4911
	} while (--count > 0);
4912 4913 4914

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4915 4916 4917 4918
	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));

4919 4920
	/*
	 * Force memory writes to complete before letting h/w
4921 4922
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4923 4924
	 * such as IA-64).
	 */
4925 4926 4927
	wmb();

	tx_ring->next_to_use = i;
4928 4929

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4930
		e1000e_update_tdt_wa(tx_ring, i);
4931
	else
4932
		writel(i, tx_ring->tail);
4933

4934 4935 4936 4937
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4949 4950
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

4980
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4981
{
4982
	struct e1000_adapter *adapter = tx_ring->adapter;
4983

4984
	netif_stop_queue(adapter->netdev);
4985 4986
	/*
	 * Herbert's original patch had:
4987
	 *  smp_mb__after_netif_stop_queue();
4988 4989
	 * but since that doesn't exist yet, just open code it.
	 */
4990 4991
	smp_mb();

4992 4993 4994 4995
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4996
	if (e1000_desc_unused(tx_ring) < size)
4997 4998 4999
		return -EBUSY;

	/* A reprieve! */
5000
	netif_start_queue(adapter->netdev);
5001 5002 5003 5004
	++adapter->restart_queue;
	return 0;
}

5005
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5006
{
5007
	if (e1000_desc_unused(tx_ring) >= size)
5008
		return 0;
5009
	return __e1000_maybe_stop_tx(tx_ring, size);
5010 5011
}

5012
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5013 5014
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
5015 5016 5017 5018 5019 5020 5021
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
5022
	unsigned int len = skb_headlen(skb);
5023 5024
	unsigned int nr_frags;
	unsigned int mss;
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5040 5041
	/*
	 * The controller does a simple calculation to
5042 5043 5044 5045
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5046 5047
	 * drops.
	 */
5048 5049 5050 5051 5052
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5053 5054 5055 5056 5057
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5058
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5059 5060 5061 5062
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5063
		if (skb->data_len && (hdr_len == len)) {
5064 5065
			unsigned int pull_size;

5066
			pull_size = min_t(unsigned int, 4, skb->data_len);
5067
			if (!__pskb_pull_tail(skb, pull_size)) {
5068
				e_err("__pskb_pull_tail failed.\n");
5069 5070 5071
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5072
			len = skb_headlen(skb);
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5085
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5086 5087 5088 5089 5090
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5091 5092 5093 5094
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5095
	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5096 5097
		return NETDEV_TX_BUSY;

5098
	if (vlan_tx_tag_present(skb)) {
5099 5100 5101 5102 5103 5104
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

5105
	tso = e1000_tso(tx_ring, skb);
5106 5107 5108 5109 5110 5111 5112
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
5113
	else if (e1000_tx_csum(tx_ring, skb))
5114 5115
		tx_flags |= E1000_TX_FLAGS_CSUM;

5116 5117
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5118
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5119 5120
	 * no longer assume, we must.
	 */
5121 5122 5123
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

5124 5125 5126
	if (unlikely(skb->no_fcs))
		tx_flags |= E1000_TX_FLAGS_NO_FCS;

L
Lucas De Marchi 已提交
5127
	/* if count is 0 then mapping error has occurred */
5128
	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5129
	if (count) {
5130
		netdev_sent_queue(netdev, skb->len);
5131
		e1000_tx_queue(tx_ring, tx_flags, count);
5132
		/* Make sure there is space in the ring for the next send. */
5133
		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5134 5135

	} else {
5136
		dev_kfree_skb_any(skb);
5137 5138
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5162 5163 5164 5165
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5166 5167 5168 5169 5170
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5171 5172 5173 5174
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5175
 * e1000_get_stats64 - Get System Network Statistics
5176
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5177
 * @stats: rtnl_link_stats64 pointer
5178 5179 5180
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5181 5182
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5183
{
J
Jeff Kirsher 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5238
	/* Jumbo frame support */
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
			e_err("Jumbo Frames not supported.\n");
			return -EINVAL;
		}

		/*
		 * IP payload checksum (enabled with jumbos/packet-split when
		 * Rx checksum is enabled) and generation of RSS hash is
		 * mutually exclusive in the hardware.
		 */
		if ((netdev->features & NETIF_F_RXCSUM) &&
		    (netdev->features & NETIF_F_RXHASH)) {
			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
			return -EINVAL;
		}
5255 5256
	}

5257 5258 5259 5260
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5261 5262 5263
		return -EINVAL;
	}

5264 5265 5266 5267
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
5268
		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5269 5270 5271
		return -EINVAL;
	}

