netdev.c 183.4 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
39
#include <linux/interrupt.h>
40 41
#include <linux/tcp.h>
#include <linux/ipv6.h>
42
#include <linux/slab.h>
43 44 45 46 47 48 49
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
50
#include <linux/pm_qos.h>
51
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
52
#include <linux/aer.h>
53
#include <linux/prefetch.h>
54 55 56

#include "e1000.h"

B
Bruce Allan 已提交
57
#define DRV_EXTRAVERSION "-k"
58

59
#define DRV_VERSION "1.10.6" DRV_EXTRAVERSION
60 61 62
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

63 64 65 66 67
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

68 69
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);

70 71 72 73
static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
74
	[board_82574]		= &e1000_82574_info,
75
	[board_82583]		= &e1000_82583_info,
76 77 78
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
79
	[board_ich10lan]	= &e1000_ich10_info,
80
	[board_pchlan]		= &e1000_pch_info,
81
	[board_pch2lan]		= &e1000_pch2_info,
82 83
};

84 85 86 87 88
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

89 90 91 92 93 94 95 96 97 98 99
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
100 101 102 103 104 105 106 107 108 109 110

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

111
	/* Rx Registers */
112
	{E1000_RCTL, "RCTL"},
113 114 115
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
116 117 118
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
119 120
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},
121 122 123 124 125 126
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

127
	/* Tx Registers */
128
	{E1000_TCTL, "TCTL"},
129 130 131 132 133
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
134 135 136 137 138 139 140 141 142 143 144
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
145
	{0, NULL}
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
171 172
		pr_info("%-15s %08x\n",
			reginfo->name, __er32(hw, reginfo->ofs));
173 174 175 176
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
177
	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
178 179 180
}

/*
181
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
182 183 184 185 186 187 188 189
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
190
	struct my_u0 {
191 192
		__le64 a;
		__le64 b;
193
	} *u0;
194 195 196
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
197
	union e1000_rx_desc_extended *rx_desc;
198
	struct my_u1 {
199 200 201 202
		__le64 a;
		__le64 b;
		__le64 c;
		__le64 d;
203
	} *u1;
204 205 206 207 208 209 210 211 212
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
213 214 215 216
		pr_info("Device Name     state            trans_start      last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n",
			netdev->name, netdev->state, netdev->trans_start,
			netdev->last_rx);
217 218 219 220
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
221
	pr_info(" Register Name   Value\n");
222 223 224 225 226
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

227
	/* Print Tx Ring Summary */
228
	if (!netdev || !netif_running(netdev))
229
		return;
230

231
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
232
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
233
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
234 235 236 237 238 239
	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
		0, tx_ring->next_to_use, tx_ring->next_to_clean,
		(unsigned long long)buffer_info->dma,
		buffer_info->length,
		buffer_info->next_to_watch,
		(unsigned long long)buffer_info->time_stamp);
240

241
	/* Print Tx Ring */
242 243 244
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

245
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
274 275 276
	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
277
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
278
		const char *next_desc;
279 280 281 282
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
283
			next_desc = " NTC/U";
284
		else if (i == tx_ring->next_to_use)
285
			next_desc = " NTU";
286
		else if (i == tx_ring->next_to_clean)
287
			next_desc = " NTC";
288
		else
289 290 291 292 293 294 295 296 297 298 299
			next_desc = "";
		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
			i,
			(unsigned long long)le64_to_cpu(u0->a),
			(unsigned long long)le64_to_cpu(u0->b),
			(unsigned long long)buffer_info->dma,
			buffer_info->length, buffer_info->next_to_watch,
			(unsigned long long)buffer_info->time_stamp,
			buffer_info->skb, next_desc);
300 301 302

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
303 304
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
305 306
	}

307
	/* Print Rx Ring Summary */
308
rx_ring_summary:
309
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
310 311 312
	pr_info("Queue [NTU] [NTC]\n");
	pr_info(" %5d %5X %5X\n",
		0, rx_ring->next_to_use, rx_ring->next_to_clean);
313

314
	/* Print Rx Ring */
315
	if (!netif_msg_rx_status(adapter))
316
		return;
317

318
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
335
		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
336 337 338 339 340 341 342 343 344 345 346
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
347
		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
348
		for (i = 0; i < rx_ring->count; i++) {
349
			const char *next_desc;
350 351 352 353
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
354
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
355 356 357 358 359 360 361 362

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

363 364
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
365 366 367 368 369 370 371
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					buffer_info->skb, next_desc);
372
			} else {
373 374 375 376 377 378 379 380
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)le64_to_cpu(u1->c),
					(unsigned long long)le64_to_cpu(u1->d),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
381 382 383 384 385 386 387 388 389 390 391

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}
		}
		break;
	default:
	case 0:
392
		/* Extended Receive Descriptor (Read) Format
393
		 *
394 395 396 397 398
		 *   +-----------------------------------------------------+
		 * 0 |                Buffer Address [63:0]                |
		 *   +-----------------------------------------------------+
		 * 8 |                      Reserved                       |
		 *   +-----------------------------------------------------+
399
		 */
400
		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
401 402 403 404 405 406 407 408 409 410 411 412 413
		/* Extended Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31    24 23            4 3        0
		 *   +------------------------------------------------------+
		 *   |     RSS Hash      |        |               |         |
		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
		 *   | Packet   | IP     |        |               |  Type   |
		 *   | Checksum | Ident  |        |               |         |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
414
		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
415 416

		for (i = 0; i < rx_ring->count; i++) {
417 418
			const char *next_desc;

419
			buffer_info = &rx_ring->buffer_info[i];
420 421 422
			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
423 424 425 426 427 428 429 430

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

431 432
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
433 434 435 436 437
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
					"RWB", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					buffer_info->skb, next_desc);
438
			} else {
439 440 441 442 443 444
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
					"R  ", i,
					(unsigned long long)le64_to_cpu(u1->a),
					(unsigned long long)le64_to_cpu(u1->b),
					(unsigned long long)buffer_info->dma,
					buffer_info->skb, next_desc);
445 446 447 448 449 450 451 452 453 454

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						       DUMP_PREFIX_ADDRESS, 16,
						       1,
						       phys_to_virt
						       (buffer_info->dma),
						       adapter->rx_buffer_len,
						       true);
			}
455 456 457 458
		}
	}
}

459 460 461 462 463 464 465 466 467 468 469 470
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
471
 * e1000_receive_skb - helper function to handle Rx indications
472 473 474 475 476 477
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
478
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
479
			      u8 status, __le16 vlan)
480
{
J
Jeff Kirsher 已提交
481
	u16 tag = le16_to_cpu(vlan);
482 483
	skb->protocol = eth_type_trans(skb, netdev);

J
Jeff Kirsher 已提交
484 485 486 487
	if (status & E1000_RXD_STAT_VP)
		__vlan_hwaccel_put_tag(skb, tag);

	napi_gro_receive(&adapter->napi, skb);
488 489 490
}

/**
491
 * e1000_rx_checksum - Receive Checksum Offload
492 493 494 495
 * @adapter: board private structure
 * @status_err: receive descriptor status and error fields
 * @csum: receive descriptor csum field
 * @sk_buff: socket buffer with received data
496 497
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
498
			      __le16 csum, struct sk_buff *skb)
499 500 501
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
502 503

	skb_checksum_none_assert(skb);
504

505 506 507 508
	/* Rx checksum disabled */
	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
		return;

509 510 511
	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
529 530 531
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
532 533
		 * and then put the value in host order for further stack use.
		 */
534
		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
A
Al Viro 已提交
535
		skb->csum = csum_unfold(~sum);
536 537 538 539 540
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554
/**
 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
 * @hw: pointer to the HW structure
 * @tail: address of tail descriptor register
 * @i: value to write to tail descriptor register
 *
 * When updating the tail register, the ME could be accessing Host CSR
 * registers at the same time.  Normally, this is handled in h/w by an
 * arbiter but on some parts there is a bug that acknowledges Host accesses
 * later than it should which could result in the descriptor register to
 * have an incorrect value.  Workaround this by checking the FWSM register
 * which has bit 24 set while ME is accessing Host CSR registers, wait
 * if it is set and try again a number of times.
 **/
555
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
					unsigned int i)
{
	unsigned int j = 0;

	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
		udelay(50);

	writel(i, tail);

	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
		return E1000_ERR_SWFW_SYNC;

	return 0;
}

572
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
573
{
574
	struct e1000_adapter *adapter = rx_ring->adapter;
575 576
	struct e1000_hw *hw = &adapter->hw;

577
	if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
578 579 580 581 582 583 584
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
		e_err("ME firmware caused invalid RDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

585
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
586
{
587
	struct e1000_adapter *adapter = tx_ring->adapter;
588 589
	struct e1000_hw *hw = &adapter->hw;

590
	if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
591 592 593 594 595 596 597
		u32 tctl = er32(TCTL);
		ew32(TCTL, tctl & ~E1000_TCTL_EN);
		e_err("ME firmware caused invalid TDT - resetting\n");
		schedule_work(&adapter->reset_task);
	}
}

598
/**
599
 * e1000_alloc_rx_buffers - Replace used receive buffers
600
 * @rx_ring: Rx descriptor ring
601
 **/
602
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
603
				   int cleaned_count, gfp_t gfp)
604
{
605
	struct e1000_adapter *adapter = rx_ring->adapter;
606 607
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
608
	union e1000_rx_desc_extended *rx_desc;
609 610 611
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
612
	unsigned int bufsz = adapter->rx_buffer_len;
613 614 615 616 617 618 619 620 621 622 623

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

624
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
625 626 627 628 629 630 631 632
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
633
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
634
						  adapter->rx_buffer_len,
635 636
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
637
			dev_err(&pdev->dev, "Rx DMA map failed\n");
638 639 640 641
			adapter->rx_dma_failed++;
			break;
		}

642 643
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
644

645 646 647 648 649 650 651 652
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
653
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
654
				e1000e_update_rdt_wa(rx_ring, i);
655
			else
656
				writel(i, rx_ring->tail);
657
		}
658 659 660 661 662 663
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

664
	rx_ring->next_to_use = i;
665 666 667 668
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
669
 * @rx_ring: Rx descriptor ring
670
 **/
671
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
672
				      int cleaned_count, gfp_t gfp)
673
{
674
	struct e1000_adapter *adapter = rx_ring->adapter;
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
690 691 692
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
693 694
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
695 696 697
				continue;
			}
			if (!ps_page->page) {
698
				ps_page->page = alloc_page(gfp);
699
				if (!ps_page->page) {
A
Auke Kok 已提交
700 701 702
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
703 704 705 706 707 708
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
709
					dev_err(&adapter->pdev->dev,
710
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
711 712
					adapter->rx_dma_failed++;
					goto no_buffers;
713 714
				}
			}
A
Auke Kok 已提交
715 716 717 718 719
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
720 721
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
722 723
		}

724 725 726
		skb = __netdev_alloc_skb_ip_align(netdev,
						  adapter->rx_ps_bsize0,
						  gfp);
727 728 729 730 731 732 733

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
734
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
735
						  adapter->rx_ps_bsize0,
736 737
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
738
			dev_err(&pdev->dev, "Rx DMA map failed\n");
739 740 741 742 743 744 745 746 747
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

748 749 750 751 752 753 754 755
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
756
			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
757
				e1000e_update_rdt_wa(rx_ring, i << 1);
758
			else
759
				writel(i << 1, rx_ring->tail);
760 761
		}

762 763 764 765 766 767 768
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
769
	rx_ring->next_to_use = i;
770 771
}

772 773
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
774
 * @rx_ring: Rx descriptor ring
775 776 777
 * @cleaned_count: number of buffers to allocate this pass
 **/

778
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
779
					 int cleaned_count, gfp_t gfp)
780
{
781
	struct e1000_adapter *adapter = rx_ring->adapter;
782 783
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
784
	union e1000_rx_desc_extended *rx_desc;
785 786 787
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
788
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
789 790 791 792 793 794 795 796 797 798 799

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

800
		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
801 802 803 804 805 806 807 808 809 810
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
811
			buffer_info->page = alloc_page(gfp);
812 813 814 815 816 817 818
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
819
			buffer_info->dma = dma_map_page(&pdev->dev,
820 821
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
822
							DMA_FROM_DEVICE);
823

824 825
		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
842
		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
843
			e1000e_update_rdt_wa(rx_ring, i);
844
		else
845
			writel(i, rx_ring->tail);
846 847 848
	}
}

849 850 851 852 853 854 855
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
				 struct sk_buff *skb)
{
	if (netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rss);
}

856
/**
857 858
 * e1000_clean_rx_irq - Send received data up the network stack
 * @rx_ring: Rx descriptor ring
859 860 861 862
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
863 864
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
			       int work_to_do)
865
{
866
	struct e1000_adapter *adapter = rx_ring->adapter;
867 868
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
869
	struct e1000_hw *hw = &adapter->hw;
870
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
871
	struct e1000_buffer *buffer_info, *next_buffer;
872
	u32 length, staterr;
873 874
	unsigned int i;
	int cleaned_count = 0;
875
	bool cleaned = false;
876 877 878
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
879 880
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
881 882
	buffer_info = &rx_ring->buffer_info[i];

883
	while (staterr & E1000_RXD_STAT_DD) {
884 885 886 887 888
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
889
		rmb();	/* read descriptor and rx_buffer_info after status DD */
890 891 892 893 894 895 896 897 898

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
899
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
900 901 902 903
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

904
		cleaned = true;
905
		cleaned_count++;
906
		dma_unmap_single(&pdev->dev,
907 908
				 buffer_info->dma,
				 adapter->rx_buffer_len,
909
				 DMA_FROM_DEVICE);
910 911
		buffer_info->dma = 0;

912
		length = le16_to_cpu(rx_desc->wb.upper.length);
913

914 915 916 917 918 919 920
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
921
		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
922 923 924
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
925
			/* All receives must fit into a single buffer */
926
			e_dbg("Receive packet consumed multiple buffers\n");
927 928
			/* recycle */
			buffer_info->skb = skb;
929
			if (staterr & E1000_RXD_STAT_EOP)
930
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
931 932 933
			goto next_desc;
		}

B
Ben Greear 已提交
934 935
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
936 937 938 939 940
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
941
		/* adjust length to remove Ethernet CRC */
B
Ben Greear 已提交
942 943 944 945 946 947 948 949 950 951
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			/* If configured to store CRC, don't subtract FCS,
			 * but keep the FCS bytes out of the total_rx_bytes
			 * counter
			 */
			if (netdev->features & NETIF_F_RXFCS)
				total_rx_bytes -= 4;
			else
				length -= 4;
		}
J
Jeff Kirsher 已提交
952

953 954 955
		total_rx_bytes += length;
		total_rx_packets++;

956 957
		/*
		 * code added for copybreak, this should improve
958
		 * performance for small packets with large amounts
959 960
		 * of reassembly being done in the stack
		 */
961 962
		if (length < copybreak) {
			struct sk_buff *new_skb =
963
			    netdev_alloc_skb_ip_align(netdev, length);
964
			if (new_skb) {
965 966 967 968 969 970
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
971 972 973 974 975 976 977 978 979 980
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
981
		e1000_rx_checksum(adapter, staterr,
982
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
983

984 985
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

986 987
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
988 989

next_desc:
990
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
991 992 993

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
994
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
995
					      GFP_ATOMIC);
996 997 998 999 1000 1001
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1002 1003

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1004 1005 1006 1007 1008
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1009
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1010 1011

	adapter->total_rx_bytes += total_rx_bytes;
1012
	adapter->total_rx_packets += total_rx_packets;
1013 1014 1015
	return cleaned;
}

1016 1017
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
			    struct e1000_buffer *buffer_info)
1018
{
1019 1020
	struct e1000_adapter *adapter = tx_ring->adapter;

1021 1022
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
1023 1024
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
1025
		else
1026 1027
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
1028 1029
		buffer_info->dma = 0;
	}
1030 1031 1032 1033
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
1034
	buffer_info->time_stamp = 0;
1035 1036
}

1037
static void e1000_print_hw_hang(struct work_struct *work)
1038
{
1039 1040 1041
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
1042
	struct net_device *netdev = adapter->netdev;
1043 1044 1045 1046
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1047 1048 1049 1050
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

1051 1052 1053
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1054 1055
	if (!adapter->tx_hang_recheck &&
	    (adapter->flags2 & FLAG2_DMA_BURST)) {
M
Matthew Vick 已提交
1056 1057
		/*
		 * May be block on write-back, flush and detect again
1058 1059 1060 1061 1062
		 * flush pending descriptor writebacks to memory
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
1063 1064 1065 1066 1067 1068 1069
		/*
		 * Due to rare timing issues, write to TIDV again to ensure
		 * the write is successful
		 */
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		/* execute the writes immediately */
		e1e_flush();
1070 1071 1072 1073 1074 1075 1076
		adapter->tx_hang_recheck = true;
		return;
	}
	/* Real hang detected */
	adapter->tx_hang_recheck = false;
	netif_stop_queue(netdev);

1077 1078 1079
	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1080

1081 1082 1083 1084
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
1085 1086 1087 1088 1089 1090 1091 1092
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
1093 1094 1095 1096 1097 1098
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
1099 1100
	      readl(tx_ring->head),
	      readl(tx_ring->tail),
1101 1102 1103 1104 1105
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
1106 1107 1108 1109 1110 1111
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
1112 1113 1114 1115
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1116
 * @tx_ring: Tx descriptor ring
1117 1118 1119 1120
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1121
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1122
{
1123
	struct e1000_adapter *adapter = tx_ring->adapter;
1124 1125 1126 1127 1128 1129 1130
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1131
	unsigned int bytes_compl = 0, pkts_compl = 0;
1132 1133 1134 1135 1136

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

1137 1138
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1139
		bool cleaned = false;
1140
		rmb(); /* read buffer_info after eop_desc */
1141
		for (; !cleaned; count++) {
1142 1143 1144 1145 1146
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1147 1148
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1149 1150 1151 1152
				if (buffer_info->skb) {
					bytes_compl += buffer_info->skb->len;
					pkts_compl++;
				}
1153 1154
			}

1155
			e1000_put_txbuf(tx_ring, buffer_info);
1156 1157 1158 1159 1160 1161 1162
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1163 1164
		if (i == tx_ring->next_to_use)
			break;
1165 1166 1167 1168 1169 1170
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

1171 1172
	netdev_completed_queue(netdev, pkts_compl, bytes_compl);

1173
#define TX_WAKE_THRESHOLD 32
1174 1175
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1189 1190 1191 1192
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1193
		adapter->detect_tx_hung = false;
1194 1195
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1196
			       + (adapter->tx_timeout_factor * HZ)) &&
1197
		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1198
			schedule_work(&adapter->print_hang_task);
1199 1200
		else
			adapter->tx_hang_recheck = false;
1201 1202 1203
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1204
	return count < tx_ring->count;
1205 1206 1207 1208
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1209
 * @rx_ring: Rx descriptor ring
1210 1211 1212 1213
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1214 1215
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
				  int work_to_do)
1216
{
1217
	struct e1000_adapter *adapter = rx_ring->adapter;
1218
	struct e1000_hw *hw = &adapter->hw;
1219 1220 1221 1222 1223 1224 1225 1226 1227
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
1228
	bool cleaned = false;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1241
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

1254
		cleaned = true;
1255
		cleaned_count++;
1256
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1257
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1258 1259
		buffer_info->dma = 0;

1260
		/* see !EOP comment in other Rx routine */
1261 1262 1263 1264
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1265
			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1266
			dev_kfree_skb_irq(skb);
1267 1268
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1269 1270 1271
			goto next_desc;
		}

B
Ben Greear 已提交
1272 1273
		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			     !(netdev->features & NETIF_F_RXALL))) {
1274 1275 1276 1277 1278 1279 1280
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1281
			e_dbg("Last part of the packet spanning multiple descriptors\n");
1282 1283 1284 1285 1286 1287 1288 1289
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1290 1291 1292 1293 1294
			/*
			 * this looks ugly, but it seems compiler issues make
			 * it more efficient than reusing j
			 */
			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1295

1296
			/*
1297 1298 1299 1300
			 * page alloc/put takes too long and effects small
			 * packet throughput, so unsplit small packets and
			 * save the alloc/put only valid in softirq (napi)
			 * context to call kmap_*
1301
			 */
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
			if (l1 && (l1 <= copybreak) &&
			    ((length + l1) <= adapter->rx_ps_bsize0)) {
				u8 *vaddr;

				ps_page = &buffer_info->ps_pages[0];

				/*
				 * there is no documentation about how to call
				 * kmap_atomic, so we can't hold the mapping
				 * very long
				 */
				dma_sync_single_for_cpu(&pdev->dev,
							ps_page->dma,
							PAGE_SIZE,
							DMA_FROM_DEVICE);
1317
				vaddr = kmap_atomic(ps_page->page);
1318
				memcpy(skb_tail_pointer(skb), vaddr, l1);
1319
				kunmap_atomic(vaddr);
1320 1321 1322 1323 1324 1325
				dma_sync_single_for_device(&pdev->dev,
							   ps_page->dma,
							   PAGE_SIZE,
							   DMA_FROM_DEVICE);

				/* remove the CRC */
B
Ben Greear 已提交
1326 1327 1328 1329
				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
					if (!(netdev->features & NETIF_F_RXFCS))
						l1 -= 4;
				}
1330 1331 1332 1333

				skb_put(skb, l1);
				goto copydone;
			} /* if */
1334 1335 1336 1337 1338 1339 1340
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1341
			ps_page = &buffer_info->ps_pages[j];
1342 1343
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1344 1345 1346 1347 1348
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
1349
			skb->truesize += PAGE_SIZE;
1350 1351
		}

J
Jeff Kirsher 已提交
1352 1353 1354
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
B
Ben Greear 已提交
1355 1356 1357 1358
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
			if (!(netdev->features & NETIF_F_RXFCS))
				pskb_trim(skb, skb->len - 4);
		}
J
Jeff Kirsher 已提交
1359

1360 1361 1362 1363
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

1364 1365
		e1000_rx_checksum(adapter, staterr,
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1366

1367 1368
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1382
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1383
					      GFP_ATOMIC);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1397
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1398 1399

	adapter->total_rx_bytes += total_rx_bytes;
1400
	adapter->total_rx_packets += total_rx_packets;
1401 1402 1403
	return cleaned;
}

1404 1405 1406 1407 1408 1409 1410 1411 1412
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
1413
	skb->truesize += PAGE_SIZE;
1414 1415 1416 1417 1418 1419 1420 1421 1422
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
1423 1424
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
				     int work_to_do)
1425
{
1426
	struct e1000_adapter *adapter = rx_ring->adapter;
1427 1428
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
1429
	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1430
	struct e1000_buffer *buffer_info, *next_buffer;
1431
	u32 length, staterr;
1432 1433 1434 1435 1436 1437
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
1438 1439
	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1440 1441
	buffer_info = &rx_ring->buffer_info[i];

1442
	while (staterr & E1000_RXD_STAT_DD) {
1443 1444 1445 1446 1447
		struct sk_buff *skb;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1448
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1449 1450 1451 1452 1453 1454 1455

		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
1456
		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1457 1458 1459 1460 1461 1462
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1463 1464
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1465 1466
		buffer_info->dma = 0;

1467
		length = le16_to_cpu(rx_desc->wb.upper.length);
1468 1469

		/* errors is only valid for DD + EOP descriptors */
1470
		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
B
Ben Greear 已提交
1471 1472
			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
			      !(netdev->features & NETIF_F_RXALL)))) {
1473 1474 1475 1476 1477 1478 1479
			/* recycle both page and skb */
			buffer_info->skb = skb;
			/* an error means any chain goes out the window too */
			if (rx_ring->rx_skb_top)
				dev_kfree_skb_irq(rx_ring->rx_skb_top);
			rx_ring->rx_skb_top = NULL;
			goto next_desc;
1480 1481
		}

1482
#define rxtop (rx_ring->rx_skb_top)
1483
		if (!(staterr & E1000_RXD_STAT_EOP)) {
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
1518
					vaddr = kmap_atomic(buffer_info->page);
1519 1520
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
1521
					kunmap_atomic(vaddr);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1536
		e1000_rx_checksum(adapter, staterr,
1537
				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1538

1539 1540
		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);

1541 1542 1543 1544 1545 1546
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1547
			e_err("pskb_may_pull failed.\n");
1548
			dev_kfree_skb_irq(skb);
1549 1550 1551
			goto next_desc;
		}

1552 1553
		e1000_receive_skb(adapter, netdev, skb, staterr,
				  rx_desc->wb.upper.vlan);
1554 1555

next_desc:
1556
		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1557 1558 1559

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1560
			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1561
					      GFP_ATOMIC);
1562 1563 1564 1565 1566 1567
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
1568 1569

		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1570 1571 1572 1573 1574
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
1575
		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1576 1577 1578 1579 1580 1581

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
	return cleaned;
}

1582 1583
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1584
 * @rx_ring: Rx descriptor ring
1585
 **/
1586
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1587
{
1588
	struct e1000_adapter *adapter = rx_ring->adapter;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1599
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1600
						 adapter->rx_buffer_len,
1601
						 DMA_FROM_DEVICE);
1602
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1603
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1604
				               PAGE_SIZE,
1605
					       DMA_FROM_DEVICE);
1606
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1607
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1608
						 adapter->rx_ps_bsize0,
1609
						 DMA_FROM_DEVICE);
1610 1611 1612
			buffer_info->dma = 0;
		}

1613 1614 1615 1616 1617
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1618 1619 1620 1621 1622 1623
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1624
			ps_page = &buffer_info->ps_pages[j];
1625 1626
			if (!ps_page->page)
				break;
1627 1628
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1646
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1647

1648 1649
	writel(0, rx_ring->head);
	writel(0, rx_ring->tail);
1650 1651
}

1652 1653 1654 1655 1656
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

1657 1658 1659
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

1660 1661 1662
	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1675 1676 1677
	/*
	 * read ICR disables interrupts using IAM
	 */
1678

1679
	if (icr & E1000_ICR_LSC) {
1680
		hw->mac.get_link_status = true;
1681 1682 1683 1684
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1685 1686
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1687
			schedule_work(&adapter->downshift_task);
1688

1689 1690
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1691
		 * link down event; disable receives here in the ISR and reset
1692 1693
		 * adapter in watchdog
		 */
1694 1695 1696 1697 1698
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1699
			adapter->flags |= FLAG_RX_RESTART_NOW;
1700 1701 1702 1703 1704 1705
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1706
	if (napi_schedule_prep(&adapter->napi)) {
1707 1708 1709 1710
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1711
		__napi_schedule(&adapter->napi);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1728

1729
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1730 1731
		return IRQ_NONE;  /* Not our interrupt */

1732 1733 1734 1735
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1736 1737 1738
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1739 1740 1741 1742 1743
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1744

1745
	if (icr & E1000_ICR_LSC) {
1746
		hw->mac.get_link_status = true;
1747 1748 1749 1750
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1751 1752
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1753
			schedule_work(&adapter->downshift_task);
1754

1755 1756
		/*
		 * 80003ES2LAN workaround--
1757 1758 1759 1760 1761 1762 1763 1764 1765
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1766
			adapter->flags |= FLAG_RX_RESTART_NOW;
1767 1768 1769 1770 1771 1772
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1773
	if (napi_schedule_prep(&adapter->napi)) {
1774 1775 1776 1777
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1778
		__napi_schedule(&adapter->napi);
1779 1780 1781 1782 1783
	}

	return IRQ_HANDLED;
}

1784 1785 1786 1787 1788 1789 1790 1791
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1792 1793
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1794 1795 1796 1797 1798 1799 1800 1801 1802
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
1803
		hw->mac.get_link_status = true;
1804 1805 1806 1807 1808 1809
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1810 1811
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

1828
	if (!e1000_clean_tx_irq(tx_ring))
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
1839
	struct e1000_ring *rx_ring = adapter->rx_ring;
1840 1841 1842 1843

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
1844 1845 1846 1847
	if (rx_ring->set_itr) {
		writel(1000000000 / (rx_ring->itr_val * 256),
		       rx_ring->itr_register);
		rx_ring->set_itr = 0;
1848 1849
	}

1850
	if (napi_schedule_prep(&adapter->napi)) {
1851 1852
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1853
		__napi_schedule(&adapter->napi);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
1887
		       rx_ring->itr_register);
1888
	else
1889
		writel(1, rx_ring->itr_register);
1890 1891 1892 1893 1894 1895 1896
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
1897
		       tx_ring->itr_register);
1898
	else
1899
		writel(1, tx_ring->itr_register);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1950
	int i;
1951 1952 1953 1954

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1955 1956
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1957 1958 1959
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1960
				for (i = 0; i < adapter->num_vectors; i++)
1961 1962 1963 1964
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1965
						      adapter->num_vectors);
B
Bruce Allan 已提交
1966
				if (err == 0)
1967 1968 1969
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
1970
			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1971 1972 1973 1974 1975 1976 1977 1978 1979
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1980
			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1981 1982 1983 1984 1985 1986
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1987 1988 1989

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2004 2005 2006
		snprintf(adapter->rx_ring->name,
			 sizeof(adapter->rx_ring->name) - 1,
			 "%s-rx-0", netdev->name);
2007 2008 2009
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2010
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2011 2012
			  netdev);
	if (err)
2013
		return err;
2014 2015
	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2016 2017 2018 2019
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2020 2021 2022
		snprintf(adapter->tx_ring->name,
			 sizeof(adapter->tx_ring->name) - 1,
			 "%s-tx-0", netdev->name);
2023 2024 2025
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
2026
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2027 2028
			  netdev);
	if (err)
2029
		return err;
2030 2031
	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
	    E1000_EITR_82574(vector);
2032 2033 2034 2035
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
2036
			  e1000_msix_other, 0, netdev->name, netdev);
2037
	if (err)
2038
		return err;
2039 2040

	e1000_configure_msix(adapter);
2041

2042 2043 2044
	return 0;
}

2045 2046 2047 2048 2049 2050
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
2051 2052 2053 2054 2055
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

2056 2057 2058 2059 2060 2061 2062 2063
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
2064
	}
2065
	if (adapter->flags & FLAG_MSI_ENABLED) {
2066
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2067 2068 2069
				  netdev->name, netdev);
		if (!err)
			return err;
2070

2071 2072 2073
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2074 2075
	}

2076
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2077 2078 2079 2080
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

2081 2082 2083 2084 2085 2086 2087
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
2100
	}
2101 2102

	free_irq(adapter->pdev->irq, netdev);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
2113 2114
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
2115
	e1e_flush();
2116 2117 2118 2119 2120 2121 2122 2123

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
2124 2125 2126 2127 2128 2129 2130 2131 2132
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2133 2134 2135 2136 2137 2138
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
2139
	e1e_flush();
2140 2141 2142
}

/**
2143
 * e1000e_get_hw_control - get control of the h/w from f/w
2144 2145
 * @adapter: address of board private structure
 *
2146
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2147 2148 2149 2150
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
2151
void e1000e_get_hw_control(struct e1000_adapter *adapter)
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2163
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2164 2165 2166 2167
	}
}

/**
2168
 * e1000e_release_hw_control - release control of the h/w to f/w
2169 2170
 * @adapter: address of board private structure
 *
2171
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2172 2173 2174 2175 2176
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2177
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2189
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2211
 * @tx_ring: Tx descriptor ring
2212 2213 2214
 *
 * Return 0 on success, negative on failure
 **/
2215
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2216
{
2217
	struct e1000_adapter *adapter = tx_ring->adapter;
2218 2219 2220
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2221
	tx_ring->buffer_info = vzalloc(size);
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2239
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2240 2241 2242 2243 2244
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2245
 * @rx_ring: Rx descriptor ring
2246 2247 2248
 *
 * Returns 0 on success, negative on failure
 **/
2249
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2250
{
2251
	struct e1000_adapter *adapter = rx_ring->adapter;
A
Auke Kok 已提交
2252 2253
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2254 2255

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2256
	rx_ring->buffer_info = vzalloc(size);
2257 2258 2259
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2260 2261 2262 2263 2264 2265 2266 2267
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2268 2269 2270 2271 2272 2273 2274 2275 2276

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2277
		goto err_pages;
2278 2279 2280 2281 2282 2283

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2284 2285 2286 2287 2288 2289

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2290 2291
err:
	vfree(rx_ring->buffer_info);
2292
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2293 2294 2295 2296 2297
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
2298
 * @tx_ring: Tx descriptor ring
2299
 **/
2300
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2301
{
2302
	struct e1000_adapter *adapter = tx_ring->adapter;
2303 2304 2305 2306 2307 2308
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
2309
		e1000_put_txbuf(tx_ring, buffer_info);
2310 2311
	}

2312
	netdev_reset_queue(adapter->netdev);
2313 2314 2315 2316 2317 2318 2319 2320
	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

2321 2322
	writel(0, tx_ring->head);
	writel(0, tx_ring->tail);
2323 2324 2325 2326
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
2327
 * @tx_ring: Tx descriptor ring
2328 2329 2330
 *
 * Free all transmit software resources
 **/
2331
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2332
{
2333
	struct e1000_adapter *adapter = tx_ring->adapter;
2334 2335
	struct pci_dev *pdev = adapter->pdev;

2336
	e1000_clean_tx_ring(tx_ring);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
2348
 * @rx_ring: Rx descriptor ring
2349 2350 2351
 *
 * Free all receive software resources
 **/
2352
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2353
{
2354
	struct e1000_adapter *adapter = rx_ring->adapter;
2355
	struct pci_dev *pdev = adapter->pdev;
A
Auke Kok 已提交
2356
	int i;
2357

2358
	e1000_clean_rx_ring(rx_ring);
2359

B
Bruce Allan 已提交
2360
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2361 2362
		kfree(rx_ring->buffer_info[i].ps_pages);

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2373 2374 2375 2376 2377
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2378 2379 2380 2381 2382 2383
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2384 2385
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2386 2387 2388 2389 2390 2391 2392 2393
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
2394
		return itr_setting;
2395 2396 2397 2398 2399 2400

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2401
		else if ((packets < 5) && (bytes > 512))
2402 2403 2404 2405 2406
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2407
			if (bytes/packets > 8000)
2408
				retval = bulk_latency;
B
Bruce Allan 已提交
2409
			else if ((packets < 10) || ((bytes/packets) > 1200))
2410
				retval = bulk_latency;
B
Bruce Allan 已提交
2411
			else if ((packets > 35))
2412 2413 2414 2415 2416 2417 2418 2419 2420
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2421
			if (packets > 35)
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2445 2446 2447 2448 2449
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2485 2486
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2487
		 * by adding intermediate steps when interrupt rate is
2488 2489
		 * increasing
		 */
2490 2491 2492 2493
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2494 2495 2496 2497
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2498 2499 2500 2501
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2502 2503 2504
	}
}

2505 2506 2507 2508 2509 2510
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
2511 2512 2513
	int size = sizeof(struct e1000_ring);

	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2514 2515
	if (!adapter->tx_ring)
		goto err;
2516 2517
	adapter->tx_ring->count = adapter->tx_ring_count;
	adapter->tx_ring->adapter = adapter;
2518

2519
	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2520 2521
	if (!adapter->rx_ring)
		goto err;
2522 2523
	adapter->rx_ring->count = adapter->rx_ring_count;
	adapter->rx_ring->adapter = adapter;
2524 2525 2526 2527 2528 2529 2530 2531 2532

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2533
/**
B
Bruce Allan 已提交
2534
 * e1000e_poll - NAPI Rx polling callback
2535
 * @napi: struct associated with this polling callback
B
Bruce Allan 已提交
2536
 * @weight: number of packets driver is allowed to process this poll
2537
 **/
B
Bruce Allan 已提交
2538
static int e1000e_poll(struct napi_struct *napi, int weight)
2539
{
B
Bruce Allan 已提交
2540 2541
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
						     napi);
2542
	struct e1000_hw *hw = &adapter->hw;
2543
	struct net_device *poll_dev = adapter->netdev;
2544
	int tx_cleaned = 1, work_done = 0;
2545

2546
	adapter = netdev_priv(poll_dev);
2547

B
Bruce Allan 已提交
2548 2549 2550
	if (!adapter->msix_entries ||
	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2551

B
Bruce Allan 已提交
2552
	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2553

2554
	if (!tx_cleaned)
B
Bruce Allan 已提交
2555
		work_done = weight;
2556

B
Bruce Allan 已提交
2557 2558
	/* If weight not fully consumed, exit the polling mode */
	if (work_done < weight) {
2559 2560
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2561
		napi_complete(napi);
2562 2563 2564 2565 2566 2567
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2568 2569 2570 2571 2572
	}

	return work_done;
}

2573
static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2574 2575 2576 2577 2578 2579 2580 2581 2582
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
2583
		return 0;
2584

2585
	/* add VID to filter table */
2586 2587 2588 2589 2590 2591
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2592 2593

	set_bit(vid, adapter->active_vlans);
2594 2595

	return 0;
2596 2597
}

2598
static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2599 2600 2601 2602 2603 2604 2605 2606 2607
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2608
		e1000e_release_hw_control(adapter);
2609
		return 0;
2610 2611 2612
	}

	/* remove VID from filter table */
2613 2614 2615 2616 2617 2618
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
J
Jeff Kirsher 已提交
2619 2620

	clear_bit(vid, adapter->active_vlans);
2621 2622

	return 0;
2623 2624
}

J
Jeff Kirsher 已提交
2625 2626 2627 2628 2629
/**
 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2630 2631
{
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
2632 2633
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
2634

J
Jeff Kirsher 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* disable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
		ew32(RCTL, rctl);

		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2644 2645 2646 2647
		}
	}
}

J
Jeff Kirsher 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/**
 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		/* enable VLAN receive filtering */
		rctl = er32(RCTL);
		rctl |= E1000_RCTL_VFE;
		rctl &= ~E1000_RCTL_CFIEN;
		ew32(RCTL, rctl);
	}
}
2665

J
Jeff Kirsher 已提交
2666 2667 2668 2669 2670
/**
 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2671 2672
{
	struct e1000_hw *hw = &adapter->hw;
J
Jeff Kirsher 已提交
2673
	u32 ctrl;
2674

J
Jeff Kirsher 已提交
2675 2676 2677 2678 2679
	/* disable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl &= ~E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2680

J
Jeff Kirsher 已提交
2681 2682 2683 2684 2685 2686 2687 2688
/**
 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
 * @adapter: board private structure to initialize
 **/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl;
2689

J
Jeff Kirsher 已提交
2690 2691 2692 2693 2694
	/* enable VLAN tag insert/strip */
	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_VME;
	ew32(CTRL, ctrl);
}
2695

J
Jeff Kirsher 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		e1000_vlan_rx_add_vid(netdev, vid);
		adapter->mng_vlan_id = vid;
2706 2707
	}

J
Jeff Kirsher 已提交
2708 2709
	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
		e1000_vlan_rx_kill_vid(netdev, old_vid);
2710 2711 2712 2713 2714 2715
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

J
Jeff Kirsher 已提交
2716
	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2717

J
Jeff Kirsher 已提交
2718
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2719 2720 2721
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
}

2722
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2723 2724
{
	struct e1000_hw *hw = &adapter->hw;
2725
	u32 manc, manc2h, mdef, i, j;
2726 2727 2728 2729 2730 2731

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2732 2733
	/*
	 * enable receiving management packets to the host. this will probably
2734
	 * generate destination unreachable messages from the host OS, but
2735 2736
	 * the packets will be handled on SMBUS
	 */
2737 2738
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2754
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2782 2783 2784 2785 2786
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2787
 * e1000_configure_tx - Configure Transmit Unit after Reset
2788 2789 2790 2791 2792 2793 2794 2795 2796
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
2797
	u32 tdlen, tarc;
2798 2799 2800 2801

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2802 2803 2804 2805 2806 2807 2808
	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
	ew32(TDBAH(0), (tdba >> 32));
	ew32(TDLEN(0), tdlen);
	ew32(TDH(0), 0);
	ew32(TDT(0), 0);
	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2809 2810 2811

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2812
	/* Tx irq moderation */
2813 2814
	ew32(TADV, adapter->tx_abs_int_delay);

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2827
		 * there are Tx hangs or other Tx related bugs
2828 2829 2830 2831
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
	}
2832 2833
	/* erratum work around: set txdctl the same for both queues */
	ew32(TXDCTL(1), er32(TXDCTL(0)));
2834

2835
	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2836
		tarc = er32(TARC(0));
2837 2838 2839 2840
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2841 2842
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2843
		ew32(TARC(0), tarc);
2844 2845 2846 2847
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2848
		tarc = er32(TARC(0));
2849
		tarc |= 1;
2850 2851
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2852
		tarc |= 1;
2853
		ew32(TARC(1), tarc);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

2866
	hw->mac.ops.config_collision_dist(hw);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 pages = 0;

2881 2882 2883 2884 2885 2886 2887 2888
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2889 2890 2891

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2892 2893
	}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2910 2911 2912 2913 2914 2915
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

2954 2955 2956 2957
	/* Enable Extended Status in all Receive Descriptors */
	rfctl = er32(RFCTL);
	rfctl |= E1000_RFCTL_EXTEN;

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2974
	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2975
		adapter->rx_ps_pages = pages;
2976 2977
	else
		adapter->rx_ps_pages = 0;
2978 2979

	if (adapter->rx_ps_pages) {
2980 2981
		u32 psrctl = 0;

2982 2983 2984 2985
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2986 2987 2988
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

A
Auke Kok 已提交
2989 2990
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

B
Ben Greear 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3027
	ew32(RFCTL, rfctl);
3028
	ew32(RCTL, rctl);
3029 3030
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
3049
		    sizeof(union e1000_rx_desc_packet_split);
3050 3051
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3052
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3053
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3054 3055
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3056
	} else {
3057
		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3058 3059 3060 3061 3062 3063
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
3064 3065
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3066
	e1e_flush();
3067
	usleep_range(10000, 20000);
3068

3069 3070 3071 3072
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3073
		 * enable prefetching of 0x20 Rx descriptors
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

3092 3093 3094 3095 3096
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
3097
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3098
		ew32(ITR, 1000000000 / (adapter->itr * 256));
3099 3100 3101 3102 3103 3104 3105 3106

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

3107 3108 3109 3110
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
3111
	rdba = rx_ring->dma;
3112 3113 3114 3115 3116 3117 3118
	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
	ew32(RDBAH(0), (rdba >> 32));
	ew32(RDLEN(0), rdlen);
	ew32(RDH(0), 0);
	ew32(RDT(0), 0);
	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3119 3120 3121

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
3122
	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3123 3124
		rxcsum |= E1000_RXCSUM_TUOFL;

3125 3126 3127 3128
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
3129 3130 3131 3132 3133 3134 3135 3136
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

3137 3138 3139 3140 3141
	if (adapter->hw.mac.type == e1000_pch2lan) {
		/*
		 * With jumbo frames, excessive C-state transition
		 * latencies result in dropped transactions.
		 */
3142 3143 3144
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
3145
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3146
		} else {
3147 3148
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
3149
		}
3150
	}
3151 3152 3153 3154 3155 3156

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3157 3158
 * e1000e_write_mc_addr_list - write multicast addresses to MTA
 * @netdev: network interface device structure
3159
 *
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
 */
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8 *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
		return 0;
	}

	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* update_mc_addr_list expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

/**
 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
3197
 *
3198 3199 3200 3201
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
3202
 **/
3203
static int e1000e_write_uc_addr_list(struct net_device *netdev)
3204
{
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int rar_entries = hw->mac.rar_entry_count;
	int count = 0;

	/* save a rar entry for our hardware address */
	rar_entries--;

	/* save a rar entry for the LAA workaround */
	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
		rar_entries--;

	/* return ENOMEM indicating insufficient memory for addresses */
	if (netdev_uc_count(netdev) > rar_entries)
		return -ENOMEM;

	if (!netdev_uc_empty(netdev) && rar_entries) {
		struct netdev_hw_addr *ha;

		/*
		 * write the addresses in reverse order to avoid write
		 * combining
		 */
		netdev_for_each_uc_addr(ha, netdev) {
			if (!rar_entries)
				break;
			e1000e_rar_set(hw, ha->addr, rar_entries--);
			count++;
		}
	}

	/* zero out the remaining RAR entries not used above */
	for (; rar_entries > 0; rar_entries--) {
		ew32(RAH(rar_entries), 0);
		ew32(RAL(rar_entries), 0);
	}
	e1e_flush();

	return count;
3244 3245 3246
}

/**
3247
 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3248 3249
 * @netdev: network interface device structure
 *
3250 3251 3252
 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
 * address list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
3253 3254
 * promiscuous mode, and all-multi behavior.
 **/
3255
static void e1000e_set_rx_mode(struct net_device *netdev)
3256 3257 3258 3259 3260 3261 3262 3263
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	/* Check for Promiscuous and All Multicast modes */
	rctl = er32(RCTL);

3264 3265 3266
	/* clear the affected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);

3267 3268
	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
J
Jeff Kirsher 已提交
3269 3270
		/* Do not hardware filter VLANs in promisc mode */
		e1000e_vlan_filter_disable(adapter);
3271
	} else {
3272
		int count;
3273

3274 3275 3276
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
		} else {
3277 3278 3279 3280 3281 3282 3283 3284
			/*
			 * Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = e1000e_write_mc_addr_list(netdev);
			if (count < 0)
				rctl |= E1000_RCTL_MPE;
3285
		}
J
Jeff Kirsher 已提交
3286
		e1000e_vlan_filter_enable(adapter);
3287
		/*
3288 3289 3290
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
		 * unicast promiscuous mode
3291
		 */
3292 3293 3294
		count = e1000e_write_uc_addr_list(netdev);
		if (count < 0)
			rctl |= E1000_RCTL_UPE;
3295
	}
J
Jeff Kirsher 已提交
3296

3297 3298
	ew32(RCTL, rctl);

J
Jeff Kirsher 已提交
3299 3300 3301 3302
	if (netdev->features & NETIF_F_HW_VLAN_RX)
		e1000e_vlan_strip_enable(adapter);
	else
		e1000e_vlan_strip_disable(adapter);
3303 3304
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	int i;
	static const u32 rsskey[10] = {
		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
	};

	/* Fill out hash function seed */
	for (i = 0; i < 10; i++)
		ew32(RSSRK(i), rsskey[i]);

	/* Direct all traffic to queue 0 */
	for (i = 0; i < 32; i++)
		ew32(RETA(i), 0);

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.
	 */
	rxcsum = er32(RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	ew32(RXCSUM, rxcsum);

	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
		E1000_MRQC_RSS_FIELD_IPV4_TCP |
		E1000_MRQC_RSS_FIELD_IPV6 |
		E1000_MRQC_RSS_FIELD_IPV6_TCP |
		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);

	ew32(MRQC, mrqc);
}

3341
/**
3342
 * e1000_configure - configure the hardware for Rx and Tx
3343 3344 3345 3346
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
3347 3348
	struct e1000_ring *rx_ring = adapter->rx_ring;

3349
	e1000e_set_rx_mode(adapter->netdev);
3350 3351

	e1000_restore_vlan(adapter);
3352
	e1000_init_manageability_pt(adapter);
3353 3354

	e1000_configure_tx(adapter);
3355 3356 3357

	if (adapter->netdev->features & NETIF_F_RXHASH)
		e1000e_setup_rss_hash(adapter);
3358 3359
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3360
	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3373 3374
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3375 3376 3377 3378 3379 3380 3381

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3382 3383
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3384 3385 3386 3387
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3388
	if (adapter->wol)
3389 3390
		return;

3391 3392
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3393 3394 3395 3396 3397 3398 3399 3400
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3401
 * properly configured for Rx, Tx etc.
3402 3403 3404 3405
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3406
	struct e1000_fc_info *fc = &adapter->hw.fc;
3407 3408
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3409
	u32 pba = adapter->pba;
3410 3411
	u16 hwm;

3412
	/* reset Packet Buffer Allocation to default */
3413
	ew32(PBA, pba);
3414

3415
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3416 3417
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3418 3419 3420 3421
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3422 3423
		 * expressed in KB.
		 */
3424
		pba = er32(PBA);
3425
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3426
		tx_space = pba >> 16;
3427
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3428
		pba &= 0xffff;
3429
		/*
3430
		 * the Tx fifo also stores 16 bytes of information about the Tx
3431
		 * but don't include ethernet FCS because hardware appends it
3432 3433
		 */
		min_tx_space = (adapter->max_frame_size +
3434 3435 3436 3437 3438
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3439
		min_rx_space = adapter->max_frame_size;
3440 3441 3442
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3443 3444
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3445
		 * and the min Tx FIFO size is less than the current Rx FIFO
3446 3447
		 * allocation, take space away from current Rx allocation
		 */
3448 3449 3450
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3451

3452
			/*
3453
			 * if short on Rx space, Rx wins and must trump Tx
3454 3455
			 * adjustment or use Early Receive if available
			 */
3456
			if (pba < min_rx_space)
3457
				pba = min_rx_space;
3458
		}
3459 3460

		ew32(PBA, pba);
3461 3462
	}

3463 3464 3465
	/*
	 * flow control settings
	 *
3466
	 * The high water mark must be low enough to fit one full frame
3467 3468 3469
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
3470
	 * - the full Rx FIFO size minus one full frame
3471
	 */
3472 3473 3474 3475
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
3476
	fc->send_xon = true;
3477 3478 3479
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	case e1000_ich9lan:
	case e1000_ich10lan:
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
			fc->high_water = 0x2800;
			fc->low_water = fc->high_water - 8;
			break;
		}
		/* fall-through */
3490
	default:
3491 3492
		hwm = min(((pba << 10) * 9 / 10),
			  ((pba << 10) - adapter->max_frame_size));
3493 3494 3495 3496 3497

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3509
		fc->refresh_time = 0x1000;
3510 3511 3512 3513 3514 3515
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3516 3517 3518 3519
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3520
		break;
3521
	}
3522

3523 3524
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3525
	 * fit in receive buffer.
3526 3527
	 */
	if (adapter->itr_setting & 0x3) {
3528
		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3544 3545
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3546 3547 3548 3549 3550

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3551
	if (adapter->flags & FLAG_HAS_AMT)
3552
		e1000e_get_hw_control(adapter);
3553

3554 3555 3556
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3557
		e_err("Hardware Error\n");
3558 3559 3560 3561 3562 3563 3564

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3565 3566 3567 3568 3569 3570 3571

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3572 3573
	e1000_get_phy_info(hw);

3574 3575
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3576
		u16 phy_data = 0;
3577 3578
		/*
		 * speed up time to link by disabling smart power down, ignore
3579
		 * the return value of this function because there is nothing
3580 3581
		 * different we would do if it failed
		 */
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

3597 3598
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3599 3600
	e1000_irq_enable(adapter);

3601
	netif_start_queue(adapter->netdev);
3602

3603
	/* fire a link change interrupt to start the watchdog */
3604 3605 3606 3607 3608
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3609 3610 3611
	return 0;
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (!(adapter->flags2 & FLAG2_DMA_BURST))
		return;

	/* flush pending descriptor writebacks to memory */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);

	/* execute the writes immediately */
	e1e_flush();
3625 3626 3627 3628 3629 3630 3631

	/*
	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
	 * write is successful
	 */
	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3632 3633 3634 3635 3636

	/* execute the writes immediately */
	e1e_flush();
}

J
Jeff Kirsher 已提交
3637 3638
static void e1000e_update_stats(struct e1000_adapter *adapter);

3639 3640 3641 3642 3643 3644
void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3645 3646 3647 3648
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3649 3650 3651 3652
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
3653 3654
	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3655 3656
	/* flush and sleep below */

3657
	netif_stop_queue(netdev);
3658 3659 3660 3661 3662

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
3663

3664 3665
	/* flush both disables and wait for them to finish */
	e1e_flush();
3666
	usleep_range(10000, 20000);
3667 3668 3669 3670 3671 3672 3673

	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
J
Jeff Kirsher 已提交
3674 3675 3676 3677 3678

	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

3679
	e1000e_flush_descriptors(adapter);
3680 3681
	e1000_clean_tx_ring(adapter->tx_ring);
	e1000_clean_rx_ring(adapter->rx_ring);
3682

3683 3684 3685
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3686 3687
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3688

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3699
		usleep_range(1000, 2000);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3719 3720
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3721 3722
	adapter->tx_ring_count = E1000_DEFAULT_TXD;
	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3723

J
Jeff Kirsher 已提交
3724 3725
	spin_lock_init(&adapter->stats64_lock);

3726
	e1000e_set_interrupt_capability(adapter);
3727

3728 3729
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3730 3731 3732 3733 3734 3735 3736 3737

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3750
	e_dbg("icr is %08X\n", icr);
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3777
	e1000e_reset_interrupt_capability(adapter);
3778 3779 3780 3781 3782 3783 3784 3785 3786

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3787
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3808
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3809
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3810
	} else {
3811
		e_dbg("MSI interrupt test succeeded!\n");
3812
	}
3813 3814 3815 3816 3817

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3818
	e1000e_set_interrupt_capability(adapter);
3819
	return e1000_request_irq(adapter);
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3838 3839 3840
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3841 3842 3843

	err = e1000_test_msi_interrupt(adapter);

3844 3845 3846 3847 3848 3849
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3850 3851 3852 3853

	return err;
}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3870
	struct pci_dev *pdev = adapter->pdev;
3871 3872 3873 3874 3875 3876
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3877 3878
	pm_runtime_get_sync(&pdev->dev);

3879 3880
	netif_carrier_off(netdev);

3881
	/* allocate transmit descriptors */
3882
	err = e1000e_setup_tx_resources(adapter->tx_ring);
3883 3884 3885 3886
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
3887
	err = e1000e_setup_rx_resources(adapter->rx_ring);
3888 3889 3890
	if (err)
		goto err_setup_rx;

3891 3892 3893 3894 3895
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3896
		e1000e_get_hw_control(adapter);
3897 3898 3899
		e1000e_reset(adapter);
	}

3900 3901 3902 3903 3904 3905 3906
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3907 3908
	/* DMA latency requirement to workaround jumbo issue */
	if (adapter->hw.mac.type == e1000_pch2lan)
3909 3910 3911
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3912

3913 3914
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3915 3916
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3917 3918
	 * clean_rx handler before we do so.
	 */
3919 3920 3921 3922 3923 3924
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3925 3926 3927 3928 3929
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3930
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3931 3932 3933 3934 3935 3936 3937
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3938 3939 3940 3941 3942 3943 3944
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3945
	adapter->tx_hang_recheck = false;
3946
	netif_start_queue(netdev);
3947

3948 3949 3950
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3951
	/* fire a link status change interrupt to start the watchdog */
3952 3953 3954 3955
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3956 3957 3958 3959

	return 0;

err_req_irq:
3960
	e1000e_release_hw_control(adapter);
3961
	e1000_power_down_phy(adapter);
3962
	e1000e_free_rx_resources(adapter->rx_ring);
3963
err_setup_rx:
3964
	e1000e_free_tx_resources(adapter->tx_ring);
3965 3966
err_setup_tx:
	e1000e_reset(adapter);
3967
	pm_runtime_put_sync(&pdev->dev);
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3986
	struct pci_dev *pdev = adapter->pdev;
3987 3988 3989 3990
	int count = E1000_CHECK_RESET_COUNT;

	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
		usleep_range(10000, 20000);
3991 3992

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3993 3994 3995

	pm_runtime_get_sync(&pdev->dev);

3996 3997
	napi_disable(&adapter->napi);

3998 3999 4000 4001
	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
4002 4003
	e1000_power_down_phy(adapter);

4004 4005
	e1000e_free_tx_resources(adapter->tx_ring);
	e1000e_free_rx_resources(adapter->rx_ring);
4006

4007 4008 4009 4010
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
J
Jeff Kirsher 已提交
4011 4012
	if (adapter->hw.mng_cookie.status &
	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4013 4014
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

4015 4016 4017 4018
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
4019 4020 4021
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
4022

4023
	if (adapter->hw.mac.type == e1000_pch2lan)
4024
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4025

4026 4027
	pm_runtime_put_sync(&pdev->dev);

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

4054 4055
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
4056 4057 4058 4059
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
4060 4061
		 * RAR[14]
		 */
4062 4063 4064 4065 4066 4067 4068 4069
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
4082 4083 4084 4085

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4086 4087 4088
	e1000_get_phy_info(&adapter->hw);
}

4089 4090 4091 4092
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
4093 4094 4095
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4096 4097 4098 4099

	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4100
	schedule_work(&adapter->update_phy_task);
4101 4102
}

4103 4104 4105
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
4106 4107
 *
 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
4123
	hw->phy.addr = 1;
4124 4125 4126 4127
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
4128 4129 4130
	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4131 4132 4133 4134 4135
		if (ret_val)
			goto release;
	}

	/* Single Collision Count */
4136 4137
	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4138 4139 4140 4141
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
4142 4143
	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4144 4145 4146 4147
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
4148 4149
	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4150 4151 4152 4153
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
4154 4155
	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4156 4157 4158 4159
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
4160 4161
	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4162 4163 4164 4165
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
4166 4167
	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4168 4169 4170 4171
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
4172 4173
	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4174 4175 4176 4177 4178 4179 4180
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

4181 4182 4183 4184
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
J
Jeff Kirsher 已提交
4185
static void e1000e_update_stats(struct e1000_adapter *adapter)
4186
{
4187
	struct net_device *netdev = adapter->netdev;
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
4202 4203
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
4204 4205 4206 4207 4208
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
4228
	}
4229

4230 4231 4232 4233 4234
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
4235 4236
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
4255 4256
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
4257 4258 4259

	/* Rx Errors */

4260 4261 4262 4263
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
4264
	netdev->stats.rx_errors = adapter->stats.rxerrc +
4265 4266 4267
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4268
	netdev->stats.rx_length_errors = adapter->stats.ruc +
4269
					      adapter->stats.roc;
4270 4271 4272
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4273 4274

	/* Tx Errors */
4275
	netdev->stats.tx_errors = adapter->stats.ecol +
4276
				       adapter->stats.latecol;
4277 4278 4279
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4280 4281 4282 4283 4284 4285 4286 4287 4288

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4300 4301
		int ret_val;

4302 4303 4304 4305 4306 4307 4308 4309 4310
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4311
			e_warn("Error reading PHY register\n");
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4331 4332 4333 4334 4335
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4336
	/* Link status message must follow this format for user tools */
4337 4338 4339 4340 4341 4342 4343
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
		adapter->netdev->name,
		adapter->link_speed,
		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4344 4345
}

4346
static bool e1000e_has_link(struct e1000_adapter *adapter)
4347 4348
{
	struct e1000_hw *hw = &adapter->hw;
4349
	bool link_active = false;
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
4364
			link_active = true;
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4383
		e_info("Gigabit has been disabled, downgrading speed\n");
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4440
	struct e1000_phy_info *phy = &adapter->hw.phy;
4441 4442 4443 4444
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;

4445 4446 4447
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

4448
	link = e1000e_has_link(adapter);
4449
	if ((netif_carrier_ok(netdev)) && link) {
4450 4451 4452
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4453
		e1000e_enable_receives(adapter);
4454 4455 4456 4457 4458 4459 4460 4461 4462
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
4463
			bool txb2b = true;
4464 4465 4466 4467

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4468
			/* update snapshot of PHY registers on LSC */
4469
			e1000_phy_read_status(adapter);
4470 4471 4472 4473
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4489
					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4490 4491
			}

4492
			/* adjust timeout factor according to speed/duplex */
4493 4494 4495
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
4496
				txb2b = false;
4497
				adapter->tx_timeout_factor = 16;
4498 4499
				break;
			case SPEED_100:
4500
				txb2b = false;
4501
				adapter->tx_timeout_factor = 10;
4502 4503 4504
				break;
			}

4505 4506 4507 4508
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4509 4510 4511
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4512
				tarc0 = er32(TARC(0));
4513
				tarc0 &= ~SPEED_MODE_BIT;
4514
				ew32(TARC(0), tarc0);
4515 4516
			}

4517 4518 4519 4520
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4521 4522 4523 4524
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4525
					e_info("10/100 speed: disabling TSO\n");
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4539 4540 4541 4542
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4543 4544 4545 4546
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4547 4548 4549 4550 4551 4552 4553
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4564 4565 4566
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4567 4568 4569 4570 4571 4572 4573
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4574 4575 4576
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4577 4578 4579 4580
		}
	}

link_up:
J
Jeff Kirsher 已提交
4581
	spin_lock(&adapter->stats64_lock);
4582 4583 4584 4585 4586 4587 4588
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4589 4590 4591 4592
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4593
	spin_unlock(&adapter->stats64_lock);
4594 4595 4596

	e1000e_update_adaptive(&adapter->hw);

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	if (!netif_carrier_ok(netdev) &&
	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
		/*
		 * We've lost link, so the controller stops DMA,
		 * but we've got queued Tx work that's never going
		 * to get done, so reset controller to flush Tx.
		 * (Do the reset outside of interrupt context).
		 */
		schedule_work(&adapter->reset_task);
		/* return immediately since reset is imminent */
		return;
4608 4609
	}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4626
	/* Cause software interrupt to ensure Rx ring is cleaned */
4627 4628 4629 4630
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4631

4632 4633 4634
	/* flush pending descriptors to memory before detecting Tx hang */
	e1000e_flush_descriptors(adapter);

4635
	/* Force detection of hung controller every watchdog period */
4636
	adapter->detect_tx_hung = true;
4637

4638 4639 4640 4641
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4642 4643 4644
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4645 4646 4647
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
4658
#define E1000_TX_FLAGS_NO_FCS		0x00000010
4659 4660 4661
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

4662
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4663 4664 4665 4666 4667 4668 4669 4670
{
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;

4671 4672
	if (!skb_is_gso(skb))
		return 0;
4673

4674
	if (skb_header_cloned(skb)) {
4675 4676
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);

4677 4678
		if (err)
			return err;
4679 4680
	}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4691
	} else if (skb_is_gso_v6(skb)) {
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4730 4731
}

4732
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4733
{
4734
	struct e1000_adapter *adapter = tx_ring->adapter;
4735 4736 4737 4738
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4739
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4740
	__be16 protocol;
4741

4742 4743
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4744

4745 4746 4747 4748 4749
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4750
	switch (protocol) {
4751
	case cpu_to_be16(ETH_P_IP):
4752 4753 4754
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4755
	case cpu_to_be16(ETH_P_IPV6):
4756 4757 4758 4759 4760 4761
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4762 4763
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4764
		break;
4765 4766
	}

4767
	css = skb_checksum_start_offset(skb);
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4790 4791 4792 4793 4794
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

4795 4796 4797
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
			unsigned int first, unsigned int max_per_txd,
			unsigned int nr_frags, unsigned int mss)
4798
{
4799
	struct e1000_adapter *adapter = tx_ring->adapter;
4800
	struct pci_dev *pdev = adapter->pdev;
4801
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4802
	unsigned int len = skb_headlen(skb);
4803
	unsigned int offset = 0, size, count = 0, i;
4804
	unsigned int f, bytecount, segs;
4805 4806 4807 4808

	i = tx_ring->next_to_use;

	while (len) {
4809
		buffer_info = &tx_ring->buffer_info[i];
4810 4811 4812 4813 4814
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4815 4816
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4817
						  size, DMA_TO_DEVICE);
4818
		buffer_info->mapped_as_page = false;
4819
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4820
			goto dma_error;
4821 4822 4823

		len -= size;
		offset += size;
4824
		count++;
4825 4826 4827 4828 4829 4830

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4831 4832 4833
	}

	for (f = 0; f < nr_frags; f++) {
E
Eric Dumazet 已提交
4834
		const struct skb_frag_struct *frag;
4835 4836

		frag = &skb_shinfo(skb)->frags[f];
E
Eric Dumazet 已提交
4837
		len = skb_frag_size(frag);
4838
		offset = 0;
4839 4840

		while (len) {
4841 4842 4843 4844
			i++;
			if (i == tx_ring->count)
				i = 0;

4845 4846 4847 4848 4849 4850
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4851 4852
			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
						offset, size, DMA_TO_DEVICE);
4853
			buffer_info->mapped_as_page = true;
4854
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4855
				goto dma_error;
4856 4857 4858 4859 4860 4861 4862

			len -= size;
			offset += size;
			count++;
		}
	}

4863
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4864 4865 4866
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4867
	tx_ring->buffer_info[i].skb = skb;
4868 4869
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4870 4871 4872
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4873 4874

dma_error:
4875
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4876
	buffer_info->dma = 0;
4877
	if (count)
4878
		count--;
4879 4880

	while (count--) {
4881
		if (i == 0)
4882
			i += tx_ring->count;
4883
		i--;
4884
		buffer_info = &tx_ring->buffer_info[i];
4885
		e1000_put_txbuf(tx_ring, buffer_info);
4886 4887 4888
	}

	return 0;
4889 4890
}

4891
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4892
{
4893
	struct e1000_adapter *adapter = tx_ring->adapter;
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

4918 4919 4920
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		txd_lower &= ~(E1000_TXD_CMD_IFCS);

4921 4922
	i = tx_ring->next_to_use;

4923
	do {
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4934
	} while (--count > 0);
4935 4936 4937

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4938 4939 4940 4941
	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));

4942 4943
	/*
	 * Force memory writes to complete before letting h/w
4944 4945
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4946 4947
	 * such as IA-64).
	 */
4948 4949 4950
	wmb();

	tx_ring->next_to_use = i;
4951 4952

	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4953
		e1000e_update_tdt_wa(tx_ring, i);
4954
	else
4955
		writel(i, tx_ring->tail);
4956

4957 4958 4959 4960
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4972 4973
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

5003
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5004
{
5005
	struct e1000_adapter *adapter = tx_ring->adapter;
5006

5007
	netif_stop_queue(adapter->netdev);
5008 5009
	/*
	 * Herbert's original patch had:
5010
	 *  smp_mb__after_netif_stop_queue();
5011 5012
	 * but since that doesn't exist yet, just open code it.
	 */
5013 5014
	smp_mb();

5015 5016 5017 5018
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
5019
	if (e1000_desc_unused(tx_ring) < size)
5020 5021 5022
		return -EBUSY;

	/* A reprieve! */
5023
	netif_start_queue(adapter->netdev);
5024 5025 5026 5027
	++adapter->restart_queue;
	return 0;
}

5028
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5029
{
5030
	if (e1000_desc_unused(tx_ring) >= size)
5031
		return 0;
5032
	return __e1000_maybe_stop_tx(tx_ring, size);
5033 5034
}

5035
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5036 5037
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
5038 5039 5040 5041 5042 5043 5044
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
5045
	unsigned int len = skb_headlen(skb);
5046 5047
	unsigned int nr_frags;
	unsigned int mss;
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
5063 5064
	/*
	 * The controller does a simple calculation to
5065 5066 5067 5068
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
5069 5070
	 * drops.
	 */
5071 5072 5073 5074 5075
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

5076 5077 5078 5079 5080
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
5081
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5082 5083 5084 5085
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
5086
		if (skb->data_len && (hdr_len == len)) {
5087 5088
			unsigned int pull_size;

5089
			pull_size = min_t(unsigned int, 4, skb->data_len);
5090
			if (!__pskb_pull_tail(skb, pull_size)) {
5091
				e_err("__pskb_pull_tail failed.\n");
5092 5093 5094
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
5095
			len = skb_headlen(skb);
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
E
Eric Dumazet 已提交
5108
		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5109 5110 5111 5112 5113
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

5114 5115 5116 5117
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
5118
	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5119 5120
		return NETDEV_TX_BUSY;

5121
	if (vlan_tx_tag_present(skb)) {
5122 5123 5124 5125 5126 5127
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

5128
	tso = e1000_tso(tx_ring, skb);
5129 5130 5131 5132 5133 5134 5135
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
5136
	else if (e1000_tx_csum(tx_ring, skb))
5137 5138
		tx_flags |= E1000_TX_FLAGS_CSUM;

5139 5140
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5141
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5142 5143
	 * no longer assume, we must.
	 */
5144 5145 5146
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

5147 5148 5149
	if (unlikely(skb->no_fcs))
		tx_flags |= E1000_TX_FLAGS_NO_FCS;

L
Lucas De Marchi 已提交
5150
	/* if count is 0 then mapping error has occurred */
5151
	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5152
	if (count) {
5153
		netdev_sent_queue(netdev, skb->len);
5154
		e1000_tx_queue(tx_ring, tx_flags, count);
5155
		/* Make sure there is space in the ring for the next send. */
5156
		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5157 5158

	} else {
5159
		dev_kfree_skb_any(skb);
5160 5161
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

5185 5186 5187 5188
	/* don't run the task if already down */
	if (test_bit(__E1000_DOWN, &adapter->state))
		return;

5189 5190 5191 5192 5193
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
5194 5195 5196 5197
	e1000e_reinit_locked(adapter);
}

/**
J
Jeff Kirsher 已提交
5198
 * e1000_get_stats64 - Get System Network Statistics
5199
 * @netdev: network interface device structure
J
Jeff Kirsher 已提交
5200
 * @stats: rtnl_link_stats64 pointer
5201 5202 5203
 *
 * Returns the address of the device statistics structure.
 **/
J
Jeff Kirsher 已提交
5204 5205
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
                                             struct rtnl_link_stats64 *stats)
5206
{
J
Jeff Kirsher 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
	struct e1000_adapter *adapter = netdev_priv(netdev);

	memset(stats, 0, sizeof(struct rtnl_link_stats64));
	spin_lock(&adapter->stats64_lock);
	e1000e_update_stats(adapter);
	/* Fill out the OS statistics structure */
	stats->rx_bytes = adapter->stats.gorc;
	stats->rx_packets = adapter->stats.gprc;
	stats->tx_bytes = adapter->stats.gotc;
	stats->tx_packets = adapter->stats.gptc;
	stats->multicast = adapter->stats.mprc;
	stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	stats->rx_length_errors = adapter->stats.ruc +
					      adapter->stats.roc;
	stats->rx_crc_errors = adapter->stats.crcerrs;
	stats->rx_frame_errors = adapter->stats.algnerrc;
	stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	stats->tx_errors = adapter->stats.ecol +
				       adapter->stats.latecol;
	stats->tx_aborted_errors = adapter->stats.ecol;
	stats->tx_window_errors = adapter->stats.latecol;
	stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	spin_unlock(&adapter->stats64_lock);
	return stats;
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

5261
	/* Jumbo frame support */
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
			e_err("Jumbo Frames not supported.\n");
			return -EINVAL;
		}

		/*
		 * IP payload checksum (enabled with jumbos/packet-split when
		 * Rx checksum is enabled) and generation of RSS hash is
		 * mutually exclusive in the hardware.
		 */
		if ((netdev->features & NETIF_F_RXCSUM) &&
		    (netdev->features & NETIF_F_RXHASH)) {
			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
			return -EINVAL;
		}
5278 5279
	}

5280 5281 5282 5283
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
5284 5285 5286
		return -EINVAL;
	}

5287 5288 5289 5290
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
5291
		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5292 5293 5294
		return -EINVAL;
	}

5295 5296 5297 5298 5299 5300 5301 5302
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

5303
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5304
		usleep_range(1000, 2000);
5305
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5306
	adapter->max_frame_size = max_frame;
5307 5308
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
5309 5310 5311
	if (netif_running(netdev))
		e1000e_down(adapter);

5312 5313
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5314 5315
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
5316
	 * i.e. RXBUFFER_2048 --> size-4096 slab
5317 5318
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
5319
	 */
5320

5321
	if (max_frame <= 2048)
5322 5323 5324 5325 5326 5327 5328 5329
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5330
					 + ETH_FCS_LEN;
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

5348
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5349 5350 5351 5352 5353 5354 5355
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5356 5357
		e1000_phy_read_status(adapter);

5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5412 5413 5414 5415
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
5416
	u16 phy_reg, wuc_enable;
5417 5418 5419
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5420
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5421

5422 5423 5424 5425 5426 5427 5428 5429 5430
	retval = hw->phy.ops.acquire(hw);
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}

	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
	if (retval)
5431
		goto release;
5432 5433

	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5434 5435
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5436 5437 5438 5439
		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
					   (u16)((mac_reg >> 16) & 0xFFFF));
5440 5441 5442
	}

	/* configure PHY Rx Control register */
5443
	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
5460
	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5461 5462 5463 5464 5465 5466

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
5467 5468
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5469 5470

	/* activate PHY wakeup */
5471 5472
	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5473 5474
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
5475
release:
5476
	hw->phy.ops.release(hw);
5477 5478 5479 5480

	return retval;
}

5481 5482
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5483 5484 5485 5486 5487
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5488 5489
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5490 5491 5492 5493 5494
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
5495 5496 5497 5498 5499
		int count = E1000_CHECK_RESET_COUNT;

		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
			usleep_range(10000, 20000);

5500 5501 5502 5503
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5504
	e1000e_reset_interrupt_capability(adapter);
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
5516
		e1000e_set_rx_mode(netdev);
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5530 5531 5532
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5533 5534
		ew32(CTRL, ctrl);

5535 5536 5537
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5538 5539
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5540
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5541 5542 5543
			ew32(CTRL_EXT, ctrl_ext);
		}

5544
		if (adapter->flags & FLAG_IS_ICH)
5545
			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5546

5547 5548 5549
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5550
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5551 5552 5553 5554 5555 5556 5557 5558 5559
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5560 5561 5562 5563 5564
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5565 5566
	*enable_wake = !!wufc;

5567
	/* make sure adapter isn't asleep if manageability is enabled */
5568 5569
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5570
		*enable_wake = true;
5571 5572 5573 5574

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5575 5576 5577 5578
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5579
	e1000e_release_hw_control(adapter);
5580 5581 5582

	pci_disable_device(pdev);

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5603 5604 5605 5606 5607 5608 5609 5610
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
5611
		int pos = pci_pcie_cap(us_dev);
5612 5613 5614 5615 5616 5617
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5618
		e1000_power_off(pdev, sleep, wake);
5619 5620 5621

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5622
		e1000_power_off(pdev, sleep, wake);
5623
	}
5624 5625
}

5626 5627 5628
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
5629
	pci_disable_link_state_locked(pdev, state);
5630 5631 5632
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5633 5634
{
	int pos;
5635
	u16 reg16;
5636 5637

	/*
5638 5639
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5640
	 */
5641 5642 5643 5644 5645
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5646 5647 5648
	if (!pdev->bus->self)
		return;

5649 5650 5651 5652 5653 5654
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
5655
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5656 5657 5658 5659 5660 5661
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5662 5663
}

R
Rafael J. Wysocki 已提交
5664
#ifdef CONFIG_PM
5665
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5666
{
5667
	return !!adapter->tx_ring->buffer_info;
5668 5669
}

5670
static int __e1000_resume(struct pci_dev *pdev)
5671 5672 5673 5674
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5675
	u16 aspm_disable_flag = 0;
5676 5677
	u32 err;

5678 5679 5680 5681 5682 5683 5684
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5685 5686
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5687
	pci_save_state(pdev);
T
Taku Izumi 已提交
5688

5689
	e1000e_set_interrupt_capability(adapter);
5690 5691 5692 5693 5694 5695
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

5696 5697 5698
	if (hw->mac.type == e1000_pch2lan)
		e1000_resume_workarounds_pchlan(&adapter->hw);

5699
	e1000e_power_up_phy(adapter);
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5712 5713
				phy_data & E1000_WUS_LNKC ?
				"Link Status Change" : "other");
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5730 5731
	e1000e_reset(adapter);

5732
	e1000_init_manageability_pt(adapter);
5733 5734 5735 5736 5737 5738

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5739 5740
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5741
	 * is up.  For all other cases, let the f/w know that the h/w is now
5742 5743
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5744
	if (!(adapter->flags & FLAG_HAS_AMT))
5745
		e1000e_get_hw_control(adapter);
5746 5747 5748

	return 0;
}
5749

5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5823
#endif /* CONFIG_PM_RUNTIME */
R
Rafael J. Wysocki 已提交
5824
#endif /* CONFIG_PM */
5825 5826 5827

static void e1000_shutdown(struct pci_dev *pdev)
{
5828 5829
	bool wake = false;

5830
	__e1000_shutdown(pdev, &wake, false);
5831 5832 5833

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5834 5835 5836
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5837 5838 5839 5840 5841 5842 5843

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (adapter->msix_entries) {
5844 5845
		int vector, msix_irq;

5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5868 5869 5870 5871 5872 5873 5874 5875 5876
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5911 5912 5913
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
5934
	u16 aspm_disable_flag = 0;
T
Taku Izumi 已提交
5935
	int err;
J
Jesse Brandeburg 已提交
5936
	pci_ers_result_t result;
5937

5938 5939
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5940
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5941 5942 5943 5944
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);

5945
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5946
	if (err) {
5947 5948
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5949 5950 5951
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5952
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5953
		pci_restore_state(pdev);
5954

J
Jesse Brandeburg 已提交
5955 5956
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5957

J
Jesse Brandeburg 已提交
5958 5959 5960 5961
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5962

J
Jesse Brandeburg 已提交
5963 5964 5965
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5981
	e1000_init_manageability_pt(adapter);
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5993 5994
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5995
	 * is up.  For all other cases, let the f/w know that the h/w is now
5996 5997
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5998
	if (!(adapter->flags & FLAG_HAS_AMT))
5999
		e1000e_get_hw_control(adapter);
6000 6001 6002 6003 6004 6005 6006

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
6007 6008
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
6009 6010

	/* print bus type/speed/width info */
6011
	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6012 6013 6014 6015
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
6016
	       netdev->dev_addr);
6017 6018
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6019 6020 6021
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
6022
		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6023 6024
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
6025 6026
}

6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6037 6038
	le16_to_cpus(&buf);
	if (!ret_val && (!(buf & (1 << 0)))) {
6039
		/* Deep Smart Power Down (DSPD) */
6040 6041
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
6042 6043 6044
	}
}

6045
static int e1000_set_features(struct net_device *netdev,
6046
			      netdev_features_t features)
6047 6048
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
6049
	netdev_features_t changed = features ^ netdev->features;
6050 6051 6052 6053 6054

	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
		adapter->flags |= FLAG_TSO_FORCE;

	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
B
Ben Greear 已提交
6055 6056
			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
			 NETIF_F_RXALL)))
6057 6058
		return 0;

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
	/*
	 * IP payload checksum (enabled with jumbos/packet-split when Rx
	 * checksum is enabled) and generation of RSS hash is mutually
	 * exclusive in the hardware.
	 */
	if (adapter->rx_ps_pages &&
	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
		return -EINVAL;
	}

B
Ben Greear 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
	if (changed & NETIF_F_RXFCS) {
		if (features & NETIF_F_RXFCS) {
			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		} else {
			/* We need to take it back to defaults, which might mean
			 * stripping is still disabled at the adapter level.
			 */
			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
				adapter->flags2 |= FLAG2_CRC_STRIPPING;
			else
				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
		}
	}

6084 6085
	netdev->features = features;

6086 6087 6088 6089 6090 6091 6092 6093
	if (netif_running(netdev))
		e1000e_reinit_locked(adapter);
	else
		e1000e_reset(adapter);

	return 0;
}

6094 6095 6096
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
6097
	.ndo_start_xmit		= e1000_xmit_frame,
J
Jeff Kirsher 已提交
6098
	.ndo_get_stats64	= e1000e_get_stats64,
6099
	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
6111
	.ndo_set_features = e1000_set_features,
6112 6113
};

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6132 6133
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
6134
	static int cards_found;
6135
	u16 aspm_disable_flag = 0;
6136 6137 6138 6139
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

6140 6141
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6142
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6143 6144 6145
		aspm_disable_flag |= PCIE_LINK_STATE_L1;
	if (aspm_disable_flag)
		e1000e_disable_aspm(pdev, aspm_disable_flag);
T
Taku Izumi 已提交
6146

6147
	err = pci_enable_device_mem(pdev);
6148 6149 6150 6151
	if (err)
		return err;

	pci_using_dac = 0;
6152
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6153
	if (!err) {
6154
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6155 6156 6157
		if (!err)
			pci_using_dac = 1;
	} else {
6158
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6159
		if (err) {
6160 6161
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
6162
			if (err) {
6163
				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6164 6165 6166 6167 6168
				goto err_dma;
			}
		}
	}

6169
	err = pci_request_selected_regions_exclusive(pdev,
6170 6171
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
6172 6173 6174
	if (err)
		goto err_pci_reg;

6175
	/* AER (Advanced Error Reporting) hooks */
6176
	pci_enable_pcie_error_reporting(pdev);
6177

6178
	pci_set_master(pdev);
6179 6180 6181 6182
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
6183 6184 6185 6186 6187 6188 6189 6190

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

6191 6192
	netdev->irq = pdev->irq;

6193 6194 6195 6196 6197 6198 6199 6200
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
6201
	adapter->flags2 = ei->flags2;
6202 6203
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
6204
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6205
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
6225
	netdev->netdev_ops		= &e1000e_netdev_ops;
6226 6227
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
B
Bruce Allan 已提交
6228
	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6229
	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6230 6231 6232 6233 6234 6235

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

6236 6237
	e1000e_check_options(adapter);

6238 6239 6240 6241 6242 6243 6244 6245 6246
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
6247
	err = ei->get_variants(adapter);
6248 6249 6250
	if (err)
		goto err_hw_init;

6251 6252 6253 6254
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

6255 6256
	hw->mac.ops.get_bus_info(&adapter->hw);

6257
	adapter->hw.phy.autoneg_wait_to_complete = 0;
6258 6259

	/* Copper options */
6260
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6261 6262 6263 6264 6265
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

6266
	if (hw->phy.ops.check_reset_block(hw))
6267
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6268

6269 6270 6271 6272 6273 6274
	/* Set initial default active device features */
	netdev->features = (NETIF_F_SG |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
6275
			    NETIF_F_RXHASH |
6276 6277 6278 6279 6280
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM);

	/* Set user-changeable features (subset of all device features) */
	netdev->hw_features = netdev->features;
B
Ben Greear 已提交
6281
	netdev->hw_features |= NETIF_F_RXFCS;
6282
	netdev->priv_flags |= IFF_SUPP_NOFCS;
B
Ben Greear 已提交
6283
	netdev->hw_features |= NETIF_F_RXALL;
6284 6285 6286 6287

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

6288 6289 6290 6291
	netdev->vlan_features |= (NETIF_F_SG |
				  NETIF_F_TSO |
				  NETIF_F_TSO6 |
				  NETIF_F_HW_CSUM);
6292

6293 6294
	netdev->priv_flags |= IFF_UNICAST_FLT;

6295
	if (pci_using_dac) {
6296
		netdev->features |= NETIF_F_HIGHDMA;
6297 6298
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
6299 6300 6301 6302

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

6303 6304 6305 6306
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
6317
			e_err("The NVM Checksum Is Not Valid\n");
6318 6319 6320 6321 6322
			err = -EIO;
			goto err_eeprom;
		}
	}

6323 6324
	e1000_eeprom_checks(adapter);

6325
	/* copy the MAC address */
6326
	if (e1000e_read_mac_addr(&adapter->hw))
6327
		e_err("NVM Read Error while reading MAC address\n");
6328 6329 6330 6331 6332

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
6333
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6334 6335 6336 6337 6338
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
6339
	adapter->watchdog_timer.function = e1000_watchdog;
6340 6341 6342
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
6343
	adapter->phy_info_timer.function = e1000_update_phy_info;
6344 6345 6346 6347
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6348 6349
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6350
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6351 6352 6353

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
6354
	adapter->fc_autoneg = true;
6355 6356
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
6371 6372
		if ((hw->mac.type > e1000_ich10lan) &&
		    (eeprom_data & E1000_WUC_PHY_WAKE))
6373
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6374 6375 6376
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
6377 6378
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
				       1, &eeprom_data);
6379
		else
6380 6381
			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
				       1, &eeprom_data);
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
6398
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6399

6400 6401 6402
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

6403 6404 6405
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

6406 6407
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
6408
	 * is up.  For all other cases, let the f/w know that the h/w is now
6409 6410
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
6411
	if (!(adapter->flags & FLAG_HAS_AMT))
6412
		e1000e_get_hw_control(adapter);
6413

6414
	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6415 6416 6417 6418
	err = register_netdev(netdev);
	if (err)
		goto err_register;

6419 6420 6421
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

6422 6423
	e1000_print_device_info(adapter);

6424 6425
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
6426

6427 6428 6429
	return 0;

err_register:
J
Jesse Brandeburg 已提交
6430
	if (!(adapter->flags & FLAG_HAS_AMT))
6431
		e1000e_release_hw_control(adapter);
6432
err_eeprom:
6433
	if (!hw->phy.ops.check_reset_block(hw))
6434
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6435
err_hw_init:
6436 6437 6438
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6439 6440
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6441
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6442
err_flashmap:
6443 6444 6445 6446
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6447 6448
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6468 6469
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6470
	/*
6471 6472
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6473
	 */
6474 6475
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6476 6477 6478
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6479 6480 6481 6482 6483
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
6484

6485 6486 6487
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6488 6489 6490
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6491 6492
	unregister_netdev(netdev);

6493 6494
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6495

6496 6497 6498 6499
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6500
	e1000e_release_hw_control(adapter);
6501

6502
	e1000e_reset_interrupt_capability(adapter);
6503 6504 6505 6506 6507 6508
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6509 6510
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6511 6512 6513

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6514
	/* AER disable */
6515
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6516

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6527
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6528 6529 6530 6531 6532 6533
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6534 6535 6536
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6537

6538 6539 6540 6541
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6542

6543 6544 6545
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6546

6547
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6548
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6549
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6550

6551 6552 6553 6554 6555 6556 6557 6558
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6559

6560 6561 6562 6563 6564 6565 6566
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6567
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6568

6569 6570 6571 6572 6573
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6574
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6575 6576 6577 6578 6579 6580 6581
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6582

6583 6584
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6585
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6586

6587 6588 6589 6590 6591
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6592 6593 6594
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6595
	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6596 6597 6598
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

R
Rafael J. Wysocki 已提交
6599
#ifdef CONFIG_PM
6600
static const struct dev_pm_ops e1000_pm_ops = {
6601 6602 6603
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6604
};
6605
#endif
6606

6607 6608 6609 6610 6611 6612
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
R
Rafael J. Wysocki 已提交
6613
#ifdef CONFIG_PM
6614 6615 6616
	.driver   = {
		.pm = &e1000_pm_ops,
	},
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6631 6632
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6633
	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6634
	ret = pci_register_driver(&e1000_driver);
6635

6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

6658
/* netdev.c */