intel_pstate.c 36.6 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>
#endif

41 42 43
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
44
#define BYT_TURBO_VIDS		0x66d
45

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51 52 53 54
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

55
static inline int32_t div_fp(s64 x, s64 y)
56
{
57
	return div64_s64((int64_t)x << FRAC_BITS, y);
58 59
}

60 61 62 63 64 65 66 67 68 69 70
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

71
struct sample {
72
	int32_t core_pct_busy;
73 74
	u64 aperf;
	u64 mperf;
75
	u64 tsc;
76
	int freq;
77
	ktime_t time;
78 79 80 81 82 83
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
84
	int	max_pstate_physical;
85
	int	scaling;
86 87 88
	int	turbo_pstate;
};

89
struct vid_data {
90 91 92
	int min;
	int max;
	int turbo;
93 94 95
	int32_t ratio;
};

96 97 98 99 100 101 102
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
103
	int32_t last_err;
104 105 106 107 108 109 110 111
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
112
	struct vid_data vid;
113 114
	struct _pid pid;

115
	ktime_t last_sample_time;
116 117
	u64	prev_aperf;
	u64	prev_mperf;
118
	u64	prev_tsc;
119
	struct sample sample;
120 121 122
#if IS_ENABLED(CONFIG_ACPI)
	struct acpi_processor_performance acpi_perf_data;
#endif
123 124 125 126 127 128 129 130 131 132 133 134
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

135 136
struct pstate_funcs {
	int (*get_max)(void);
137
	int (*get_max_physical)(void);
138 139
	int (*get_min)(void);
	int (*get_turbo)(void);
140
	int (*get_scaling)(void);
141 142
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
143 144
};

145 146 147
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
148 149
};

150 151
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
152
static int hwp_active;
153
static int no_acpi_perf;
154

155 156
struct perf_limits {
	int no_turbo;
157
	int turbo_disabled;
158 159 160 161
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
162 163
	int max_policy_pct;
	int max_sysfs_pct;
164 165
	int min_policy_pct;
	int min_sysfs_pct;
166 167 168 169
};

static struct perf_limits limits = {
	.no_turbo = 0,
170
	.turbo_disabled = 0,
171 172 173 174
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
175 176
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
177 178
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
179 180
};

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#if IS_ENABLED(CONFIG_ACPI)
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	bool turbo_absent = false;
	int max_pstate_index;
	int min_pss_ctl, max_pss_ctl, turbo_pss_ctl;
	int i;

	cpu = all_cpu_data[policy->cpu];

	pr_debug("intel_pstate: default limits 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);

	if (!cpu->acpi_perf_data.shared_cpu_map &&
	    zalloc_cpumask_var_node(&cpu->acpi_perf_data.shared_cpu_map,
				    GFP_KERNEL, cpu_to_node(policy->cpu))) {
		return -ENOMEM;
	}

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return ret;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		return -EIO;

	pr_debug("intel_pstate: CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++)
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		return 0;

	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	min_pss_ctl = convert_to_native_pstate_format(cpu,
					cpu->acpi_perf_data.state_count - 1);
	/* Check if there is a turbo freq in _PSS */
	if (turbo_pss_ctl <= cpu->pstate.max_pstate &&
	    turbo_pss_ctl > cpu->pstate.min_pstate) {
		pr_debug("intel_pstate: no turbo range exists in _PSS\n");
		limits.no_turbo = limits.turbo_disabled = 1;
		cpu->pstate.turbo_pstate = cpu->pstate.max_pstate;
		turbo_absent = true;
	}

	/* Check if the max non turbo p state < Intel P state max */
	max_pstate_index = turbo_absent ? 0 : 1;
	max_pss_ctl = convert_to_native_pstate_format(cpu, max_pstate_index);
	if (max_pss_ctl < cpu->pstate.max_pstate &&
	    max_pss_ctl > cpu->pstate.min_pstate)
		cpu->pstate.max_pstate = max_pss_ctl;