5272 5273 5274 5275 5276 5277 5278 5279
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5280
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5281
		usleep_range(1000, 2000);
5282
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5283
	adapter->max_frame_size = max_frame;
5284 5285
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5286 5287 5288
	if (netif_running(netdev))
		e1000e_down(adapter);

5289 5290
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5291 5292
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5293
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5294 5295
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5296
	 */
5297

5298
	if (max_frame <= 2048)
5299 5300 5301 5302 5303 5304 5305 5306
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5307
					 + ETH_FCS_LEN;
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5325
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5326 5327 5328 5329 5330 5331 5332
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5333 5334
		e1000_phy_read_status(adapter);

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5389 5390 5391 5392
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5393
	u16 phy_reg, wuc_enable;
5394 5395 5396
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5397
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5398

5399 5400 5401 5402 5403 5404 5405 5406 5407
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
5408
		goto release;
5409 5410

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5411 5412
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5413 5414 5415 5416
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5417 5418 5419
	}

	/* configure PHY Rx Control register */
5420
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5437
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5438 5439 5440 5441 5442 5443

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5444 5445
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5446 5447

	/* activate PHY wakeup */
5448 5449
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5450 5451
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
5452
release:
5453
	hw->phy.ops.release(hw);
5454 5455 5456 5457

	return retval;
}

5458 5459
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5460 5461 5462 5463 5464
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5465 5466
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5467 5468 5469 5470 5471 5472 5473 5474 5475
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5476
	e1000e_reset_interrupt_capability(adapter);
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5488
		e1000e_set_rx_mode(netdev);
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5502 5503 5504
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5505 5506
		ew32(CTRL, ctrl);

5507 5508 5509
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5510 5511
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5512
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5513 5514 5515
			ew32(CTRL_EXT, ctrl_ext);
		}

5516
		if (adapter->flags & FLAG_IS_ICH)
5517
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5518

5519 5520 5521
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5522
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5523 5524 5525 5526 5527 5528 5529 5530 5531
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5532 5533 5534 5535 5536
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5537 5538
	*enable_wake = !!wufc;

5539
	/* make sure adapter isn't asleep if manageability is enabled */
5540 5541
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5542
		*enable_wake = true;
5543 5544 5545 5546

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5547 5548 5549 5550
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5551
	e1000e_release_hw_control(adapter);
5552 5553 5554

	pci_disable_device(pdev);

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5575 5576 5577 5578 5579 5580 5581 5582
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5583
		int pos = pci_pcie_cap(us_dev);
5584 5585 5586 5587 5588 5589
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5590
		e1000_power_off(pdev, sleep, wake);
5591 5592 5593

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5594
		e1000_power_off(pdev, sleep, wake);
5595
	}
5596 5597
}

5598 5599 5600
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5601
	pci_disable_link_state_locked(pdev, state);
5602 5603 5604
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5605 5606
{
	int pos;
5607
	u16 reg16;
5608 5609

	/*
5610 5611
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5612
	 */
5613 5614 5615 5616 5617
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5618 5619 5620
	if (!pdev->bus->self)
		return;

5621 5622 5623 5624 5625 5626
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5627
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5628 5629 5630 5631 5632 5633
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5634 5635
}

R
Rafael J. Wysocki 已提交
5636
#ifdef CONFIG_PM
5637
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5638
{
5639
	return !!adapter->tx_ring->buffer_info;
5640 5641
}

5642
static int __e1000_resume(struct pci_dev *pdev)
5643 5644 5645 5646
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5647
	u16 aspm_disable_flag = 0;
5648 5649
	u32 err;

5650 5651 5652 5653 5654 5655 5656
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5657 5658
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5659
	pci_save_state(pdev);
T
Taku Izumi 已提交
5660

5661
	e1000e_set_interrupt_capability(adapter);
5662 5663 5664 5665 5666 5667
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5668 5669 5670
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5671
	e1000e_power_up_phy(adapter);
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5684 5685
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5702 5703
	e1000e_reset(adapter);

5704
	e1000_init_manageability_pt(adapter);
5705 5706 5707 5708 5709 5710

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5711 5712
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5713
	 * is up.  For all other cases, let the f/w know that the h/w is now
5714 5715
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5716
	if (!(adapter->flags & FLAG_HAS_AMT))
5717
		e1000e_get_hw_control(adapter);
5718 5719 5720

	return 0;
}
5721

5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5795
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5796
#endif /* CONFIG_PM */
5797 5798 5799

static void e1000_shutdown(struct pci_dev *pdev)
{
5800 5801
	bool wake = false;

