i915_gem_request.c 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27 28
#include <linux/sched.h>
#include <linux/sched/clock.h>
29
#include <linux/sched/signal.h>
30

31 32
#include "i915_drv.h"

33
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 35 36 37
{
	return "i915";
}

38
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39
{
40 41 42 43 44 45 46 47 48 49 50
	/* The timeline struct (as part of the ppgtt underneath a context)
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

51
	return to_request(fence)->timeline->common->name;
52 53
}

54
static bool i915_fence_signaled(struct dma_fence *fence)
55 56 57 58
{
	return i915_gem_request_completed(to_request(fence));
}

59
static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 61 62 63
{
	if (i915_fence_signaled(fence))
		return false;

64
	intel_engine_enable_signaling(to_request(fence), true);
65 66 67
	return true;
}

68
static signed long i915_fence_wait(struct dma_fence *fence,
69
				   bool interruptible,
70
				   signed long timeout)
71
{
72
	return i915_wait_request(to_request(fence), interruptible, timeout);
73 74
}

75
static void i915_fence_release(struct dma_fence *fence)
76 77 78
{
	struct drm_i915_gem_request *req = to_request(fence);

79 80 81 82 83 84 85 86
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);

87 88 89
	kmem_cache_free(req->i915->requests, req);
}

90
const struct dma_fence_ops i915_fence_ops = {
91 92 93 94 95 96 97 98
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

99 100 101
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
102
	struct drm_i915_file_private *file_priv;
103

104
	file_priv = request->file_priv;
105 106 107 108
	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
109 110 111 112
	if (request->file_priv) {
		list_del(&request->client_link);
		request->file_priv = NULL;
	}
113 114 115
	spin_unlock(&file_priv->mm.lock);
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
135
	INIT_LIST_HEAD(&dep->dfs_link);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

162 163
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
188 189
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	ret = i915_gem_wait_for_idle(i915,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	for_each_engine(engine, i915, id) {
207 208
		struct i915_gem_timeline *timeline;
		struct intel_timeline *tl = engine->timeline;
209 210 211 212 213 214 215 216 217

		if (!i915_seqno_passed(seqno, tl->seqno)) {
			/* spin until threads are complete */
			while (intel_breadcrumbs_busy(engine))
				cond_resched();
		}

		/* Finally reset hw state */
		intel_engine_init_global_seqno(engine, seqno);
218
		tl->seqno = seqno;
219

220 221 222
		list_for_each_entry(timeline, &i915->gt.timelines, link)
			memset(timeline->engine[id].sync_seqno, 0,
			       sizeof(timeline->engine[id].sync_seqno));
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	}

	return 0;
}

int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	return reset_all_global_seqno(dev_priv, seqno - 1);
}

static int reserve_seqno(struct intel_engine_cs *engine)
{
	u32 active = ++engine->timeline->inflight_seqnos;
	u32 seqno = engine->timeline->seqno;
	int ret;

	/* Reservation is fine until we need to wrap around */
	if (likely(!add_overflows(seqno, active)))
		return 0;

	ret = reset_all_global_seqno(engine->i915, 0);
	if (ret) {
		engine->timeline->inflight_seqnos--;
		return ret;
	}

	return 0;
}

262 263 264 265 266 267
static void unreserve_seqno(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
	engine->timeline->inflight_seqnos--;
}

268 269 270 271 272 273
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

274 275 276 277 278 279 280 281 282 283 284 285
static void advance_ring(struct drm_i915_gem_request *request)
{
	unsigned int tail;

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
286 287 288 289 290 291 292 293 294 295
	if (list_is_last(&request->ring_link, &request->ring->request_list)) {
		/* We may race here with execlists resubmitting this request
		 * as we retire it. The resubmission will move the ring->tail
		 * forwards (to request->wa_tail). We either read the
		 * current value that was written to hw, or the value that
		 * is just about to be. Either works, if we miss the last two
		 * noops - they are safe to be replayed on a reset.
		 */
		tail = READ_ONCE(request->ring->tail);
	} else {
296
		tail = request->postfix;
297
	}
298 299 300 301 302
	list_del(&request->ring_link);

	request->ring->head = tail;
}

303 304 305 306 307 308 309 310 311 312 313 314 315
static void free_capture_list(struct drm_i915_gem_request *request)
{
	struct i915_gem_capture_list *capture;

	capture = request->capture_list;
	while (capture) {
		struct i915_gem_capture_list *next = capture->next;

		kfree(capture);
		capture = next;
	}
}

316 317
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
318
	struct intel_engine_cs *engine = request->engine;
319 320
	struct i915_gem_active *active, *next;

321
	lockdep_assert_held(&request->i915->drm.struct_mutex);
322
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
323
	GEM_BUG_ON(!i915_gem_request_completed(request));
324
	GEM_BUG_ON(!request->i915->gt.active_requests);
325

326
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
327

328
	spin_lock_irq(&engine->timeline->lock);
329
	list_del_init(&request->link);
330
	spin_unlock_irq(&engine->timeline->lock);
331

332 333 334 335 336 337
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
338
	unreserve_seqno(request->engine);
339
	advance_ring(request);
340

341 342
	free_capture_list(request);

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
365
		RCU_INIT_POINTER(active->request, NULL);
366 367 368 369

		active->retire(active, request);
	}

370 371
	i915_gem_request_remove_from_client(request);

372
	/* Retirement decays the ban score as it is a sign of ctx progress */
373 374
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
375

376 377 378 379 380 381 382 383 384 385
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
386 387

	dma_fence_signal(&request->fence);
388 389

	i915_priotree_fini(request->i915, &request->priotree);
390
	i915_gem_request_put(request);
391 392 393 394 395 396 397 398
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
399 400
	GEM_BUG_ON(!i915_gem_request_completed(req));

401 402
	if (list_empty(&req->link))
		return;
403 404

	do {
405
		tmp = list_first_entry(&engine->timeline->requests,
406
				       typeof(*tmp), link);
407 408 409 410 411

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

412
static u32 timeline_get_seqno(struct intel_timeline *tl)
413
{
414
	return ++tl->seqno;
415 416
}

417
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
418
{
419
	struct intel_engine_cs *engine = request->engine;
420 421
	struct intel_timeline *timeline;
	u32 seqno;
422

423
	GEM_BUG_ON(!irqs_disabled());
424
	lockdep_assert_held(&engine->timeline->lock);
425

426 427
	trace_i915_gem_request_execute(request);

C
Chris Wilson 已提交
428 429 430
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
431

432
	seqno = timeline_get_seqno(timeline);
433 434 435 436 437 438 439
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
440
		intel_engine_enable_signaling(request, false);
441 442
	spin_unlock(&request->lock);

C
Chris Wilson 已提交
443 444
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
445

446
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
447 448 449
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

450
	wake_up_all(&request->execute);
451 452 453 454 455 456
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
457

458 459 460 461 462 463 464 465
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

466
void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
467
{
468 469
	struct intel_engine_cs *engine = request->engine;
	struct intel_timeline *timeline;
470

471
	GEM_BUG_ON(!irqs_disabled());
472
	lockdep_assert_held(&engine->timeline->lock);
473

474 475 476 477 478
	/* Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
	GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
	engine->timeline->seqno--;
C
Chris Wilson 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = 0;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_cancel_signaling(request);
	spin_unlock(&request->lock);

	/* Transfer back from the global per-engine timeline to per-context */
	timeline = request->timeline;
	GEM_BUG_ON(timeline == engine->timeline);

	spin_lock(&timeline->lock);
	list_move(&request->link, &timeline->requests);
	spin_unlock(&timeline->lock);

	/* We don't need to wake_up any waiters on request->execute, they
	 * will get woken by any other event or us re-adding this request
	 * to the engine timeline (__i915_gem_request_submit()). The waiters
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_unsubmit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
514 515
}

516
static int __i915_sw_fence_call
517
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
518
{
519 520 521 522 523
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
524
		trace_i915_gem_request_submit(request);
525
		request->engine->submit_request(request);
526 527 528 529 530 531 532
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
	}

533 534 535
	return NOTIFY_DONE;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
551 552 553 554 555
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

556 557
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

558
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
559
	 * EIO if the GPU is already wedged.
560
	 */
561 562
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return ERR_PTR(-EIO);
563

564 565 566 567 568
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
569 570 571
	if (ret)
		return ERR_PTR(ret);

572
	ret = reserve_seqno(engine);
573 574 575
	if (ret)
		goto err_unpin;

576
	/* Move the oldest request to the slab-cache (if not in use!) */
577
	req = list_first_entry_or_null(&engine->timeline->requests,
578
				       typeof(*req), link);
579
	if (req && i915_gem_request_completed(req))
580
		i915_gem_request_retire(req);
581

582 583 584 585 586
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
587
	 * of being read by __i915_gem_active_get_rcu(). As such,
588 589
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
590
	 * read the request->global_seqno and increment the reference count.
591 592 593 594
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
595 596
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
597 598 599 600 601 602 603 604 605 606 607 608 609 610
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
611 612 613 614
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
615

C
Chris Wilson 已提交
616 617
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
618

619
	spin_lock_init(&req->lock);
620 621 622
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
623
		       req->timeline->fence_context,
624
		       timeline_get_seqno(req->timeline));
625

626 627
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
628
	init_waitqueue_head(&req->execute);
629

630 631
	i915_priotree_init(&req->priotree);

632
	INIT_LIST_HEAD(&req->active_list);
633 634
	req->i915 = dev_priv;
	req->engine = engine;
635
	req->ctx = ctx;
636

637
	/* No zalloc, must clear what we need by hand */
638
	req->global_seqno = 0;
639
	req->file_priv = NULL;
C
Chris Wilson 已提交
640
	req->batch = NULL;
641
	req->capture_list = NULL;
642

643 644 645 646 647 648 649 650
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
651
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
652

653
	ret = engine->request_alloc(req);
654 655 656
	if (ret)
		goto err_ctx;

657 658 659 660 661
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
662
	req->head = req->ring->emit;
663

664 665
	/* Check that we didn't interrupt ourselves with a new request */
	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
666
	return req;
667 668

err_ctx:
669 670 671 672 673
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

674
	kmem_cache_free(dev_priv->requests, req);
675
err_unreserve:
676
	unreserve_seqno(engine);
677 678
err_unpin:
	engine->context_unpin(engine, ctx);
679
	return ERR_PTR(ret);
680 681
}

682 683 684 685
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
686
	u32 seqno;
687
	int ret;
688 689

	GEM_BUG_ON(to == from);
690
	GEM_BUG_ON(to->timeline == from->timeline);
691

692 693 694
	if (i915_gem_request_completed(from))
		return 0;

695 696 697 698 699 700 701 702
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

703 704 705 706 707 708 709
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

710 711
	seqno = i915_gem_request_global_seqno(from);
	if (!seqno) {
712 713 714 715 716 717
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

718
	if (seqno <= to->timeline->sync_seqno[from->engine->id])
719 720 721 722
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
723 724 725 726 727 728 729
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
730 731 732 733 734 735
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

736
	to->timeline->sync_seqno[from->engine->id] = seqno;
737 738 739
	return 0;
}

740 741 742 743
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
744 745
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
746 747 748 749 750 751 752 753 754
	int ret;

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
755 756 757 758 759 760 761
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
762

763 764 765 766
	do {
		fence = *child++;
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
			continue;
767

768 769 770 771 772 773 774 775
		/*
		 * Requests on the same timeline are explicitly ordered, along
		 * with their dependencies, by i915_add_request() which ensures
		 * that requests are submitted in-order through each ring.
		 */
		if (fence->context == req->fence.context)
			continue;

776
		if (dma_fence_is_i915(fence))
777
			ret = i915_gem_request_await_request(req,
778
							     to_request(fence));
779
		else
780 781
			ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
							    I915_FENCE_TIMEOUT,
782 783 784
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
785
	} while (--nchild);
786 787 788 789

	return 0;
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
815 816
	struct dma_fence *excl;
	int ret = 0;
817 818

	if (write) {
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
838
	} else {
839
		excl = reservation_object_get_excl_rcu(obj->resv);
840 841
	}

842 843 844
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
845

846
		dma_fence_put(excl);
847 848
	}

849
	return ret;
850 851
}

852 853 854 855 856 857 858
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

859 860
	GEM_BUG_ON(!dev_priv->gt.active_requests);

861 862 863
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

864
	intel_enable_gt_powersave(dev_priv);
865 866 867 868 869 870 871 872 873 874 875 876 877 878
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
879
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
880
{
881 882
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
883
	struct intel_timeline *timeline = request->timeline;
884
	struct drm_i915_gem_request *prev;
885
	u32 *cs;
C
Chris Wilson 已提交
886
	int err;
887

888
	lockdep_assert_held(&request->i915->drm.struct_mutex);
889 890
	trace_i915_gem_request_add(request);

891 892 893 894
	/* Make sure that no request gazumped us - if it was allocated after
	 * our i915_gem_request_alloc() and called __i915_add_request() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
895
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
912
		err = engine->emit_flush(request, EMIT_FLUSH);
913

914
		/* Not allowed to fail! */
C
Chris Wilson 已提交
915
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
916 917
	}

918
	/* Record the position of the start of the breadcrumb so that
919 920
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
921
	 * position of the ring's HEAD.
922
	 */
923 924 925
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);
926

927 928 929 930 931
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
932

933
	prev = i915_gem_active_raw(&timeline->last_request,
934
				   &request->i915->drm.struct_mutex);
935
	if (prev) {
936 937
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
938 939 940 941 942 943
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
944

C
Chris Wilson 已提交
945
	spin_lock_irq(&timeline->lock);
946
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
947 948
	spin_unlock_irq(&timeline->lock);

949
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
950
	i915_gem_active_set(&timeline->last_request, request);
951

952
	list_add_tail(&request->ring_link, &ring->request_list);
953
	request->emitted_jiffies = jiffies;
954

955 956
	if (!request->i915->gt.active_requests++)
		i915_gem_mark_busy(engine);
957

958 959 960 961 962 963 964 965 966 967 968
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
969
		engine->schedule(request, request->ctx->priority);
970

971 972 973
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
1009
			 u32 seqno, int state, unsigned long timeout_us)
1010
{
1011 1012
	struct intel_engine_cs *engine = req->engine;
	unsigned int irq, cpu;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

1024
	irq = atomic_read(&engine->irq_count);
1025 1026
	timeout_us += local_clock_us(&cpu);
	do {
1027 1028 1029 1030 1031
		if (seqno != i915_gem_request_global_seqno(req))
			break;

		if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
				      seqno))
1032 1033
			return true;

1034 1035 1036 1037 1038 1039 1040 1041
		/* Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (atomic_read(&engine->irq_count) != irq)
			break;

1042 1043 1044 1045 1046 1047
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1048
		cpu_relax();
1049 1050 1051 1052 1053
	} while (!need_resched());

	return false;
}

1054
static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1055
{
1056
	if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1057
		return false;
1058

1059 1060 1061
	__set_current_state(TASK_RUNNING);
	i915_reset(request->i915);
	return true;
1062 1063
}

1064
/**
1065
 * i915_wait_request - wait until execution of request has finished
1066
 * @req: the request to wait upon
1067
 * @flags: how to wait
1068 1069 1070 1071 1072
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1073
 *
1074 1075 1076
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1077
 *
1078 1079 1080 1081
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1082
 */
1083 1084 1085
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1086
{
1087 1088
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1089
	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1090 1091
	DEFINE_WAIT_FUNC(reset, default_wake_function);
	DEFINE_WAIT_FUNC(exec, default_wake_function);
1092 1093 1094
	struct intel_wait wait;

	might_sleep();
1095
#if IS_ENABLED(CONFIG_LOCKDEP)
1096 1097
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1098 1099
		   !!(flags & I915_WAIT_LOCKED));
#endif
1100
	GEM_BUG_ON(timeout < 0);
1101 1102

	if (i915_gem_request_completed(req))
1103
		return timeout;
1104

1105 1106
	if (!timeout)
		return -ETIME;
1107

1108
	trace_i915_gem_request_wait_begin(req, flags);
1109

1110
	add_wait_queue(&req->execute, &exec);
1111 1112 1113
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(errq, &reset);

1114
	intel_wait_init(&wait, req);
1115

1116
restart:
1117 1118 1119 1120
	do {
		set_current_state(state);
		if (intel_wait_update_request(&wait, req))
			break;
1121

1122 1123 1124
		if (flags & I915_WAIT_LOCKED &&
		    __i915_wait_request_check_and_reset(req))
			continue;
1125

1126 1127
		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
1128
			goto complete;
1129
		}
1130

1131 1132 1133 1134
		if (!timeout) {
			timeout = -ETIME;
			goto complete;
		}
1135

1136 1137
		timeout = io_schedule_timeout(timeout);
	} while (1);
1138

1139
	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1140
	GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1141

1142
	/* Optimistic short spin before touching IRQs */
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

1154 1155 1156
	if (flags & I915_WAIT_LOCKED)
		__i915_wait_request_check_and_reset(req);

1157 1158
	for (;;) {
		if (signal_pending_state(state, current)) {
1159
			timeout = -ERESTARTSYS;
1160 1161 1162
			break;
		}

1163 1164
		if (!timeout) {
			timeout = -ETIME;
1165 1166 1167
			break;
		}

1168 1169
		timeout = io_schedule_timeout(timeout);

1170 1171
		if (intel_wait_complete(&wait) &&
		    intel_wait_check_request(&wait, req))
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
1196
		    __i915_wait_request_check_and_reset(req))
1197 1198
			continue;

1199 1200 1201
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1202 1203 1204 1205 1206

		if (!intel_wait_check_request(&wait, req)) {
			intel_engine_remove_wait(req->engine, &wait);
			goto restart;
		}
1207 1208 1209 1210
	}

	intel_engine_remove_wait(req->engine, &wait);
complete:
1211
	__set_current_state(TASK_RUNNING);
1212 1213
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(errq, &reset);
1214
	remove_wait_queue(&req->execute, &exec);
1215 1216
	trace_i915_gem_request_wait_end(req);

1217
	return timeout;
1218
}
1219

1220
static void engine_retire_requests(struct intel_engine_cs *engine)
1221 1222
{
	struct drm_i915_gem_request *request, *next;
1223 1224
	u32 seqno = intel_engine_get_seqno(engine);
	LIST_HEAD(retire);
1225

1226
	spin_lock_irq(&engine->timeline->lock);
1227 1228
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
1229 1230
		if (!i915_seqno_passed(seqno, request->global_seqno))
			break;
1231

1232
		list_move_tail(&request->link, &retire);
1233
	}
1234 1235 1236 1237
	spin_unlock_irq(&engine->timeline->lock);

	list_for_each_entry_safe(request, next, &retire, link)
		i915_gem_request_retire(request);
1238 1239 1240 1241 1242
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1243
	enum intel_engine_id id;
1244 1245 1246

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1247
	if (!dev_priv->gt.active_requests)
1248 1249
		return;

1250 1251
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1252
}
1253 1254 1255 1256 1257

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_gem_request.c"
#endif