i915_gem_request.c 32.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36
{
37
	return to_request(fence)->timeline->common->name;
38 39
}

40
static bool i915_fence_signaled(struct dma_fence *fence)
41 42 43 44
{
	return i915_gem_request_completed(to_request(fence));
}

45
static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 47 48 49 50 51 52 53
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

54
static signed long i915_fence_wait(struct dma_fence *fence,
55
				   bool interruptible,
56
				   signed long timeout)
57
{
58
	return i915_wait_request(to_request(fence), interruptible, timeout);
59 60
}

61
static void i915_fence_release(struct dma_fence *fence)
62 63 64 65 66 67
{
	struct drm_i915_gem_request *req = to_request(fence);

	kmem_cache_free(req->i915->requests, req);
}

68
const struct dma_fence_ops i915_fence_ops = {
69 70 71 72 73 74 75 76
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
135
	INIT_LIST_HEAD(&dep->dfs_link);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

162 163
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
188 189
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
190 191
}

192 193 194 195 196 197
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

198 199
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
200 201
	struct i915_gem_active *active, *next;

202 203 204
	lockdep_assert_held(&request->i915->drm.struct_mutex);
	GEM_BUG_ON(!i915_gem_request_completed(request));

205
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
206 207

	spin_lock_irq(&request->engine->timeline->lock);
208
	list_del_init(&request->link);
C
Chris Wilson 已提交
209
	spin_unlock_irq(&request->engine->timeline->lock);
210 211 212 213 214 215 216 217 218

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
219
	list_del(&request->ring_link);
220
	request->ring->last_retired_head = request->postfix;
221
	request->i915->gt.active_requests--;
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
245
		RCU_INIT_POINTER(active->request, NULL);
246 247 248 249

		active->retire(active, request);
	}

250 251 252 253 254 255 256 257
	i915_gem_request_remove_from_client(request);

	if (request->previous_context) {
		if (i915.enable_execlists)
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
	}

258
	i915_gem_context_put(request->ctx);
259 260

	dma_fence_signal(&request->fence);
261 262

	i915_priotree_fini(request->i915, &request->priotree);
263
	i915_gem_request_put(request);
264 265 266 267 268 269 270 271
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
272 273
	if (list_empty(&req->link))
		return;
274 275

	do {
276
		tmp = list_first_entry(&engine->timeline->requests,
277
				       typeof(*tmp), link);
278 279 280 281 282

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

283
static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
284
{
285 286 287
	struct i915_gpu_error *error = &dev_priv->gpu_error;

	if (i915_terminally_wedged(error))
288 289
		return -EIO;

290
	if (i915_reset_in_progress(error)) {
291 292 293
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these.
		 */
294
		if (!dev_priv->mm.interruptible)
295 296 297 298 299 300 301 302
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

303
static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
304
{
305
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
306
	struct intel_engine_cs *engine;
307
	enum intel_engine_id id;
308 309 310
	int ret;

	/* Carefully retire all requests without writing to the rings */
311
	ret = i915_gem_wait_for_idle(i915,
312 313 314 315 316
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

317
	i915_gem_retire_requests(i915);
318
	GEM_BUG_ON(i915->gt.active_requests > 1);
319 320

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
321
	if (!i915_seqno_passed(seqno, atomic_read(&timeline->next_seqno))) {
322 323
		while (intel_breadcrumbs_busy(i915))
			cond_resched(); /* spin until threads are complete */
324
	}
325
	atomic_set(&timeline->next_seqno, seqno);
326 327

	/* Finally reset hw state */
328
	for_each_engine(engine, i915, id)
329
		intel_engine_init_global_seqno(engine, seqno);
330

331 332 333 334 335 336 337 338
	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

339 340 341
	return 0;
}

342
int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
343 344 345
{
	struct drm_i915_private *dev_priv = to_i915(dev);

346 347
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

348 349 350 351 352 353
	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
354
	return i915_gem_init_global_seqno(dev_priv, seqno - 1);
355 356
}

357
static int reserve_global_seqno(struct drm_i915_private *i915)
358
{
359 360 361
	u32 active_requests = ++i915->gt.active_requests;
	u32 next_seqno = atomic_read(&i915->gt.global_timeline.next_seqno);
	int ret;
362

363 364 365
	/* Reservation is fine until we need to wrap around */
	if (likely(next_seqno + active_requests > next_seqno))
		return 0;
366

367 368 369 370
	ret = i915_gem_init_global_seqno(i915, 0);
	if (ret) {
		i915->gt.active_requests--;
		return ret;
371 372 373 374 375
	}

	return 0;
}

C
Chris Wilson 已提交
376 377 378 379 380 381
static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
{
	/* next_seqno only incremented under a mutex */
	return ++tl->next_seqno.counter;
}

382 383 384 385 386
static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
{
	return atomic_inc_return(&tl->next_seqno);
}

387
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
388
{
389
	struct intel_engine_cs *engine = request->engine;
390 391
	struct intel_timeline *timeline;
	u32 seqno;
392

C
Chris Wilson 已提交
393 394 395
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
396
	assert_spin_locked(&timeline->lock);
397

C
Chris Wilson 已提交
398
	seqno = timeline_get_seqno(timeline->common);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
	request->previous_seqno = timeline->last_submitted_seqno;
	timeline->last_submitted_seqno = seqno;

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

	GEM_BUG_ON(!request->global_seqno);
C
Chris Wilson 已提交
414 415
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
416

417
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
418 419 420
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

421
	i915_sw_fence_commit(&request->execute);
422 423 424 425 426 427
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	if (state == FENCE_COMPLETE) {
		struct drm_i915_gem_request *request =
			container_of(fence, typeof(*request), submit);

		request->engine->submit_request(request);
	}
C
Chris Wilson 已提交
446

447 448 449
	return NOTIFY_DONE;
}

450 451 452 453 454 455
static int __i915_sw_fence_call
execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	return NOTIFY_DONE;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
471 472 473 474 475
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

476 477
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

478 479 480 481
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
482
	ret = i915_gem_check_wedge(dev_priv);
483
	if (ret)
484
		return ERR_PTR(ret);
485

486 487 488 489
	ret = reserve_global_seqno(dev_priv);
	if (ret)
		return ERR_PTR(ret);

490
	/* Move the oldest request to the slab-cache (if not in use!) */
491
	req = list_first_entry_or_null(&engine->timeline->requests,
492
				       typeof(*req), link);
C
Chris Wilson 已提交
493
	if (req && __i915_gem_request_completed(req))
494
		i915_gem_request_retire(req);
495

496 497 498 499 500
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
501
	 * of being read by __i915_gem_active_get_rcu(). As such,
502 503
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
504
	 * read the request->global_seqno and increment the reference count.
505 506 507 508
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
509 510
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
511 512 513 514 515 516 517 518 519 520 521 522 523 524
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
525 526 527 528
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
529

C
Chris Wilson 已提交
530 531
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
532

533
	spin_lock_init(&req->lock);
534 535 536
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
537
		       req->timeline->fence_context,
C
Chris Wilson 已提交
538
		       __timeline_get_seqno(req->timeline->common));
539

540
	i915_sw_fence_init(&req->submit, submit_notify);
541 542 543 544 545 546
	i915_sw_fence_init(&req->execute, execute_notify);
	/* Ensure that the execute fence completes after the submit fence -
	 * as we complete the execute fence from within the submit fence
	 * callback, its completion would otherwise be visible first.
	 */
	i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
547

548 549
	i915_priotree_init(&req->priotree);

550
	INIT_LIST_HEAD(&req->active_list);
551 552
	req->i915 = dev_priv;
	req->engine = engine;
553
	req->ctx = i915_gem_context_get(ctx);
554

555
	/* No zalloc, must clear what we need by hand */
556
	req->global_seqno = 0;
557 558
	req->previous_context = NULL;
	req->file_priv = NULL;
C
Chris Wilson 已提交
559
	req->batch = NULL;
560

561 562 563 564 565 566 567 568
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
569
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
570 571 572 573 574 575 576 577

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;

578 579 580 581 582 583 584
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

585
	return req;
586 587

err_ctx:
588
	i915_gem_context_put(ctx);
589
	kmem_cache_free(dev_priv->requests, req);
590 591
err_unreserve:
	dev_priv->gt.active_requests--;
592
	return ERR_PTR(ret);
593 594
}

595 596 597 598
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
599
	int ret;
600 601 602

	GEM_BUG_ON(to == from);

603 604 605 606 607 608 609 610
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

611
	if (to->timeline == from->timeline)
612 613
		return 0;

614 615 616 617 618 619 620
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

621 622 623 624 625 626 627
	if (!from->global_seqno) {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

628
	if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
629 630 631 632
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
633 634 635 636 637 638 639
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
640 641 642 643 644 645
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

646
	to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
647 648 649
	return 0;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
722 723
	struct dma_fence *excl;
	int ret = 0;
724 725

	if (write) {
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
745
	} else {
746
		excl = reservation_object_get_excl_rcu(obj->resv);
747 748
	}

749 750 751
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
752

753
		dma_fence_put(excl);
754 755
	}

756
	return ret;
757 758
}

759 760 761 762 763 764 765 766 767 768
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

769
	intel_enable_gt_powersave(dev_priv);
770 771 772 773 774 775 776 777 778 779 780 781 782 783
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
784
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
785
{
786 787
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
788
	struct intel_timeline *timeline = request->timeline;
789
	struct drm_i915_gem_request *prev;
C
Chris Wilson 已提交
790
	int err;
791

792
	lockdep_assert_held(&request->i915->drm.struct_mutex);
793 794
	trace_i915_gem_request_add(request);

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
810
		err = engine->emit_flush(request, EMIT_FLUSH);
811

812
		/* Not allowed to fail! */
C
Chris Wilson 已提交
813
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
814 815
	}

816
	/* Record the position of the start of the breadcrumb so that
817 818
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
819
	 * position of the ring's HEAD.
820
	 */
C
Chris Wilson 已提交
821 822
	err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(err);
823
	request->postfix = ring->tail;
C
Chris Wilson 已提交
824
	ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
825

826 827 828 829 830
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
831

832
	prev = i915_gem_active_raw(&timeline->last_request,
833
				   &request->i915->drm.struct_mutex);
834
	if (prev) {
835 836
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
837 838 839 840 841 842
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
843

C
Chris Wilson 已提交
844
	spin_lock_irq(&timeline->lock);
845
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
846 847 848 849
	spin_unlock_irq(&timeline->lock);

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
				     request->fence.seqno));
850

C
Chris Wilson 已提交
851
	timeline->last_submitted_seqno = request->fence.seqno;
852
	i915_gem_active_set(&timeline->last_request, request);
853

854
	list_add_tail(&request->ring_link, &ring->request_list);
855
	request->emitted_jiffies = jiffies;
856

857
	i915_gem_mark_busy(engine);
858

859 860 861 862 863 864 865 866 867 868 869 870 871
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
		engine->schedule(request, 0);

872 873 874
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
875 876
}

877 878 879 880 881 882 883 884 885 886
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
	unsigned int cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
936
		if (__i915_gem_request_completed(req))
937 938 939 940 941 942 943 944 945 946 947 948 949 950
			return true;

		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

		cpu_relax_lowlatency();
	} while (!need_resched());

	return false;
}

951
static long
952 953 954
__i915_request_wait_for_execute(struct drm_i915_gem_request *request,
				unsigned int flags,
				long timeout)
955 956 957 958 959 960 961 962 963 964 965
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
	DEFINE_WAIT(reset);
	DEFINE_WAIT(wait);

	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(q, &reset);

	do {
966
		prepare_to_wait(&request->execute.wait, &wait, state);
967

968
		if (i915_sw_fence_done(&request->execute))
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
			break;

		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&request->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(request->i915);
			reset_wait_queue(q, &reset);
			continue;
		}

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	} while (timeout);
986
	finish_wait(&request->execute.wait, &wait);
987 988 989 990 991 992 993

	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(q, &reset);

	return timeout;
}

994
/**
995
 * i915_wait_request - wait until execution of request has finished
996
 * @req: the request to wait upon
997
 * @flags: how to wait
998 999 1000 1001 1002
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1003
 *
1004 1005 1006
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1007
 *
1008 1009 1010 1011
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1012
 */
1013 1014 1015
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1016
{
1017 1018
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1019 1020 1021 1022
	DEFINE_WAIT(reset);
	struct intel_wait wait;

	might_sleep();
1023
#if IS_ENABLED(CONFIG_LOCKDEP)
1024 1025
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1026 1027
		   !!(flags & I915_WAIT_LOCKED));
#endif
1028
	GEM_BUG_ON(timeout < 0);
1029 1030

	if (i915_gem_request_completed(req))
1031
		return timeout;
1032

1033 1034
	if (!timeout)
		return -ETIME;
1035 1036 1037

	trace_i915_gem_request_wait_begin(req);

1038 1039
	if (!i915_sw_fence_done(&req->execute)) {
		timeout = __i915_request_wait_for_execute(req, flags, timeout);
1040 1041 1042
		if (timeout < 0)
			goto complete;

1043
		GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1044
	}
1045
	GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1046
	GEM_BUG_ON(!req->global_seqno);
1047

1048
	/* Optimistic short spin before touching IRQs */
1049 1050 1051 1052
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
1053 1054
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1055

1056
	intel_wait_init(&wait, req->global_seqno);
1057 1058 1059 1060 1061 1062 1063 1064 1065
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
1066
			timeout = -ERESTARTSYS;
1067 1068 1069
			break;
		}

1070 1071
		if (!timeout) {
			timeout = -ETIME;
1072 1073 1074
			break;
		}

1075 1076
		timeout = io_schedule_timeout(timeout);

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
			reset_wait_queue(&req->i915->gpu_error.wait_queue,
					 &reset);
			continue;
		}

1110 1111 1112 1113 1114 1115
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
1116 1117
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1118
	__set_current_state(TASK_RUNNING);
1119

1120 1121 1122
complete:
	trace_i915_gem_request_wait_end(req);

1123
	return timeout;
1124
}
1125

1126
static void engine_retire_requests(struct intel_engine_cs *engine)
1127 1128 1129
{
	struct drm_i915_gem_request *request, *next;

1130 1131
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
C
Chris Wilson 已提交
1132
		if (!__i915_gem_request_completed(request))
1133
			return;
1134 1135 1136 1137 1138 1139 1140 1141

		i915_gem_request_retire(request);
	}
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1142
	enum intel_engine_id id;
1143 1144 1145

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1146
	if (!dev_priv->gt.active_requests)
1147 1148 1149 1150
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);

1151 1152
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1153

1154
	if (!dev_priv->gt.active_requests)
1155 1156 1157
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(100));
1158
}