5802
	__e1000_shutdown(pdev, &wake, false);
5803 5804 5805

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5806 5807 5808
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5809 5810 5811 5812 5813 5814 5815

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5816 5817
		int vector, msix_irq;

5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5840 5841 5842 5843 5844 5845 5846 5847 5848
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5883 5884 5885
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5906
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5907
	int err;
J
Jesse Brandeburg 已提交
5908
	pci_ers_result_t result;
5909

5910 5911
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5912
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5913 5914 5915 5916
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5917
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5918
	if (err) {
5919 5920
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5921 5922 5923
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5924
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5925
		pci_restore_state(pdev);
5926

J
Jesse Brandeburg 已提交
5927 5928
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5929

J
Jesse Brandeburg 已提交
5930 5931 5932 5933
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5934

J
Jesse Brandeburg 已提交
5935 5936 5937
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5953
	e1000_init_manageability_pt(adapter);
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5965 5966
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5967
	 * is up.  For all other cases, let the f/w know that the h/w is now
5968 5969
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5970
	if (!(adapter->flags & FLAG_HAS_AMT))
5971
		e1000e_get_hw_control(adapter);
5972 5973 5974 5975 5976 5977 5978

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5979 5980
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5981 5982

	/* print bus type/speed/width info */
5983
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5984 5985 5986 5987
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5988
	       netdev->dev_addr);
5989 5990
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5991 5992 5993
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5994
		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5995 5996
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5997 5998
}

5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6009 6010
	le16_to_cpus(&buf);
	if (!ret_val && (!(buf & (1 << 0)))) {
6011
		/* Deep Smart Power Down (DSPD) */
6012 6013
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
6014 6015 6016
	}
}

6017
static int e1000_set_features(struct net_device *netdev,
6018
			      netdev_features_t features)
6019 6020
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
6021
	netdev_features_t changed = features ^ netdev->features;
6022 6023 6024 6025 6026

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
B
Ben Greear 已提交
6027 6028
			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
			 NETIF_F_RXALL)))
6029 6030
		return 0;

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
	/*
	 * IP payload checksum (enabled with jumbos/packet-split when Rx
	 * checksum is enabled) and generation of RSS hash is mutually
	 * exclusive in the hardware.
	 */
	if (adapter->rx_ps_pages &&
	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
		return -EINVAL;
	}

B
Ben Greear 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
	if (changed & NETIF_F_RXFCS) {
		if (features & NETIF_F_RXFCS) {
			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		} else {
			/* We need to take it back to defaults, which might mean
			 * stripping is still disabled at the adapter level.
			 */
			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
				adapter->flags2 |= FLAG2_CRC_STRIPPING;
			else
				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		}
	}

6056 6057
	netdev->features = features;

6058 6059 6060 6061 6062 6063 6064 6065
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6066 6067 6068
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6069
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6070
	.ndo_get_stats64	= e1000e_get_stats64,
6071
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6083
	.ndo_set_features = e1000_set_features,
6084 6085
};

6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6104 6105
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6106 6107

	static int cards_found;
6108
	u16 aspm_disable_flag = 0;
6109 6110 6111 6112
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6113 6114
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6115
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6116 6117 6118
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6119

6120
	err = pci_enable_device_mem(pdev);
6121 6122 6123 6124
	if (err)
		return err;

	pci_using_dac = 0;
6125
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6126
	if (!err) {
6127
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6128 6129 6130
		if (!err)
			pci_using_dac = 1;
	} else {
6131
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6132
		if (err) {
6133 6134
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6135
			if (err) {
6136
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6137 6138 6139 6140 6141
				goto err_dma;
			}
		}
	}

6142
	err = pci_request_selected_regions_exclusive(pdev,
6143 6144
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6145 6146 6147
	if (err)
		goto err_pci_reg;

6148
	/* AER (Advanced Error Reporting) hooks */
6149
	pci_enable_pcie_error_reporting(pdev);
6150

6151
	pci_set_master(pdev);
6152 6153 6154 6155
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6156 6157 6158 6159 6160 6161 6162 6163

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6164 6165
	netdev->irq = pdev->irq;

6166 6167 6168 6169 6170 6171 6172 6173
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6174
	adapter->flags2 = ei->flags2;
6175 6176
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6177
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6198
	netdev->netdev_ops		= &e1000e_netdev_ops;
6199 6200 6201
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6202
	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6203 6204 6205 6206 6207 6208

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6209 6210
	e1000e_check_options(adapter);

6211 6212 6213 6214 6215 6216 6217 6218 6219
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6220
	err = ei->get_variants(adapter);
6221 6222 6223
	if (err)
		goto err_hw_init;

6224 6225 6226 6227
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6228 6229
	hw->mac.ops.get_bus_info(&adapter->hw);

6230
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6231 6232

	/* Copper options */
6233
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6234 6235 6236 6237 6238
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

6239
	if (hw->phy.ops.check_reset_block(hw))
6240
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6241

6242 6243 6244 6245 6246 6247
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6248
			    NETIF_F_RXHASH |
6249 6250 6251 6252 6253
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
B
Ben Greear 已提交
6254
	netdev->hw_features |= NETIF_F_RXFCS;
6255
	netdev->priv_flags |= IFF_SUPP_NOFCS;
B
Ben Greear 已提交
6256
	netdev->hw_features |= NETIF_F_RXALL;
6257 6258 6259 6260

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6261 6262 6263 6264
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6265

6266 6267
	netdev->priv_flags |= IFF_UNICAST_FLT;

6268
	if (pci_using_dac) {
6269
		netdev->features |= NETIF_F_HIGHDMA;
6270 6271
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6272 6273 6274 6275

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6276 6277 6278 6279
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6290
			e_err("The NVM Checksum Is Not Valid\n");
6291 6292 6293 6294 6295
			err = -EIO;
			goto err_eeprom;
		}
	}

6296 6297
	e1000_eeprom_checks(adapter);

6298
	/* copy the MAC address */
6299
	if (e1000e_read_mac_addr(&adapter->hw))
6300
		e_err("NVM Read Error while reading MAC address\n");
6301 6302 6303 6304 6305

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6306
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6307 6308 6309 6310 6311
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6312
	adapter->watchdog_timer.function = e1000_watchdog;
6313 6314 6315
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6316
	adapter->phy_info_timer.function = e1000_update_phy_info;
6317 6318 6319 6320
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6321 6322
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6323
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6324 6325 6326

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6327
	adapter->fc_autoneg = true;
6328 6329
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6344 6345
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6346
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6371
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6372

6373 6374 6375
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6376 6377 6378
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6379 6380
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6381
	 * is up.  For all other cases, let the f/w know that the h/w is now
6382 6383
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6384
	if (!(adapter->flags & FLAG_HAS_AMT))
6385
		e1000e_get_hw_control(adapter);
6386

6387
	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6388 6389 6390 6391
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6392 6393 6394
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6395 6396
	e1000_print_device_info(adapter);

6397 6398
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6399

6400 6401 6402
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6403
	if (!(adapter->flags & FLAG_HAS_AMT))
6404
		e1000e_release_hw_control(adapter);
6405
err_eeprom:
6406
	if (!hw->phy.ops.check_reset_block(hw))
6407
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6408
err_hw_init:
6409 6410 6411
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6412 6413
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6414
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6415
err_flashmap:
6416 6417 6418 6419
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6420 6421
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6441 6442
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6443
	/*
6444 6445
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6446
	 */
6447 6448
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6449 6450 6451
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6452 6453 6454 6455 6456
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6457

6458 6459 6460
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6461 6462 6463
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6464 6465
	unregister_netdev(netdev);

6466 6467
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6468

6469 6470 6471 6472
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6473
	e1000e_release_hw_control(adapter);
6474

6475
	e1000e_reset_interrupt_capability(adapter);
6476 6477 6478 6479 6480 6481
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6482 6483
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6484 6485 6486

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6487
	/* AER disable */
6488
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6489

6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6500
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6501 6502 6503 6504 6505 6506
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6507 6508 6509
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6510

6511 6512 6513 6514
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6515

6516 6517 6518
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6519

6520
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6521
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6522
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6523

6524 6525 6526 6527 6528 6529 6530 6531
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6532

6533 6534 6535 6536 6537 6538 6539
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6540
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6541

6542 6543 6544 6545 6546
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6547
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6548 6549 6550 6551 6552 6553 6554
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6555

6556 6557
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6558
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6559

6560 6561 6562 6563 6564
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6565 6566 6567
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6568
	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6569 6570 6571
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6572
#ifdef CONFIG_PM
6573
static const struct dev_pm_ops e1000_pm_ops = {
6574 6575 6576
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6577
};
6578
#endif
6579

6580 6581 6582 6583 6584 6585
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6586
#ifdef CONFIG_PM
6587 6588 6589
	.driver   = {
		.pm = &e1000_pm_ops,
	},
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6604 6605
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6606
	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6607
	ret = pci_register_driver(&e1000_driver);
6608

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */