netdev.c 180.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

B
Bruce Allan 已提交
59
#define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

65 66 67 68
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
69
	[board_82574]		= &e1000_82574_info,
70
	[board_82583]		= &e1000_82583_info,
71 72 73
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
74
	[board_ich10lan]	= &e1000_ich10_info,
75
	[board_pchlan]		= &e1000_pch_info,
76
	[board_pch2lan]		= &e1000_pch2_info,
77 78
};

79 80 81 82 83
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

84 85 86 87 88 89 90 91 92 93 94
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 96 97 98 99 100 101 102 103 104 105

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

106
	/* Rx Registers */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

122
	/* Tx Registers */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
140
	{0, NULL}
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
166 167
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
168 169 170 171
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 174 175
}

/*
176
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
177 178 179 180 181 182 183 184
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
185
	struct my_u0 {
186 187
		__le64 a;
		__le64 b;
188
	} *u0;
189 190 191
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
192
	union e1000_rx_desc_extended *rx_desc;
193
	struct my_u1 {
194 195 196 197
		__le64 a;
		__le64 b;
		__le64 c;
		__le64 d;
198
	} *u1;
199 200 201 202 203 204 205 206 207
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
208 209 210 211
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
212 213 214 215
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
216
	pr_info(" Register Name   Value\n");
217 218 219 220 221
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

222
	/* Print Tx Ring Summary */
223
	if (!netdev || !netif_running(netdev))
224
		return;
225

226
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229 230 231 232 233 234
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
235

236
	/* Print Tx Ring */
237 238 239
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

240
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
269 270 271
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273
		const char *next_desc;
274 275 276 277
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278
			next_desc = " NTC/U";
279
		else if (i == tx_ring->next_to_use)
280
			next_desc = " NTU";
281
		else if (i == tx_ring->next_to_clean)
282
			next_desc = " NTC";
283
		else
284 285 286 287 288 289 290 291 292 293 294
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
295 296 297

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298 299
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
300 301
	}

302
	/* Print Rx Ring Summary */
303
rx_ring_summary:
304
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305 306 307
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
308

309
	/* Print Rx Ring */
310
	if (!netif_msg_rx_status(adapter))
311
		return;
312

313
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
330
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331 332 333 334 335 336 337 338 339 340 341
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
342
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343
		for (i = 0; i < rx_ring->count; i++) {
344
			const char *next_desc;
345 346 347 348
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
349
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350 351 352 353 354 355 356 357

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

358 359
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
360 361 362 363 364 365 366
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
367
			} else {
368 369 370 371 372 373 374 375
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
376 377 378 379 380 381 382 383 384 385 386

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
387
		/* Extended Receive Descriptor (Read) Format
388
		 *
389 390 391 392 393
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
394
		 */
395
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396 397 398 399 400 401 402 403 404 405 406 407 408
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
409
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410 411

		for (i = 0; i < rx_ring->count; i++) {
412 413
			const char *next_desc;

414
			buffer_info = &rx_ring->buffer_info[i];
415 416 417
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418 419 420 421 422 423 424 425

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

426 427
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
428 429 430 431 432
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
433
			} else {
434 435 436 437 438 439
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
440 441 442 443 444 445 446 447 448 449

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
450 451 452 453
		}
	}
}

454 455 456 457 458 459 460 461 462 463 464 465
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
466
 * e1000_receive_skb - helper function to handle Rx indications
467 468 469 470 471 472
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
473
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
474
			      u8 status, __le16 vlan)
475
{
J
Jeff Kirsher 已提交
476
	u16 tag = le16_to_cpu(vlan);
477 478
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
479 480 481 482
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
483 484 485
}

/**
486
 * e1000_rx_checksum - Receive Checksum Offload
487 488 489 490
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
491 492
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
493
			      __le16 csum, struct sk_buff *skb)
494 495 496
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
497 498

	skb_checksum_none_assert(skb);
499

500 501 502 503
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

504 505 506
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
524 525 526
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
527 528
		 * and then put the value in host order for further stack use.
		 */
529
		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
A
Al Viro 已提交
530
		skb->csum = csum_unfold(~sum);
531 532 533 534 535
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
550
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

567
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
568
{
569
	struct e1000_adapter *adapter = rx_ring->adapter;
570 571
	struct e1000_hw *hw = &adapter->hw;

572
	if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
573 574 575 576 577 578 579
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

580
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
581
{
582
	struct e1000_adapter *adapter = tx_ring->adapter;
583 584
	struct e1000_hw *hw = &adapter->hw;

585
	if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
586 587 588 589 590 591 592
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

593
/**
594
 * e1000_alloc_rx_buffers - Replace used receive buffers
595
 * @rx_ring: Rx descriptor ring
596
 **/
597
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
598
				   int cleaned_count, gfp_t gfp)
599
{
600
	struct e1000_adapter *adapter = rx_ring->adapter;
601 602
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
603
	union e1000_rx_desc_extended *rx_desc;
604 605 606
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
607
	unsigned int bufsz = adapter->rx_buffer_len;
608 609 610 611 612 613 614 615 616 617 618

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

619
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
620 621 622 623 624 625 626 627
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
628
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
629
						  adapter->rx_buffer_len,
630 631
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
632
			dev_err(&pdev->dev, "Rx DMA map failed\n");
633 634 635 636
			adapter->rx_dma_failed++;
			break;
		}

637 638
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
639

640 641 642 643 644 645 646 647
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
648
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
649
				e1000e_update_rdt_wa(rx_ring, i);
650
			else
651
				writel(i, rx_ring->tail);
652
		}
653 654 655 656 657 658
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

659
	rx_ring->next_to_use = i;
660 661 662 663
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
664
 * @rx_ring: Rx descriptor ring
665
 **/
666
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
667
				      int cleaned_count, gfp_t gfp)
668
{
669
	struct e1000_adapter *adapter = rx_ring->adapter;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
685 686 687
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
688 689
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
690 691 692
				continue;
			}
			if (!ps_page->page) {
693
				ps_page->page = alloc_page(gfp);
694
				if (!ps_page->page) {
A
Auke Kok 已提交
695 696 697
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
698 699 700 701 702 703
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
704
					dev_err(&adapter->pdev->dev,
705
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
706 707
					adapter->rx_dma_failed++;
					goto no_buffers;
708 709
				}
			}
A
Auke Kok 已提交
710 711 712 713 714
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
715 716
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
717 718
		}

719 720 721
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
722 723 724 725 726 727 728

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
729
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
730
						  adapter->rx_ps_bsize0,
731 732
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
733
			dev_err(&pdev->dev, "Rx DMA map failed\n");
734 735 736 737 738 739 740 741 742
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

743 744 745 746 747 748 749 750
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
751
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
752
				e1000e_update_rdt_wa(rx_ring, i << 1);
753
			else
754
				writel(i << 1, rx_ring->tail);
755 756
		}

757 758 759 760 761 762 763
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
764
	rx_ring->next_to_use = i;
765 766
}

767 768
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
769
 * @rx_ring: Rx descriptor ring
770 771 772
 * @cleaned_count: number of buffers to allocate this pass
 **/

773
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
774
					 int cleaned_count, gfp_t gfp)
775
{
776
	struct e1000_adapter *adapter = rx_ring->adapter;
777 778
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
779
	union e1000_rx_desc_extended *rx_desc;
780 781 782
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
783
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
784 785 786 787 788 789 790 791 792 793 794

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

795
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
796 797 798 799 800 801 802 803 804 805
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
806
			buffer_info->page = alloc_page(gfp);
807 808 809 810 811 812 813
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
814
			buffer_info->dma = dma_map_page(&pdev->dev,
815 816
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
817
							DMA_FROM_DEVICE);
818

819 820
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
837
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
838
			e1000e_update_rdt_wa(rx_ring, i);
839
		else
840
			writel(i, rx_ring->tail);
841 842 843
	}
}

844 845 846 847 848 849 850
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

851
/**
852 853
 * e1000_clean_rx_irq - Send received data up the network stack
 * @rx_ring: Rx descriptor ring
854 855 856 857
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
858 859
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
			       int work_to_do)
860
{
861
	struct e1000_adapter *adapter = rx_ring->adapter;
862 863
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
864
	struct e1000_hw *hw = &adapter->hw;
865
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
866
	struct e1000_buffer *buffer_info, *next_buffer;
867
	u32 length, staterr;
868 869
	unsigned int i;
	int cleaned_count = 0;
870
	bool cleaned = false;
871 872 873
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
874 875
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876 877
	buffer_info = &rx_ring->buffer_info[i];

878
	while (staterr & E1000_RXD_STAT_DD) {
879 880 881 882 883
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
884
		rmb();	/* read descriptor and rx_buffer_info after status DD */
885 886 887 888 889 890 891 892 893

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
894
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
895 896 897 898
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

899
		cleaned = true;
900
		cleaned_count++;
901
		dma_unmap_single(&pdev->dev,
902 903
				 buffer_info->dma,
				 adapter->rx_buffer_len,
904
				 DMA_FROM_DEVICE);
905 906
		buffer_info->dma = 0;

907
		length = le16_to_cpu(rx_desc->wb.upper.length);
908

909 910 911 912 913 914 915
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
916
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
917 918 919
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
920
			/* All receives must fit into a single buffer */
921
			e_dbg("Receive packet consumed multiple buffers\n");
922 923
			/* recycle */
			buffer_info->skb = skb;
924
			if (staterr & E1000_RXD_STAT_EOP)
925
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
926 927 928
			goto next_desc;
		}

929
		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
930 931 932 933 934
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
935 936 937 938
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

939 940 941
		total_rx_bytes += length;
		total_rx_packets++;

942 943
		/*
		 * code added for copybreak, this should improve
944
		 * performance for small packets with large amounts
945 946
		 * of reassembly being done in the stack
		 */
947 948
		if (length < copybreak) {
			struct sk_buff *new_skb =
949
			    netdev_alloc_skb_ip_align(netdev, length);
950
			if (new_skb) {
951 952 953 954 955 956
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
957 958 959 960 961 962 963 964 965 966
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
967
		e1000_rx_checksum(adapter, staterr,
968
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
969

970 971
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

972 973
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
974 975

next_desc:
976
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
977 978 979

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
980
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
981
					      GFP_ATOMIC);
982 983 984 985 986 987
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
988 989

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
990 991 992 993 994
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
995
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
996 997

	adapter->total_rx_bytes += total_rx_bytes;
998
	adapter->total_rx_packets += total_rx_packets;
999 1000 1001
	return cleaned;
}

1002 1003
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
			    struct e1000_buffer *buffer_info)
1004
{
1005 1006
	struct e1000_adapter *adapter = tx_ring->adapter;

1007 1008
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1009 1010
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1011
		else
1012 1013
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1014 1015
		buffer_info->dma = 0;
	}
1016 1017 1018 1019
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1020
	buffer_info->time_stamp = 0;
1021 1022
}

1023
static void e1000_print_hw_hang(struct work_struct *work)
1024
{
1025 1026 1027
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1028
	struct net_device *netdev = adapter->netdev;
1029 1030 1031 1032
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1033 1034 1035 1036
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1037 1038 1039
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
		/* May be block on write-back, flush and detect again
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1055 1056 1057
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1058

1059 1060 1061 1062
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1063 1064 1065 1066 1067 1068 1069 1070
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1071 1072 1073 1074 1075 1076
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1077 1078
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1079 1080 1081 1082 1083
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1084 1085 1086 1087 1088 1089
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1090 1091 1092 1093
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1094
 * @tx_ring: Tx descriptor ring
1095 1096 1097 1098
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1099
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1100
{
1101
	struct e1000_adapter *adapter = tx_ring->adapter;
1102 1103 1104 1105 1106 1107 1108
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1109
	unsigned int bytes_compl = 0, pkts_compl = 0;
1110 1111 1112 1113 1114

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1115 1116
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1117
		bool cleaned = false;
1118
		rmb(); /* read buffer_info after eop_desc */
1119
		for (; !cleaned; count++) {
1120 1121 1122 1123 1124
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1125 1126
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1127 1128 1129 1130
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1131 1132
			}

1133
			e1000_put_txbuf(tx_ring, buffer_info);
1134 1135 1136 1137 1138 1139 1140
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1141 1142
		if (i == tx_ring->next_to_use)
			break;
1143 1144 1145 1146 1147 1148
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1149 1150
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1151
#define TX_WAKE_THRESHOLD 32
1152 1153
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1167 1168 1169 1170
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1171
		adapter->detect_tx_hung = false;
1172 1173
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1174
			       + (adapter->tx_timeout_factor * HZ)) &&
1175
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1176
			schedule_work(&adapter->print_hang_task);
1177 1178
		else
			adapter->tx_hang_recheck = false;
1179 1180 1181
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1182
	return count < tx_ring->count;
1183 1184 1185 1186
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1187
 * @rx_ring: Rx descriptor ring
1188 1189 1190 1191
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1192 1193
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
				  int work_to_do)
1194
{
1195
	struct e1000_adapter *adapter = rx_ring->adapter;
1196
	struct e1000_hw *hw = &adapter->hw;
1197 1198 1199 1200 1201 1202 1203 1204 1205
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1206
	bool cleaned = false;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1219
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1232
		cleaned = true;
1233
		cleaned_count++;
1234
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1235
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1236 1237
		buffer_info->dma = 0;

1238
		/* see !EOP comment in other Rx routine */
1239 1240 1241 1242
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1243
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1244
			dev_kfree_skb_irq(skb);
1245 1246
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1258
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1259 1260 1261 1262 1263 1264 1265 1266
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1267 1268 1269 1270 1271
			/*
			 * this looks ugly, but it seems compiler issues make
			 * it more efficient than reusing j
			 */
			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1272

1273
			/*
1274 1275 1276 1277
			 * page alloc/put takes too long and effects small
			 * packet throughput, so unsplit small packets and
			 * save the alloc/put only valid in softirq (napi)
			 * context to call kmap_*
1278
			 */
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
			if (l1 && (l1 <= copybreak) &&
			    ((length + l1) <= adapter->rx_ps_bsize0)) {
				u8 *vaddr;

				ps_page = &buffer_info->ps_pages[0];

				/*
				 * there is no documentation about how to call
				 * kmap_atomic, so we can't hold the mapping
				 * very long
				 */
				dma_sync_single_for_cpu(&pdev->dev,
							ps_page->dma,
							PAGE_SIZE,
							DMA_FROM_DEVICE);
				vaddr = kmap_atomic(ps_page->page,
						    KM_SKB_DATA_SOFTIRQ);
				memcpy(skb_tail_pointer(skb), vaddr, l1);
				kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
				dma_sync_single_for_device(&pdev->dev,
							   ps_page->dma,
							   PAGE_SIZE,
							   DMA_FROM_DEVICE);

				/* remove the CRC */
				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
					l1 -= 4;

				skb_put(skb, l1);
				goto copydone;
			} /* if */
1310 1311 1312 1313 1314 1315 1316
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1317
			ps_page = &buffer_info->ps_pages[j];
1318 1319
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1320 1321 1322 1323 1324
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1325
			skb->truesize += PAGE_SIZE;
1326 1327
		}

J
Jeff Kirsher 已提交
1328 1329 1330 1331 1332 1333
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1334 1335 1336 1337
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1338 1339
		e1000_rx_checksum(adapter, staterr,
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1340

1341 1342
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1356
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1357
					      GFP_ATOMIC);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1371
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1372 1373

	adapter->total_rx_bytes += total_rx_bytes;
1374
	adapter->total_rx_packets += total_rx_packets;
1375 1376 1377
	return cleaned;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1387
	skb->truesize += PAGE_SIZE;
1388 1389 1390 1391 1392 1393 1394 1395 1396
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1397 1398
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
				     int work_to_do)
1399
{
1400
	struct e1000_adapter *adapter = rx_ring->adapter;
1401 1402
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
1403
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1404
	struct e1000_buffer *buffer_info, *next_buffer;
1405
	u32 length, staterr;
1406 1407 1408 1409 1410 1411
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1412 1413
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1414 1415
	buffer_info = &rx_ring->buffer_info[i];

1416
	while (staterr & E1000_RXD_STAT_DD) {
1417 1418 1419 1420 1421
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1422
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1423 1424 1425 1426 1427 1428 1429

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1430
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1431 1432 1433 1434 1435 1436
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1437 1438
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1439 1440
		buffer_info->dma = 0;

1441
		length = le16_to_cpu(rx_desc->wb.upper.length);
1442 1443

		/* errors is only valid for DD + EOP descriptors */
1444 1445 1446 1447 1448 1449 1450 1451 1452
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1453 1454
		}

1455
#define rxtop (rx_ring->rx_skb_top)
1456
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1511
		e1000_rx_checksum(adapter, staterr,
1512
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1513

1514 1515
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1516 1517 1518 1519 1520 1521
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1522
			e_err("pskb_may_pull failed.\n");
1523
			dev_kfree_skb_irq(skb);
1524 1525 1526
			goto next_desc;
		}

1527 1528
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1529 1530

next_desc:
1531
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1532 1533 1534

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1535
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1536
					      GFP_ATOMIC);
1537 1538 1539 1540 1541 1542
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1543 1544

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1545 1546 1547 1548 1549
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1550
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1551 1552 1553 1554 1555 1556

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1557 1558
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1559
 * @rx_ring: Rx descriptor ring
1560
 **/
1561
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1562
{
1563
	struct e1000_adapter *adapter = rx_ring->adapter;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1574
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1575
						 adapter->rx_buffer_len,
1576
						 DMA_FROM_DEVICE);
1577
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1578
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1579
				               PAGE_SIZE,
1580
					       DMA_FROM_DEVICE);
1581
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1582
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1583
						 adapter->rx_ps_bsize0,
1584
						 DMA_FROM_DEVICE);
1585 1586 1587
			buffer_info->dma = 0;
		}

1588 1589 1590 1591 1592
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1593 1594 1595 1596 1597 1598
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1599
			ps_page = &buffer_info->ps_pages[j];
1600 1601
			if (!ps_page->page)
				break;
1602 1603
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1621
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1622

1623 1624
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
1625 1626
}

1627 1628 1629 1630 1631
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1632 1633 1634
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1635 1636 1637
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1650 1651 1652
	/*
	 * read ICR disables interrupts using IAM
	 */
1653

1654
	if (icr & E1000_ICR_LSC) {
1655
		hw->mac.get_link_status = true;
1656 1657 1658 1659
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1660 1661
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1662
			schedule_work(&adapter->downshift_task);
1663

1664 1665
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1666
		 * link down event; disable receives here in the ISR and reset
1667 1668
		 * adapter in watchdog
		 */
1669 1670 1671 1672 1673
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1674
			adapter->flags |= FLAG_RX_RESTART_NOW;
1675 1676 1677 1678 1679 1680
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1681
	if (napi_schedule_prep(&adapter->napi)) {
1682 1683 1684 1685
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1686
		__napi_schedule(&adapter->napi);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1703

1704
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1705 1706
		return IRQ_NONE;  /* Not our interrupt */

1707 1708 1709 1710
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1711 1712 1713
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1714 1715 1716 1717 1718
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1719

1720
	if (icr & E1000_ICR_LSC) {
1721
		hw->mac.get_link_status = true;
1722 1723 1724 1725
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1726 1727
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1728
			schedule_work(&adapter->downshift_task);
1729

1730 1731
		/*
		 * 80003ES2LAN workaround--
1732 1733 1734 1735 1736 1737 1738 1739 1740
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1741
			adapter->flags |= FLAG_RX_RESTART_NOW;
1742 1743 1744 1745 1746 1747
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1748
	if (napi_schedule_prep(&adapter->napi)) {
1749 1750 1751 1752
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1753
		__napi_schedule(&adapter->napi);
1754 1755 1756 1757 1758
	}

	return IRQ_HANDLED;
}

1759 1760 1761 1762 1763 1764 1765 1766
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1767 1768
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1769 1770 1771 1772 1773 1774 1775 1776 1777
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
1778
		hw->mac.get_link_status = true;
1779 1780 1781 1782 1783 1784
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1785 1786
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

1803
	if (!e1000_clean_tx_irq(tx_ring))
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
1814
	struct e1000_ring *rx_ring = adapter->rx_ring;
1815 1816 1817 1818

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
1819 1820 1821 1822
	if (rx_ring->set_itr) {
		writel(1000000000 / (rx_ring->itr_val * 256),
		       rx_ring->itr_register);
		rx_ring->set_itr = 0;
1823 1824
	}

1825
	if (napi_schedule_prep(&adapter->napi)) {
1826 1827
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1828
		__napi_schedule(&adapter->napi);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1862
		       rx_ring->itr_register);
1863
	else
1864
		writel(1, rx_ring->itr_register);
1865 1866 1867 1868 1869 1870 1871
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1872
		       tx_ring->itr_register);
1873
	else
1874
		writel(1, tx_ring->itr_register);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1925
	int i;
1926 1927 1928 1929

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1930 1931
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1932 1933 1934
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1935
				for (i = 0; i < adapter->num_vectors; i++)
1936 1937 1938 1939
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1940
						      adapter->num_vectors);
B
Bruce Allan 已提交
1941
				if (err == 0)
1942 1943 1944
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1945
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1946 1947 1948 1949 1950 1951 1952 1953 1954
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1955
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1956 1957 1958 1959 1960 1961
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1962 1963 1964

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1979 1980 1981
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
1982 1983 1984
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1985
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1986 1987
			  netdev);
	if (err)
1988
		return err;
1989 1990
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
1991 1992 1993 1994
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1995 1996 1997
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
1998 1999 2000
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2001
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2002 2003
			  netdev);
	if (err)
2004
		return err;
2005 2006
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2007 2008 2009 2010
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2011
			  e1000_msix_other, 0, netdev->name, netdev);
2012
	if (err)
2013
		return err;
2014 2015

	e1000_configure_msix(adapter);
2016

2017 2018 2019
	return 0;
}

2020 2021 2022 2023 2024 2025
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2026 2027 2028 2029 2030
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2031 2032 2033 2034 2035 2036 2037 2038
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2039
	}
2040
	if (adapter->flags & FLAG_MSI_ENABLED) {
2041
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2042 2043 2044
				  netdev->name, netdev);
		if (!err)
			return err;
2045

2046 2047 2048
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2049 2050
	}

2051
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2052 2053 2054 2055
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2056 2057 2058 2059 2060 2061 2062
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2075
	}
2076 2077

	free_irq(adapter->pdev->irq, netdev);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2088 2089
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2090
	e1e_flush();
2091 2092 2093 2094 2095 2096 2097 2098

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2099 2100 2101 2102 2103 2104 2105 2106 2107
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2108 2109 2110 2111 2112 2113
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2114
	e1e_flush();
2115 2116 2117
}

/**
2118
 * e1000e_get_hw_control - get control of the h/w from f/w
2119 2120
 * @adapter: address of board private structure
 *
2121
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2122 2123 2124 2125
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2126
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2138
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2139 2140 2141 2142
	}
}

/**
2143
 * e1000e_release_hw_control - release control of the h/w to f/w
2144 2145
 * @adapter: address of board private structure
 *
2146
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2147 2148 2149 2150 2151
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2152
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2164
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2186
 * @tx_ring: Tx descriptor ring
2187 2188 2189
 *
 * Return 0 on success, negative on failure
 **/
2190
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2191
{
2192
	struct e1000_adapter *adapter = tx_ring->adapter;
2193 2194 2195
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2196
	tx_ring->buffer_info = vzalloc(size);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2214
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2215 2216 2217 2218 2219
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2220
 * @rx_ring: Rx descriptor ring
2221 2222 2223
 *
 * Returns 0 on success, negative on failure
 **/
2224
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2225
{
2226
	struct e1000_adapter *adapter = rx_ring->adapter;
A
Auke Kok 已提交
2227 2228
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2229 2230

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2231
	rx_ring->buffer_info = vzalloc(size);
2232 2233 2234
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2235 2236 2237 2238 2239 2240 2241 2242
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2243 2244 2245 2246 2247 2248 2249 2250 2251

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2252
		goto err_pages;
2253 2254 2255 2256 2257 2258

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2259 2260 2261 2262 2263 2264

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2265 2266
err:
	vfree(rx_ring->buffer_info);
2267
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2268 2269 2270 2271 2272
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
2273
 * @tx_ring: Tx descriptor ring
2274
 **/
2275
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2276
{
2277
	struct e1000_adapter *adapter = tx_ring->adapter;
2278 2279 2280 2281 2282 2283
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2284
		e1000_put_txbuf(tx_ring, buffer_info);
2285 2286
	}

2287
	netdev_reset_queue(adapter->netdev);
2288 2289 2290 2291 2292 2293 2294 2295
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2296 2297
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2298 2299 2300 2301
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
2302
 * @tx_ring: Tx descriptor ring
2303 2304 2305
 *
 * Free all transmit software resources
 **/
2306
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2307
{
2308
	struct e1000_adapter *adapter = tx_ring->adapter;
2309 2310
	struct pci_dev *pdev = adapter->pdev;

2311
	e1000_clean_tx_ring(tx_ring);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
2323
 * @rx_ring: Rx descriptor ring
2324 2325 2326
 *
 * Free all receive software resources
 **/
2327
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2328
{
2329
	struct e1000_adapter *adapter = rx_ring->adapter;
2330
	struct pci_dev *pdev = adapter->pdev;
A
Auke Kok 已提交
2331
	int i;
2332

2333
	e1000_clean_rx_ring(rx_ring);
2334

B
Bruce Allan 已提交
2335
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2336 2337
		kfree(rx_ring->buffer_info[i].ps_pages);

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2348 2349 2350 2351 2352
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2353 2354 2355 2356 2357 2358
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2359 2360
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2361 2362 2363 2364 2365 2366 2367 2368
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
2369
		return itr_setting;
2370 2371 2372 2373 2374 2375

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2376
		else if ((packets < 5) && (bytes > 512))
2377 2378 2379 2380 2381
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2382
			if (bytes/packets > 8000)
2383
				retval = bulk_latency;
B
Bruce Allan 已提交
2384
			else if ((packets < 10) || ((bytes/packets) > 1200))
2385
				retval = bulk_latency;
B
Bruce Allan 已提交
2386
			else if ((packets > 35))
2387 2388 2389 2390 2391 2392 2393 2394 2395
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2396
			if (packets > 35)
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2420 2421 2422 2423 2424
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2460 2461
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2462
		 * by adding intermediate steps when interrupt rate is
2463 2464
		 * increasing
		 */
2465 2466 2467 2468
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2469 2470 2471 2472
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2473 2474 2475 2476
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2477 2478 2479
	}
}

2480 2481 2482 2483 2484 2485
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
2486 2487 2488
	int size = sizeof(struct e1000_ring);

	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2489 2490
	if (!adapter->tx_ring)
		goto err;
2491 2492
	adapter->tx_ring->count = adapter->tx_ring_count;
	adapter->tx_ring->adapter = adapter;
2493

2494
	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2495 2496
	if (!adapter->rx_ring)
		goto err;
2497 2498
	adapter->rx_ring->count = adapter->rx_ring_count;
	adapter->rx_ring->adapter = adapter;
2499 2500 2501 2502 2503 2504 2505 2506 2507

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2508 2509
/**
 * e1000_clean - NAPI Rx polling callback
2510
 * @napi: struct associated with this polling callback
2511
 * @budget: amount of packets driver is allowed to process this poll
2512 2513 2514 2515
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2516
	struct e1000_hw *hw = &adapter->hw;
2517
	struct net_device *poll_dev = adapter->netdev;
2518
	int tx_cleaned = 1, work_done = 0;
2519

2520
	adapter = netdev_priv(poll_dev);
2521

2522 2523 2524 2525
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2526
	tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2527

2528
clean_rx:
2529
	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2530

2531
	if (!tx_cleaned)
2532
		work_done = budget;
2533

2534 2535
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2536 2537
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2538
		napi_complete(napi);
2539 2540 2541 2542 2543 2544
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2545 2546 2547 2548 2549
	}

	return work_done;
}

2550
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2551 2552 2553 2554 2555 2556 2557 2558 2559
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2560
		return 0;
2561

2562
	/* add VID to filter table */
2563 2564 2565 2566 2567 2568
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2569 2570

	set_bit(vid, adapter->active_vlans);
2571 2572

	return 0;
2573 2574
}

2575
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2576 2577 2578 2579 2580 2581 2582 2583 2584
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2585
		e1000e_release_hw_control(adapter);
2586
		return 0;
2587 2588 2589
	}

	/* remove VID from filter table */
2590 2591 2592 2593 2594 2595
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2596 2597

	clear_bit(vid, adapter->active_vlans);
2598 2599

	return 0;
2600 2601
}

J
Jeff Kirsher 已提交
2602 2603 2604 2605 2606
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2607 2608
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2609 2610
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2611

J
Jeff Kirsher 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2621 2622 2623 2624
		}
	}
}

J
Jeff Kirsher 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2642

J
Jeff Kirsher 已提交
2643 2644 2645 2646 2647
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2648 2649
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2650
	u32 ctrl;
2651

J
Jeff Kirsher 已提交
2652 2653 2654 2655 2656
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2657

J
Jeff Kirsher 已提交
2658 2659 2660 2661 2662 2663 2664 2665
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2666

J
Jeff Kirsher 已提交
2667 2668 2669 2670 2671
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2672

J
Jeff Kirsher 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2683 2684
	}

J
Jeff Kirsher 已提交
2685 2686
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2687 2688 2689 2690 2691 2692
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2693
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2694

J
Jeff Kirsher 已提交
2695
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2696 2697 2698
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2699
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2700 2701
{
	struct e1000_hw *hw = &adapter->hw;
2702
	u32 manc, manc2h, mdef, i, j;
2703 2704 2705 2706 2707 2708

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2709 2710
	/*
	 * enable receiving management packets to the host. this will probably
2711
	 * generate destination unreachable messages from the host OS, but
2712 2713
	 * the packets will be handled on SMBUS
	 */
2714 2715
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2731
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2759 2760 2761 2762 2763
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2764
 * e1000_configure_tx - Configure Transmit Unit after Reset
2765 2766 2767 2768 2769 2770 2771 2772 2773
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
2774
	u32 tdlen, tarc;
2775 2776 2777 2778

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2779
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2780 2781 2782 2783
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
2784 2785
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2786 2787 2788

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2789
	/* Tx irq moderation */
2790 2791
	ew32(TADV, adapter->tx_abs_int_delay);

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2804
		 * there are Tx hangs or other Tx related bugs
2805 2806 2807 2808
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
	}
2809 2810
	/* erratum work around: set txdctl the same for both queues */
	ew32(TXDCTL(1), er32(TXDCTL(0)));
2811

2812
	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2813
		tarc = er32(TARC(0));
2814 2815 2816 2817
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2818 2819
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2820
		ew32(TARC(0), tarc);
2821 2822 2823 2824
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2825
		tarc = er32(TARC(0));
2826
		tarc |= 1;
2827 2828
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2829
		tarc |= 1;
2830
		ew32(TARC(1), tarc);
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

2843
	e1000e_config_collision_dist(hw);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2858 2859 2860 2861 2862 2863 2864 2865
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2866 2867 2868

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2869 2870
	}

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2887 2888 2889 2890 2891 2892
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2893

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2931 2932 2933 2934
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2951
	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2952
		adapter->rx_ps_pages = pages;
2953 2954
	else
		adapter->rx_ps_pages = 0;
2955 2956

	if (adapter->rx_ps_pages) {
2957 2958
		u32 psrctl = 0;

2959 2960 2961 2962
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2963 2964 2965
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2966 2967
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

2988
	ew32(RFCTL, rfctl);
2989
	ew32(RCTL, rctl);
2990 2991
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3010
		    sizeof(union e1000_rx_desc_packet_split);
3011 3012
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3013
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3014
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3015 3016
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3017
	} else {
3018
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3019 3020 3021 3022 3023 3024
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3025 3026
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3027
	e1e_flush();
3028
	usleep_range(10000, 20000);
3029

3030 3031 3032 3033
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3034
		 * enable prefetching of 0x20 Rx descriptors
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3053 3054 3055 3056 3057
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3058
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3059
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3060 3061 3062 3063 3064 3065 3066 3067

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3068 3069 3070 3071
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3072
	rdba = rx_ring->dma;
3073
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3074 3075 3076 3077
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
3078 3079
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3080 3081 3082

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3083
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3084 3085
		rxcsum |= E1000_RXCSUM_TUOFL;

3086 3087 3088 3089
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3090 3091 3092 3093 3094 3095 3096 3097
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3098 3099 3100 3101 3102
	if (adapter->hw.mac.type == e1000_pch2lan) {
		/*
		 * With jumbo frames, excessive C-state transition
		 * latencies result in dropped transactions.
		 */
3103 3104 3105
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3106
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3107
		} else {
3108 3109
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3110
		}
3111
	}
3112 3113 3114 3115 3116 3117

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3118 3119
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3120
 *
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3158
 *
3159 3160 3161 3162
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3163
 **/
3164
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3165
{
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
			e1000e_rar_set(hw, ha->addr, rar_entries--);
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3205 3206 3207
}

/**
3208
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3209 3210
 * @netdev: network interface device structure
 *
3211 3212 3213
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3214 3215
 * promiscuous mode, and all-multi behavior.
 **/
3216
static void e1000e_set_rx_mode(struct net_device *netdev)
3217 3218 3219 3220 3221 3222 3223 3224
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3225 3226 3227
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3228 3229
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3230 3231
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3232
	} else {
3233
		int count;
3234 3235 3236
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3237 3238 3239 3240 3241 3242 3243 3244
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3245
		}
J
Jeff Kirsher 已提交
3246
		e1000e_vlan_filter_enable(adapter);
3247
		/*
3248 3249 3250
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3251
		 */
3252 3253 3254
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3255
	}
J
Jeff Kirsher 已提交
3256

3257 3258
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3259 3260 3261 3262
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3263 3264
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3301
/**
3302
 * e1000_configure - configure the hardware for Rx and Tx
3303 3304 3305 3306
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3307 3308
	struct e1000_ring *rx_ring = adapter->rx_ring;

3309
	e1000e_set_rx_mode(adapter->netdev);
3310 3311

	e1000_restore_vlan(adapter);
3312
	e1000_init_manageability_pt(adapter);
3313 3314

	e1000_configure_tx(adapter);
3315 3316 3317

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3318 3319
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3320
	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3333 3334
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3335 3336 3337 3338 3339 3340 3341

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3342 3343
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3344 3345 3346 3347
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3348
	if (adapter->wol)
3349 3350
		return;

3351 3352
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3353 3354 3355 3356 3357 3358 3359 3360
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3361
 * properly configured for Rx, Tx etc.
3362 3363 3364 3365
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3366
	struct e1000_fc_info *fc = &adapter->hw.fc;
3367 3368
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3369
	u32 pba = adapter->pba;
3370 3371
	u16 hwm;

3372
	/* reset Packet Buffer Allocation to default */
3373
	ew32(PBA, pba);
3374

3375
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3376 3377
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3378 3379 3380 3381
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3382 3383
		 * expressed in KB.
		 */
3384
		pba = er32(PBA);
3385
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3386
		tx_space = pba >> 16;
3387
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3388
		pba &= 0xffff;
3389
		/*
3390
		 * the Tx fifo also stores 16 bytes of information about the Tx
3391
		 * but don't include ethernet FCS because hardware appends it
3392 3393
		 */
		min_tx_space = (adapter->max_frame_size +
3394 3395 3396 3397 3398
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3399
		min_rx_space = adapter->max_frame_size;
3400 3401 3402
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3403 3404
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3405
		 * and the min Tx FIFO size is less than the current Rx FIFO
3406 3407
		 * allocation, take space away from current Rx allocation
		 */
3408 3409 3410
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3411

3412
			/*
3413
			 * if short on Rx space, Rx wins and must trump Tx
3414 3415
			 * adjustment or use Early Receive if available
			 */
3416
			if (pba < min_rx_space)
3417
				pba = min_rx_space;
3418
		}
3419 3420

		ew32(PBA, pba);
3421 3422
	}

3423 3424 3425
	/*
	 * flow control settings
	 *
3426
	 * The high water mark must be low enough to fit one full frame
3427 3428 3429
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
3430
	 * - the full Rx FIFO size minus one full frame
3431
	 */
3432 3433 3434 3435 3436 3437 3438 3439
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
	case e1000_ich9lan:
	case e1000_ich10lan:
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
			fc->high_water = 0x2800;
			fc->low_water = fc->high_water - 8;
			break;
		}
		/* fall-through */
3450
	default:
3451 3452
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - adapter->max_frame_size));
3453 3454 3455 3456 3457

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3469
		fc->refresh_time = 0x1000;
3470 3471 3472 3473 3474 3475
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3476 3477 3478 3479
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3480
		break;
3481
	}
3482

3483 3484
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3485
	 * fit in receive buffer.
3486 3487
	 */
	if (adapter->itr_setting & 0x3) {
3488
		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3504 3505
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3506 3507 3508 3509 3510

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3511
	if (adapter->flags & FLAG_HAS_AMT)
3512
		e1000e_get_hw_control(adapter);
3513

3514 3515 3516
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3517
		e_err("Hardware Error\n");
3518 3519 3520 3521 3522 3523 3524

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3525 3526 3527 3528 3529 3530 3531

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3532 3533
	e1000_get_phy_info(hw);

3534 3535
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3536
		u16 phy_data = 0;
3537 3538
		/*
		 * speed up time to link by disabling smart power down, ignore
3539
		 * the return value of this function because there is nothing
3540 3541
		 * different we would do if it failed
		 */
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3557 3558
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3559 3560
	e1000_irq_enable(adapter);

3561
	netif_start_queue(adapter->netdev);
3562

3563
	/* fire a link change interrupt to start the watchdog */
3564 3565 3566 3567 3568
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3569 3570 3571
	return 0;
}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3587 3588
static void e1000e_update_stats(struct e1000_adapter *adapter);

3589 3590 3591 3592 3593 3594
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3595 3596 3597 3598
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3599 3600 3601 3602
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3603 3604
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3605 3606
	/* flush and sleep below */

3607
	netif_stop_queue(netdev);
3608 3609 3610 3611 3612

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3613

3614 3615
	/* flush both disables and wait for them to finish */
	e1e_flush();
3616
	usleep_range(10000, 20000);
3617 3618 3619 3620 3621 3622 3623

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3624 3625 3626 3627 3628

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3629
	e1000e_flush_descriptors(adapter);
3630 3631
	e1000_clean_tx_ring(adapter->tx_ring);
	e1000_clean_rx_ring(adapter->rx_ring);
3632

3633 3634 3635
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3636 3637
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3638

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3649
		usleep_range(1000, 2000);
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3669 3670
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3671 3672
	adapter->tx_ring_count = E1000_DEFAULT_TXD;
	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3673

J
Jeff Kirsher 已提交
3674 3675
	spin_lock_init(&adapter->stats64_lock);

3676
	e1000e_set_interrupt_capability(adapter);
3677

3678 3679
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3680 3681 3682 3683 3684 3685 3686 3687

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3700
	e_dbg("icr is %08X\n", icr);
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3727
	e1000e_reset_interrupt_capability(adapter);
3728 3729 3730 3731 3732 3733 3734 3735 3736

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3737
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3758
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3759
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3760
	} else {
3761
		e_dbg("MSI interrupt test succeeded!\n");
3762
	}
3763 3764 3765 3766 3767

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3768
	e1000e_set_interrupt_capability(adapter);
3769
	return e1000_request_irq(adapter);
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3788 3789 3790
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3791 3792 3793

	err = e1000_test_msi_interrupt(adapter);

3794 3795 3796 3797 3798 3799
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3800 3801 3802 3803

	return err;
}

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3820
	struct pci_dev *pdev = adapter->pdev;
3821 3822 3823 3824 3825 3826
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3827 3828
	pm_runtime_get_sync(&pdev->dev);

3829 3830
	netif_carrier_off(netdev);

3831
	/* allocate transmit descriptors */
3832
	err = e1000e_setup_tx_resources(adapter->tx_ring);
3833 3834 3835 3836
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
3837
	err = e1000e_setup_rx_resources(adapter->rx_ring);
3838 3839 3840
	if (err)
		goto err_setup_rx;

3841 3842 3843 3844 3845
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3846
		e1000e_get_hw_control(adapter);
3847 3848 3849
		e1000e_reset(adapter);
	}

3850 3851 3852 3853 3854 3855 3856
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3857 3858
	/* DMA latency requirement to workaround jumbo issue */
	if (adapter->hw.mac.type == e1000_pch2lan)
3859 3860 3861
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3862

3863 3864
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3865 3866
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3867 3868
	 * clean_rx handler before we do so.
	 */
3869 3870 3871 3872 3873 3874
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3875 3876 3877 3878 3879
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3880
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3881 3882 3883 3884 3885 3886 3887
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3888 3889 3890 3891 3892 3893 3894
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3895
	adapter->tx_hang_recheck = false;
3896
	netif_start_queue(netdev);
3897

3898 3899 3900
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3901
	/* fire a link status change interrupt to start the watchdog */
3902 3903 3904 3905
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3906 3907 3908 3909

	return 0;

err_req_irq:
3910
	e1000e_release_hw_control(adapter);
3911
	e1000_power_down_phy(adapter);
3912
	e1000e_free_rx_resources(adapter->rx_ring);
3913
err_setup_rx:
3914
	e1000e_free_tx_resources(adapter->tx_ring);
3915 3916
err_setup_tx:
	e1000e_reset(adapter);
3917
	pm_runtime_put_sync(&pdev->dev);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3936
	struct pci_dev *pdev = adapter->pdev;
3937 3938

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3939 3940 3941

	pm_runtime_get_sync(&pdev->dev);

3942 3943
	napi_disable(&adapter->napi);

3944 3945 3946 3947
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3948 3949
	e1000_power_down_phy(adapter);

3950 3951
	e1000e_free_tx_resources(adapter->tx_ring);
	e1000e_free_rx_resources(adapter->rx_ring);
3952

3953 3954 3955 3956
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
3957 3958
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3959 3960
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3961 3962 3963 3964
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3965 3966 3967
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3968

3969
	if (adapter->hw.mac.type == e1000_pch2lan)
3970
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3971

3972 3973
	pm_runtime_put_sync(&pdev->dev);

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4000 4001
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4002 4003 4004 4005
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4006 4007
		 * RAR[14]
		 */
4008 4009 4010 4011 4012 4013 4014 4015
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4028 4029 4030 4031

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4032 4033 4034
	e1000_get_phy_info(&adapter->hw);
}

4035 4036 4037 4038
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4039 4040 4041
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4042 4043 4044 4045

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4046
	schedule_work(&adapter->update_phy_task);
4047 4048
}

4049 4050 4051
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4052 4053
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4069
	hw->phy.addr = 1;
4070 4071 4072 4073
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4074 4075 4076
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4077 4078 4079 4080 4081
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4082 4083
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4084 4085 4086 4087
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4088 4089
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4090 4091 4092 4093
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4094 4095
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4096 4097 4098 4099
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4100 4101
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4102 4103 4104 4105
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4106 4107
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4108 4109 4110 4111
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4112 4113
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4114 4115 4116 4117
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4118 4119
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4120 4121 4122 4123 4124 4125 4126
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4127 4128 4129 4130
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4131
static void e1000e_update_stats(struct e1000_adapter *adapter)
4132
{
4133
	struct net_device *netdev = adapter->netdev;
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4148 4149
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4150 4151 4152 4153 4154
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4174
	}
4175

4176 4177 4178 4179 4180
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4181 4182
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4201 4202
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4203 4204 4205

	/* Rx Errors */

4206 4207 4208 4209
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4210
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4211 4212 4213
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4214
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4215
					      adapter->stats.roc;
4216 4217 4218
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4219 4220

	/* Tx Errors */
4221
	netdev->stats.tx_errors = adapter->stats.ecol +
4222
				       adapter->stats.latecol;
4223 4224 4225
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4226 4227 4228 4229 4230 4231 4232 4233 4234

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4246 4247
		int ret_val;

4248 4249 4250 4251 4252 4253 4254 4255 4256
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4257
			e_warn("Error reading PHY register\n");
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4277 4278 4279 4280 4281
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4282
	/* Link status message must follow this format for user tools */
4283 4284 4285 4286 4287 4288 4289
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4290 4291
}

4292
static bool e1000e_has_link(struct e1000_adapter *adapter)
4293 4294
{
	struct e1000_hw *hw = &adapter->hw;
4295
	bool link_active = false;
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4310
			link_active = true;
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4329
		e_info("Gigabit has been disabled, downgrading speed\n");
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4386
	struct e1000_phy_info *phy = &adapter->hw.phy;
4387 4388 4389 4390
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4391 4392 4393
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4394
	link = e1000e_has_link(adapter);
4395
	if ((netif_carrier_ok(netdev)) && link) {
4396 4397 4398
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4399
		e1000e_enable_receives(adapter);
4400 4401 4402 4403 4404 4405 4406 4407 4408
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4409
			bool txb2b = true;
4410 4411 4412 4413

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4414
			/* update snapshot of PHY registers on LSC */
4415
			e1000_phy_read_status(adapter);
4416 4417 4418 4419
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4435
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4436 4437
			}

4438
			/* adjust timeout factor according to speed/duplex */
4439 4440 4441
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4442
				txb2b = false;
4443
				adapter->tx_timeout_factor = 16;
4444 4445
				break;
			case SPEED_100:
4446
				txb2b = false;
4447
				adapter->tx_timeout_factor = 10;
4448 4449 4450
				break;
			}

4451 4452 4453 4454
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4455 4456 4457
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4458
				tarc0 = er32(TARC(0));
4459
				tarc0 &= ~SPEED_MODE_BIT;
4460
				ew32(TARC(0), tarc0);
4461 4462
			}

4463 4464 4465 4466
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4467 4468 4469 4470
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4471
					e_info("10/100 speed: disabling TSO\n");
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4485 4486 4487 4488
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4489 4490 4491 4492
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4493 4494 4495 4496 4497 4498 4499
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4510 4511 4512
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4513 4514 4515 4516 4517 4518 4519
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4520 4521 4522
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4523 4524 4525 4526
		}
	}

link_up:
J
Jeff Kirsher 已提交
4527
	spin_lock(&adapter->stats64_lock);
4528 4529 4530 4531 4532 4533 4534
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4535 4536 4537 4538
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4539
	spin_unlock(&adapter->stats64_lock);
4540 4541 4542

	e1000e_update_adaptive(&adapter->hw);

4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4554 4555
	}

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4572
	/* Cause software interrupt to ensure Rx ring is cleaned */
4573 4574 4575 4576
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4577

4578 4579 4580
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4581
	/* Force detection of hung controller every watchdog period */
4582
	adapter->detect_tx_hung = true;
4583

4584 4585 4586 4587
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4588 4589 4590
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4591 4592 4593
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

4607
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4608 4609 4610 4611 4612 4613 4614 4615
{
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4616 4617
	if (!skb_is_gso(skb))
		return 0;
4618

4619
	if (skb_header_cloned(skb)) {
4620 4621
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4622 4623
		if (err)
			return err;
4624 4625
	}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4636
	} else if (skb_is_gso_v6(skb)) {
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4675 4676
}

4677
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4678
{
4679
	struct e1000_adapter *adapter = tx_ring->adapter;
4680 4681 4682 4683
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4684
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4685
	__be16 protocol;
4686

4687 4688
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4689

4690 4691 4692 4693 4694
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4695
	switch (protocol) {
4696
	case cpu_to_be16(ETH_P_IP):
4697 4698 4699
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4700
	case cpu_to_be16(ETH_P_IPV6):
4701 4702 4703 4704 4705 4706
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4707 4708
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4709
		break;
4710 4711
	}

4712
	css = skb_checksum_start_offset(skb);
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4735 4736 4737 4738 4739
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

4740 4741 4742
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
			unsigned int first, unsigned int max_per_txd,
			unsigned int nr_frags, unsigned int mss)
4743
{
4744
	struct e1000_adapter *adapter = tx_ring->adapter;
4745
	struct pci_dev *pdev = adapter->pdev;
4746
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4747
	unsigned int len = skb_headlen(skb);
4748
	unsigned int offset = 0, size, count = 0, i;
4749
	unsigned int f, bytecount, segs;
4750 4751 4752 4753

	i = tx_ring->next_to_use;

	while (len) {
4754
		buffer_info = &tx_ring->buffer_info[i];
4755 4756 4757 4758 4759
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4760 4761
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4762
						  size, DMA_TO_DEVICE);
4763
		buffer_info->mapped_as_page = false;
4764
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4765
			goto dma_error;
4766 4767 4768

		len -= size;
		offset += size;
4769
		count++;
4770 4771 4772 4773 4774 4775

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4776 4777 4778
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4779
		const struct skb_frag_struct *frag;
4780 4781

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4782
		len = skb_frag_size(frag);
4783
		offset = 0;
4784 4785

		while (len) {
4786 4787 4788 4789
			i++;
			if (i == tx_ring->count)
				i = 0;

4790 4791 4792 4793 4794 4795
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4796 4797
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4798
			buffer_info->mapped_as_page = true;
4799
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4800
				goto dma_error;
4801 4802 4803 4804 4805 4806 4807

			len -= size;
			offset += size;
			count++;
		}
	}

4808
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4809 4810 4811
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4812
	tx_ring->buffer_info[i].skb = skb;
4813 4814
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4815 4816 4817
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4818 4819

dma_error:
4820
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4821
	buffer_info->dma = 0;
4822
	if (count)
4823
		count--;
4824 4825

	while (count--) {
4826
		if (i == 0)
4827
			i += tx_ring->count;
4828
		i--;
4829
		buffer_info = &tx_ring->buffer_info[i];
4830
		e1000_put_txbuf(tx_ring, buffer_info);
4831 4832 4833
	}

	return 0;
4834 4835
}

4836
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4837
{
4838
	struct e1000_adapter *adapter = tx_ring->adapter;
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

4865
	do {
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4876
	} while (--count > 0);
4877 4878 4879

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4880 4881
	/*
	 * Force memory writes to complete before letting h/w
4882 4883
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4884 4885
	 * such as IA-64).
	 */
4886 4887 4888
	wmb();

	tx_ring->next_to_use = i;
4889 4890

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4891
		e1000e_update_tdt_wa(tx_ring, i);
4892
	else
4893
		writel(i, tx_ring->tail);
4894

4895 4896 4897 4898
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4910 4911
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

4941
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4942
{
4943
	struct e1000_adapter *adapter = tx_ring->adapter;
4944

4945
	netif_stop_queue(adapter->netdev);
4946 4947
	/*
	 * Herbert's original patch had:
4948
	 *  smp_mb__after_netif_stop_queue();
4949 4950
	 * but since that doesn't exist yet, just open code it.
	 */
4951 4952
	smp_mb();

4953 4954 4955 4956
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4957
	if (e1000_desc_unused(tx_ring) < size)
4958 4959 4960
		return -EBUSY;

	/* A reprieve! */
4961
	netif_start_queue(adapter->netdev);
4962 4963 4964 4965
	++adapter->restart_queue;
	return 0;
}

4966
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4967
{
4968
	if (e1000_desc_unused(tx_ring) >= size)
4969
		return 0;
4970
	return __e1000_maybe_stop_tx(tx_ring, size);
4971 4972
}

4973
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
4974 4975
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4976 4977 4978 4979 4980 4981 4982
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
4983
	unsigned int len = skb_headlen(skb);
4984 4985
	unsigned int nr_frags;
	unsigned int mss;
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5001 5002
	/*
	 * The controller does a simple calculation to
5003 5004 5005 5006
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5007 5008
	 * drops.
	 */
5009 5010 5011 5012 5013
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5014 5015 5016 5017 5018
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5019
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5020 5021 5022 5023
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5024
		if (skb->data_len && (hdr_len == len)) {
5025 5026
			unsigned int pull_size;

5027
			pull_size = min_t(unsigned int, 4, skb->data_len);
5028
			if (!__pskb_pull_tail(skb, pull_size)) {
5029
				e_err("__pskb_pull_tail failed.\n");
5030 5031 5032
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5033
			len = skb_headlen(skb);
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5046
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5047 5048 5049 5050 5051
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5052 5053 5054 5055
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5056
	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5057 5058
		return NETDEV_TX_BUSY;

5059
	if (vlan_tx_tag_present(skb)) {
5060 5061 5062 5063 5064 5065
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

5066
	tso = e1000_tso(tx_ring, skb);
5067 5068 5069 5070 5071 5072 5073
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
5074
	else if (e1000_tx_csum(tx_ring, skb))
5075 5076
		tx_flags |= E1000_TX_FLAGS_CSUM;

5077 5078
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5079
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5080 5081
	 * no longer assume, we must.
	 */
5082 5083 5084
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

L
Lucas De Marchi 已提交
5085
	/* if count is 0 then mapping error has occurred */
5086
	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5087
	if (count) {
5088
		netdev_sent_queue(netdev, skb->len);
5089
		e1000_tx_queue(tx_ring, tx_flags, count);
5090
		/* Make sure there is space in the ring for the next send. */
5091
		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5092 5093

	} else {
5094
		dev_kfree_skb_any(skb);
5095 5096
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5120 5121 5122 5123
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5124 5125 5126 5127 5128
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5129 5130 5131 5132
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5133
 * e1000_get_stats64 - Get System Network Statistics
5134
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5135
 * @stats: rtnl_link_stats64 pointer
5136 5137 5138
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5139 5140
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5141
{
J
Jeff Kirsher 已提交
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5196
	/* Jumbo frame support */
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
			e_err("Jumbo Frames not supported.\n");
			return -EINVAL;
		}

		/*
		 * IP payload checksum (enabled with jumbos/packet-split when
		 * Rx checksum is enabled) and generation of RSS hash is
		 * mutually exclusive in the hardware.
		 */
		if ((netdev->features & NETIF_F_RXCSUM) &&
		    (netdev->features & NETIF_F_RXHASH)) {
			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
			return -EINVAL;
		}
5213 5214
	}

5215 5216 5217 5218
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5219 5220 5221
		return -EINVAL;
	}

5222 5223 5224 5225
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
5226
		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5227 5228 5229
		return -EINVAL;
	}

5230 5231 5232 5233 5234 5235 5236 5237
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5238
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5239
		usleep_range(1000, 2000);
5240
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5241
	adapter->max_frame_size = max_frame;
5242 5243
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5244 5245 5246
	if (netif_running(netdev))
		e1000e_down(adapter);

5247 5248
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5249 5250
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5251
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5252 5253
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5254
	 */
5255

5256
	if (max_frame <= 2048)
5257 5258 5259 5260 5261 5262 5263 5264
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5265
					 + ETH_FCS_LEN;
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5283
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5284 5285 5286 5287 5288 5289 5290
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5291 5292
		e1000_phy_read_status(adapter);

5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5347 5348 5349 5350
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5351
	u16 phy_reg, wuc_enable;
5352 5353 5354
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5355
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5356

5357 5358 5359 5360 5361 5362 5363 5364 5365
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
5366
		goto release;
5367 5368

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5369 5370
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5371 5372 5373 5374
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5375 5376 5377
	}

	/* configure PHY Rx Control register */
5378
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5395
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5396 5397 5398 5399 5400 5401

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5402 5403
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5404 5405

	/* activate PHY wakeup */
5406 5407
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5408 5409
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
5410
release:
5411
	hw->phy.ops.release(hw);
5412 5413 5414 5415

	return retval;
}

5416 5417
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5418 5419 5420 5421 5422
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5423 5424
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5425 5426 5427 5428 5429 5430 5431 5432 5433
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5434
	e1000e_reset_interrupt_capability(adapter);
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5446
		e1000e_set_rx_mode(netdev);
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5460 5461 5462
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5463 5464
		ew32(CTRL, ctrl);

5465 5466 5467
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5468 5469
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5470
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5471 5472 5473
			ew32(CTRL_EXT, ctrl_ext);
		}

5474
		if (adapter->flags & FLAG_IS_ICH)
5475
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5476

5477 5478 5479
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5480
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5481 5482 5483 5484 5485 5486 5487 5488 5489
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5490 5491 5492 5493 5494
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5495 5496
	*enable_wake = !!wufc;

5497
	/* make sure adapter isn't asleep if manageability is enabled */
5498 5499
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5500
		*enable_wake = true;
5501 5502 5503 5504

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5505 5506 5507 5508
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5509
	e1000e_release_hw_control(adapter);
5510 5511 5512

	pci_disable_device(pdev);

5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5533 5534 5535 5536 5537 5538 5539 5540
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5541
		int pos = pci_pcie_cap(us_dev);
5542 5543 5544 5545 5546 5547
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5548
		e1000_power_off(pdev, sleep, wake);
5549 5550 5551

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5552
		e1000_power_off(pdev, sleep, wake);
5553
	}
5554 5555
}

5556 5557 5558
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5559
	pci_disable_link_state_locked(pdev, state);
5560 5561 5562
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5563 5564
{
	int pos;
5565
	u16 reg16;
5566 5567

	/*
5568 5569
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5570
	 */
5571 5572 5573 5574 5575
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5576 5577 5578
	if (!pdev->bus->self)
		return;

5579 5580 5581 5582 5583 5584
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5585
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5586 5587 5588 5589 5590 5591
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5592 5593
}

R
Rafael J. Wysocki 已提交
5594
#ifdef CONFIG_PM
5595
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5596
{
5597
	return !!adapter->tx_ring->buffer_info;
5598 5599
}

5600
static int __e1000_resume(struct pci_dev *pdev)
5601 5602 5603 5604
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5605
	u16 aspm_disable_flag = 0;
5606 5607
	u32 err;

5608 5609 5610 5611 5612 5613 5614
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5615 5616
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5617
	pci_save_state(pdev);
T
Taku Izumi 已提交
5618

5619
	e1000e_set_interrupt_capability(adapter);
5620 5621 5622 5623 5624 5625
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5626 5627 5628
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5629
	e1000e_power_up_phy(adapter);
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5642 5643
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5660 5661
	e1000e_reset(adapter);