	/* check If min perf > Intel P State min */
	if (min_pss_ctl > cpu->pstate.min_pstate &&
	    min_pss_ctl < cpu->pstate.max_pstate) {
		cpu->pstate.min_pstate = min_pss_ctl;
		policy->cpuinfo.min_freq = min_pss_ctl * cpu->pstate.scaling;
	}

	if (turbo_absent)
		policy->cpuinfo.max_freq = cpu->pstate.max_pstate *
						cpu->pstate.scaling;
	else {
		policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate *
						cpu->pstate.scaling;
		/*
		 * The _PSS table doesn't contain whole turbo frequency range.
		 * This just contains +1 MHZ above the max non turbo frequency,
		 * with control value corresponding to max turbo ratio. But
		 * when cpufreq set policy is called, it will call with this
		 * max frequency, which will cause a reduced performance as
		 * this driver uses real max turbo frequency as the max
		 * frequeny. So correct this frequency in _PSS table to
		 * correct max turbo frequency based on the turbo ratio.
		 * Also need to convert to MHz as _PSS freq is in MHz.
		 */
		cpu->acpi_perf_data.states[0].core_frequency =
						turbo_pss_ctl * 100;
	}

	pr_debug("intel_pstate: Updated limits using _PSS 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);
	pr_debug("intel_pstate: policy max_freq=%d Khz min_freq = %d KHz\n",
		 policy->cpuinfo.max_freq, policy->cpuinfo.min_freq);

	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	if (!no_acpi_perf)
		return 0;

	cpu = all_cpu_data[policy->cpu];
	acpi_processor_unregister_performance(policy->cpu);
	return 0;
}

#else
static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}
#endif

328
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
329
			     int deadband, int integral) {
330 331 332
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
333
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

351
static signed int pid_calc(struct _pid *pid, int32_t busy)
352
{
353
	signed int result;
354 355 356
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

357
	fp_error = int_tofp(pid->setpoint) - busy;
358

359
	if (abs(fp_error) <= int_tofp(pid->deadband))
360 361 362 363 364 365
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

366 367 368 369 370 371 372 373
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
374 375 376 377 378 379
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

380 381
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
382 383

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
384
	result = result + (1 << (FRAC_BITS-1));
385 386 387 388 389
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
390 391 392
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
393

394
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
395 396 397 398 399
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
400

401 402 403 404 405 406
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

407 408 409 410 411 412 413 414 415 416 417 418
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	limits.turbo_disabled =
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

D
Dirk Brandewie 已提交
419 420
static void intel_pstate_hwp_set(void)
{
421 422 423 424 425 426 427
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
428 429 430 431 432

	get_online_cpus();

	for_each_online_cpu(cpu) {
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
433 434
		adj_range = limits.min_perf_pct * range / 100;
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
435 436 437
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

438 439
		adj_range = limits.max_perf_pct * range / 100;
		max = hw_min + adj_range;
D
Dirk Brandewie 已提交
440
		if (limits.no_turbo) {
441 442 443
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
444 445 446 447 448 449 450 451 452 453
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}

	put_online_cpus();
}

454 455 456 457 458 459 460
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
461

462 463 464 465 466
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
467
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
468 469 470 471 472 473 474

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
475 476 477 478 479 480
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
481 482 483
	{NULL, NULL}
};

484
static void __init intel_pstate_debug_expose_params(void)
485
{
486
	struct dentry *debugfs_parent;
487 488
	int i = 0;

D
Dirk Brandewie 已提交
489 490
	if (hwp_active)
		return;
491 492 493 494 495
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
496 497
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
498 499 500 501 502 503 504 505 506 507 508 509 510 511
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

528 529 530 531 532 533 534 535 536 537 538
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
	if (limits.turbo_disabled)
		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
	else
		ret = sprintf(buf, "%u\n", limits.no_turbo);

	return ret;
}

553
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
554
			      const char *buf, size_t count)
555 556 557
{
	unsigned int input;
	int ret;
558

559 560 561
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
562 563

	update_turbo_state();
564
	if (limits.turbo_disabled) {
565
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
566
		return -EPERM;
567
	}
D
Dirk Brandewie 已提交
568

569 570
	limits.no_turbo = clamp_t(int, input, 0, 1);

D
Dirk Brandewie 已提交
571 572 573
	if (hwp_active)
		intel_pstate_hwp_set();

574 575 576 577
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
578
				  const char *buf, size_t count)
579 580 581
{
	unsigned int input;
	int ret;
582

583 584 585 586
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

587 588
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
589 590
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
	limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
591
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
592

D
Dirk Brandewie 已提交
593 594
	if (hwp_active)
		intel_pstate_hwp_set();
595 596 597 598
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
599
				  const char *buf, size_t count)
600 601 602
{
	unsigned int input;
	int ret;
603

604 605 606
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
607 608 609

	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
610 611
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
612 613
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

D
Dirk Brandewie 已提交
614 615
	if (hwp_active)
		intel_pstate_hwp_set();
616 617 618 619 620 621 622 623 624
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
625
define_one_global_ro(turbo_pct);
626
define_one_global_ro(num_pstates);
627 628 629 630 631

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
632
	&turbo_pct.attr,
633
	&num_pstates.attr,
634 635 636 637 638 639 640
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

641
static void __init intel_pstate_sysfs_expose_params(void)
642
{
643
	struct kobject *intel_pstate_kobject;
644 645 646 647 648
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
649
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
650 651 652
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
653

654
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
655
{
656
	pr_info("intel_pstate: HWP enabled\n");
D
Dirk Brandewie 已提交
657

658
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
659 660
}

661 662 663
static int byt_get_min_pstate(void)
{
	u64 value;
664

665
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
666
	return (value >> 8) & 0x7F;
667 668 669 670 671
}

static int byt_get_max_pstate(void)
{
	u64 value;
672

673
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
674
	return (value >> 16) & 0x7F;
675
}
676

677 678 679
static int byt_get_turbo_pstate(void)
{
	u64 value;
680

681
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
682
	return value & 0x7F;
683 684
}

685 686 687 688 689 690
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

691
	val = (u64)pstate << 8;
692
	if (limits.no_turbo && !limits.turbo_disabled)
693 694 695 696 697 698 699
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
700
	vid = ceiling_fp(vid_fp);
701

702 703 704
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

705 706
	val |= vid;

707
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
708 709
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
#define BYT_BCLK_FREQS 5
static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};

static int byt_get_scaling(void)
{
	u64 value;
	int i;

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0x3;

	BUG_ON(i > BYT_BCLK_FREQS);

	return byt_freq_table[i] * 100;
}

726 727 728 729 730
static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
731 732
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
733 734 735 736
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
737 738 739

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
740 741
}

742
static int core_get_min_pstate(void)
743 744
{
	u64 value;
745

746
	rdmsrl(MSR_PLATFORM_INFO, value);
747 748 749
	return (value >> 40) & 0xFF;
}

750 751 752 753 754 755 756 757
static int core_get_max_pstate_physical(void)
{
	u64 value;

	rdmsrl(MSR_PLATFORM_INFO, value);
	return (value >> 8) & 0xFF;
}

758
static int core_get_max_pstate(void)
759
{
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
793

794 795
skip_tar:
	return max_pstate;
796 797
}

798
static int core_get_turbo_pstate(void)
799 800 801
{
	u64 value;
	int nont, ret;
802

803
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
804
	nont = core_get_max_pstate();
805
	ret = (value) & 255;
806 807 808 809 810
	if (ret <= nont)
		ret = nont;
	return ret;
}

811 812 813 814 815
static inline int core_get_scaling(void)
{
	return 100000;
}

816
static void core_set_pstate(struct cpudata *cpudata, int pstate)
817 818 819
{
	u64 val;

820
	val = (u64)pstate << 8;
821
	if (limits.no_turbo && !limits.turbo_disabled)
822 823
		val |= (u64)1 << 32;

824
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
825 826
}

827 828 829 830 831 832 833 834 835 836 837 838 839
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

840 841 842 843 844 845 846 847 848 849 850
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
851
		.get_max_physical = core_get_max_pstate_physical,
852 853
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
854
		.get_scaling = core_get_scaling,
855 856 857 858
		.set = core_set_pstate,
	},
};

859 860 861 862
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
863
		.setpoint = 60,
864 865 866 867 868 869
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
870
		.get_max_physical = byt_get_max_pstate,
871
		.get_min = byt_get_min_pstate,
872
		.get_turbo = byt_get_turbo_pstate,
873
		.set = byt_set_pstate,
874
		.get_scaling = byt_get_scaling,
875
		.get_vid = byt_get_vid,
876 877 878
	},
};

879 880 881 882 883 884 885 886 887 888 889
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
890
		.get_max_physical = core_get_max_pstate_physical,
891 892
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
893
		.get_scaling = core_get_scaling,
894 895 896 897
		.set = core_set_pstate,
	},
};

898 899 900
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
901
	int max_perf_adj;
902
	int min_perf;
903

904
	if (limits.no_turbo || limits.turbo_disabled)
905 906
		max_perf = cpu->pstate.max_pstate;

907 908 909 910 911
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
912 913
	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
	*max = clamp_t(int, max_perf_adj,
914 915 916
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);

	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
917
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
918 919
}

920
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
921 922 923
{
	int max_perf, min_perf;

924 925
	if (force) {
		update_turbo_state();
926

927
		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
928

929
		pstate = clamp_t(int, pstate, min_perf, max_perf);
930

931 932 933
		if (pstate == cpu->pstate.current_pstate)
			return;
	}
934
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
935

936 937
	cpu->pstate.current_pstate = pstate;

938
	pstate_funcs.set(cpu, pstate);
939 940 941 942
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
943 944
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
945
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
946
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
947
	cpu->pstate.scaling = pstate_funcs.get_scaling();
948

949 950
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
951
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
952 953
}

954
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
955
{
956
	struct sample *sample = &cpu->sample;
957
	int64_t core_pct;
958

959
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
960
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
961

962
	sample->freq = fp_toint(
963
		mul_fp(int_tofp(
964 965
			cpu->pstate.max_pstate_physical *
			cpu->pstate.scaling / 100),
966
			core_pct));
967

968
	sample->core_pct_busy = (int32_t)core_pct;
969 970 971 972 973
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
974
	unsigned long flags;
975
	u64 tsc;
976

977
	local_irq_save(flags);
978 979
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
980
	tsc = rdtsc();
981
	local_irq_restore(flags);
982

983 984
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
985 986
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
987
	cpu->sample.tsc =  tsc;
988 989
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
990
	cpu->sample.tsc -= cpu->prev_tsc;
991

992
	intel_pstate_calc_busy(cpu);
993 994 995

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
996
	cpu->prev_tsc = tsc;
997 998
}

D
Dirk Brandewie 已提交
999 1000 1001 1002 1003 1004 1005 1006
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1007 1008
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
1009
	int delay;
1010

1011
	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
1012 1013 1014
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1015
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
1016
{
1017
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1018
	s64 duration_us;
1019
	u32 sample_time;
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1032
	core_busy = cpu->sample.core_pct_busy;
1033
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1034
	current_pstate = int_tofp(cpu->pstate.current_pstate);
1035
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1036

1037 1038 1039 1040 1041 1042 1043
	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
1044
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1045 1046
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
1047 1048
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
1049
				      int_tofp(duration_us));
1050 1051 1052
		core_busy = mul_fp(core_busy, sample_ratio);
	}

1053
	return core_busy;
1054 1055 1056 1057
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1058
	int32_t busy_scaled;
1059
	struct _pid *pid;
1060
	signed int ctl;
1061 1062 1063 1064
	int from;
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1065 1066 1067 1068 1069 1070

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

1071
	/* Negative values of ctl increase the pstate and vice versa */
1072
	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
		fp_toint(busy_scaled),
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
1083 1084
}

D
Dirk Brandewie 已提交
1085 1086 1087 1088 1089 1090 1091 1092
static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

1093 1094 1095 1096 1097
static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
1098

1099
	intel_pstate_adjust_busy_pstate(cpu);
1100

1101 1102 1103 1104
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
1105 1106
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1107 1108

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1109 1110
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1111
	ICPU(0x37, byt_params),
1112 1113
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1114
	ICPU(0x3d, core_params),
1115 1116 1117 1118
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1119
	ICPU(0x47, core_params),
1120
	ICPU(0x4c, byt_params),
1121
	ICPU(0x4e, core_params),
1122
	ICPU(0x4f, core_params),
1123
	ICPU(0x5e, core_params),
1124
	ICPU(0x56, core_params),
1125
	ICPU(0x57, knl_params),
1126 1127 1128 1129
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1130 1131 1132 1133 1134
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1135 1136 1137 1138
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1139 1140 1141
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1142 1143 1144 1145 1146 1147
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1148 1149 1150 1151

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

1152
	intel_pstate_get_cpu_pstates(cpu);
1153

1154
	init_timer_deferrable(&cpu->timer);
1155
	cpu->timer.data = (unsigned long)cpu;
1156
	cpu->timer.expires = jiffies + HZ/100;
D
Dirk Brandewie 已提交
1157 1158 1159 1160 1161 1162

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

1163 1164 1165 1166 1167
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

1168
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1181
	sample = &cpu->sample;
1182 1183 1184 1185 1186
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1187 1188 1189
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1190 1191
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
1192
		limits.min_policy_pct = 100;
1193 1194
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
1195
		limits.max_policy_pct = 100;
1196 1197
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
1198
		limits.no_turbo = 0;
1199
		return 0;
1200
	}
D
Dirk Brandewie 已提交
1201

1202 1203
	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
1204
	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
1205
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
1206 1207 1208 1209

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
1210
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
1211 1212 1213 1214 1215 1216
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);

	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
1217
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
1218

D
Dirk Brandewie 已提交
1219 1220 1221
	if (hwp_active)
		intel_pstate_hwp_set();

1222 1223 1224 1225 1226
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1227
	cpufreq_verify_within_cpu_limits(policy);
1228

1229
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1230
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1231 1232 1233 1234 1235
		return -EINVAL;

	return 0;
}

1236
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1237
{
1238 1239
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1240

1241
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1242

1243
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
D
Dirk Brandewie 已提交
1244 1245 1246
	if (hwp_active)
		return;

1247
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1248 1249
}

1250
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1251 1252
{
	struct cpudata *cpu;
1253
	int rc;
1254 1255 1256 1257 1258 1259 1260

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1261
	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1262 1263 1264 1265
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1266 1267
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1268 1269

	/* cpuinfo and default policy values */
1270 1271 1272
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1273 1274 1275 1276 1277 1278
	if (!no_acpi_perf)
		intel_pstate_init_perf_limits(policy);
	/*
	 * If there is no acpi perf data or error, we ignore and use Intel P
	 * state calculated limits, So this is not fatal error.
	 */
1279 1280 1281 1282 1283 1284
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1285 1286 1287 1288 1289
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	return intel_pstate_exit_perf_limits(policy);
}

1290 1291 1292 1293 1294 1295
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1296
	.exit		= intel_pstate_cpu_exit,
1297
	.stop_cpu	= intel_pstate_stop_cpu,
1298 1299 1300
	.name		= "intel_pstate",
};

1301
static int __initdata no_load;
D
Dirk Brandewie 已提交
1302
static int __initdata no_hwp;
1303
static int __initdata hwp_only;
1304
static unsigned int force_load;
1305

1306 1307
static int intel_pstate_msrs_not_valid(void)
{
1308
	if (!pstate_funcs.get_max() ||
1309 1310
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1311 1312 1313 1314
		return -ENODEV;

	return 0;
}
1315

1316
static void copy_pid_params(struct pstate_adjust_policy *policy)
1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1326
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1327 1328
{
	pstate_funcs.get_max   = funcs->get_max;
1329
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1330 1331
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1332
	pstate_funcs.get_scaling = funcs->get_scaling;
1333
	pstate_funcs.set       = funcs->set;
1334
	pstate_funcs.get_vid   = funcs->get_vid;
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
#if IS_ENABLED(CONFIG_ACPI)

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1388 1389 1390 1391
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1392
	int  oem_pwr_table;
1393 1394 1395 1396
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1408 1409 1410 1411
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1412 1413 1414 1415 1416 1417 1418
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1428

1429 1430
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1431 1432 1433
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1434
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1435 1436 1437 1438 1439 1440
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1441 1442
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1443
			}
1444 1445 1446 1447 1448 1449
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1450
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1451 1452
#endif /* CONFIG_ACPI */

1453 1454
static int __init intel_pstate_init(void)
{
1455
	int cpu, rc = 0;
1456
	const struct x86_cpu_id *id;
1457
	struct cpu_defaults *cpu_def;
1458

1459 1460 1461
	if (no_load)
		return -ENODEV;

1462 1463 1464 1465
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1466 1467 1468 1469 1470 1471 1472
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1473
	cpu_def = (struct cpu_defaults *)id->driver_data;
1474

1475 1476
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1477

1478 1479 1480
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1481 1482
	pr_info("Intel P-state driver initializing.\n");

1483
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1484 1485 1486
	if (!all_cpu_data)
		return -ENOMEM;

1487
	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1488
		hwp_active++;
D
Dirk Brandewie 已提交
1489

1490 1491 1492
	if (!hwp_active && hwp_only)
		goto out;

1493 1494 1495 1496 1497 1498
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1499

1500 1501
	return rc;
out:
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1512 1513 1514 1515
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1516 1517 1518 1519 1520 1521 1522
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
D
Dirk Brandewie 已提交
1523 1524
	if (!strcmp(str, "no_hwp"))
		no_hwp = 1;
1525 1526
	if (!strcmp(str, "force"))
		force_load = 1;
1527 1528
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1529 1530 1531
	if (!strcmp(str, "no_acpi"))
		no_acpi_perf = 1;

1532 1533 1534 1535
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1536 1537 1538
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");