5662
	e1000_init_manageability_pt(adapter);
5663 5664 5665 5666 5667 5668

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5669 5670
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5671
	 * is up.  For all other cases, let the f/w know that the h/w is now
5672 5673
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5674
	if (!(adapter->flags & FLAG_HAS_AMT))
5675
		e1000e_get_hw_control(adapter);
5676 5677 5678

	return 0;
}
5679

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5753
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5754
#endif /* CONFIG_PM */
5755 5756 5757

static void e1000_shutdown(struct pci_dev *pdev)
{
5758 5759
	bool wake = false;

5760
	__e1000_shutdown(pdev, &wake, false);
5761 5762 5763

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5764 5765 5766
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5767 5768 5769 5770 5771 5772 5773

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5774 5775
		int vector, msix_irq;

5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5798 5799 5800 5801 5802 5803 5804 5805 5806
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5841 5842 5843
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5864
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5865
	int err;
J
Jesse Brandeburg 已提交
5866
	pci_ers_result_t result;
5867

5868 5869
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5870
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5871 5872 5873 5874
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5875
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5876
	if (err) {
5877 5878
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5879 5880 5881
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5882
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5883
		pci_restore_state(pdev);
5884

J
Jesse Brandeburg 已提交
5885 5886
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5887

J
Jesse Brandeburg 已提交
5888 5889 5890 5891
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5892

J
Jesse Brandeburg 已提交
5893 5894 5895
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5911
	e1000_init_manageability_pt(adapter);
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5923 5924
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5925
	 * is up.  For all other cases, let the f/w know that the h/w is now
5926 5927
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5928
	if (!(adapter->flags & FLAG_HAS_AMT))
5929
		e1000e_get_hw_control(adapter);
5930 5931 5932 5933 5934 5935 5936

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5937 5938
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5939 5940

	/* print bus type/speed/width info */
5941
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5942 5943 5944 5945
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5946
	       netdev->dev_addr);
5947 5948
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5949 5950 5951
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5952
		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5953 5954
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5955 5956
}

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5967 5968
	le16_to_cpus(&buf);
	if (!ret_val && (!(buf & (1 << 0)))) {
5969
		/* Deep Smart Power Down (DSPD) */
5970 5971
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5972 5973 5974
	}
}

5975
static int e1000_set_features(struct net_device *netdev,
5976
			      netdev_features_t features)
5977 5978
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
5979
	netdev_features_t changed = features ^ netdev->features;
5980 5981 5982 5983 5984

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5985
			 NETIF_F_RXCSUM | NETIF_F_RXHASH)))
5986 5987
		return 0;

5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
	/*
	 * IP payload checksum (enabled with jumbos/packet-split when Rx
	 * checksum is enabled) and generation of RSS hash is mutually
	 * exclusive in the hardware.
	 */
	if (adapter->rx_ps_pages &&
	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
		return -EINVAL;
	}

	netdev->features = features;

6001 6002 6003 6004 6005 6006 6007 6008
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6009 6010 6011
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6012
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6013
	.ndo_get_stats64	= e1000e_get_stats64,
6014
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6026
	.ndo_set_features = e1000_set_features,
6027 6028
};

6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6047 6048
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6049 6050

	static int cards_found;
6051
	u16 aspm_disable_flag = 0;
6052 6053 6054 6055
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6056 6057
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6058
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6059 6060 6061
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6062

6063
	err = pci_enable_device_mem(pdev);
6064 6065 6066 6067
	if (err)
		return err;

	pci_using_dac = 0;
6068
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6069
	if (!err) {
6070
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6071 6072 6073
		if (!err)
			pci_using_dac = 1;
	} else {
6074
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6075
		if (err) {
6076 6077
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6078
			if (err) {
6079
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6080 6081 6082 6083 6084
				goto err_dma;
			}
		}
	}

6085
	err = pci_request_selected_regions_exclusive(pdev,
6086 6087
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6088 6089 6090
	if (err)
		goto err_pci_reg;

6091
	/* AER (Advanced Error Reporting) hooks */
6092
	pci_enable_pcie_error_reporting(pdev);
6093

6094
	pci_set_master(pdev);
6095 6096 6097 6098
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6099 6100 6101 6102 6103 6104 6105 6106

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6107 6108
	netdev->irq = pdev->irq;

6109 6110 6111 6112 6113 6114 6115 6116
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6117
	adapter->flags2 = ei->flags2;
6118 6119
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6120
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6141
	netdev->netdev_ops		= &e1000e_netdev_ops;
6142 6143 6144
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6145
	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6146 6147 6148 6149 6150 6151

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6152 6153
	e1000e_check_options(adapter);

6154 6155 6156 6157 6158 6159 6160 6161 6162
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6163
	err = ei->get_variants(adapter);
6164 6165 6166
	if (err)
		goto err_hw_init;

6167 6168 6169 6170
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6171 6172
	hw->mac.ops.get_bus_info(&adapter->hw);

6173
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6174 6175

	/* Copper options */
6176
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6177 6178 6179 6180 6181 6182
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
6183
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6184

6185 6186 6187 6188 6189 6190
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6191
			    NETIF_F_RXHASH |
6192 6193 6194 6195 6196
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
6197 6198 6199 6200

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6201 6202 6203 6204
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6205

6206 6207
	netdev->priv_flags |= IFF_UNICAST_FLT;

6208
	if (pci_using_dac) {
6209
		netdev->features |= NETIF_F_HIGHDMA;
6210 6211
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6212 6213 6214 6215

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6216 6217 6218 6219
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6230
			e_err("The NVM Checksum Is Not Valid\n");
6231 6232 6233 6234 6235
			err = -EIO;
			goto err_eeprom;
		}
	}

6236 6237
	e1000_eeprom_checks(adapter);

6238
	/* copy the MAC address */
6239
	if (e1000e_read_mac_addr(&adapter->hw))
6240
		e_err("NVM Read Error while reading MAC address\n");
6241 6242 6243 6244 6245

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6246
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6247 6248 6249 6250 6251
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6252
	adapter->watchdog_timer.function = e1000_watchdog;
6253 6254 6255
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6256
	adapter->phy_info_timer.function = e1000_update_phy_info;
6257 6258 6259 6260
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6261 6262
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6263
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6264 6265 6266

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6267
	adapter->fc_autoneg = true;
6268 6269
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6284 6285
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6286
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6311
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6312

6313 6314 6315
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6316 6317 6318
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6319 6320
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6321
	 * is up.  For all other cases, let the f/w know that the h/w is now
6322 6323
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6324
	if (!(adapter->flags & FLAG_HAS_AMT))
6325
		e1000e_get_hw_control(adapter);
6326

6327
	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6328 6329 6330 6331
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6332 6333 6334
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6335 6336
	e1000_print_device_info(adapter);

6337 6338
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6339

6340 6341 6342
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6343
	if (!(adapter->flags & FLAG_HAS_AMT))
6344
		e1000e_release_hw_control(adapter);
6345 6346 6347
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6348
err_hw_init:
6349 6350 6351
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6352 6353
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6354
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6355
err_flashmap:
6356 6357 6358 6359
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6360 6361
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6381 6382
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6383
	/*
6384 6385
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6386
	 */
6387 6388
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6389 6390 6391
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6392 6393 6394 6395 6396
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6397

6398 6399 6400
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6401 6402 6403
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6404 6405
	unregister_netdev(netdev);

6406 6407
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6408

6409 6410 6411 6412
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6413
	e1000e_release_hw_control(adapter);
6414

6415
	e1000e_reset_interrupt_capability(adapter);
6416 6417 6418 6419 6420 6421
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6422 6423
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6424 6425 6426

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6427
	/* AER disable */
6428
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6429

6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6440
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6441 6442 6443 6444 6445 6446
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6447 6448 6449
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6450

6451 6452 6453 6454
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6455

6456 6457 6458
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6459

6460
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6461
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6462
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6463

6464 6465 6466 6467 6468 6469 6470 6471
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6472

6473 6474 6475 6476 6477 6478 6479
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6480
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6481

6482 6483 6484 6485 6486
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6487
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6488 6489 6490 6491 6492 6493 6494
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6495

6496 6497
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6498
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6499

6500 6501 6502 6503 6504
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6505 6506 6507
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6508
	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6509 6510 6511
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6512
#ifdef CONFIG_PM
6513
static const struct dev_pm_ops e1000_pm_ops = {
6514 6515 6516
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6517
};
6518
#endif
6519

6520 6521 6522 6523 6524 6525
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6526
#ifdef CONFIG_PM
6527 6528 6529
	.driver   = {
		.pm = &e1000_pm_ops,
	},
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6544 6545
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6546
	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6547
	ret = pci_register_driver(&e1000_driver);
6548

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */