i915_gem_request.c 33.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36
{
37
	return to_request(fence)->timeline->common->name;
38 39
}

40
static bool i915_fence_signaled(struct dma_fence *fence)
41 42 43 44
{
	return i915_gem_request_completed(to_request(fence));
}

45
static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 47 48 49 50 51 52 53
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

54
static signed long i915_fence_wait(struct dma_fence *fence,
55
				   bool interruptible,
56
				   signed long timeout)
57
{
58
	return i915_wait_request(to_request(fence), interruptible, timeout);
59 60
}

61
static void i915_fence_release(struct dma_fence *fence)
62 63 64 65 66 67
{
	struct drm_i915_gem_request *req = to_request(fence);

	kmem_cache_free(req->i915->requests, req);
}

68
const struct dma_fence_ops i915_fence_ops = {
69 70 71 72 73 74 75 76
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
135
	INIT_LIST_HEAD(&dep->dfs_link);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

162 163
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
188 189
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
190 191
}

192 193 194 195 196 197
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

198 199
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
200 201
	struct i915_gem_active *active, *next;

202
	lockdep_assert_held(&request->i915->drm.struct_mutex);
203 204
	GEM_BUG_ON(!i915_sw_fence_done(&request->submit));
	GEM_BUG_ON(!i915_sw_fence_done(&request->execute));
205
	GEM_BUG_ON(!i915_gem_request_completed(request));
206
	GEM_BUG_ON(!request->i915->gt.active_requests);
207

208
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
209 210

	spin_lock_irq(&request->engine->timeline->lock);
211
	list_del_init(&request->link);
C
Chris Wilson 已提交
212
	spin_unlock_irq(&request->engine->timeline->lock);
213 214 215 216 217 218 219 220 221

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
222
	list_del(&request->ring_link);
223
	request->ring->last_retired_head = request->postfix;
224 225 226 227 228 229
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
253
		RCU_INIT_POINTER(active->request, NULL);
254 255 256 257

		active->retire(active, request);
	}

258 259 260 261 262 263 264 265
	i915_gem_request_remove_from_client(request);

	if (request->previous_context) {
		if (i915.enable_execlists)
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
	}

266
	/* Retirement decays the ban score as it is a sign of ctx progress */
267 268
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
269

270
	i915_gem_context_put(request->ctx);
271 272

	dma_fence_signal(&request->fence);
273 274

	i915_priotree_fini(request->i915, &request->priotree);
275
	i915_gem_request_put(request);
276 277 278 279 280 281 282 283
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
284 285
	GEM_BUG_ON(!i915_gem_request_completed(req));

286 287
	if (list_empty(&req->link))
		return;
288 289

	do {
290
		tmp = list_first_entry(&engine->timeline->requests,
291
				       typeof(*tmp), link);
292 293 294 295 296

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

297
static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
298
{
299 300 301
	struct i915_gpu_error *error = &dev_priv->gpu_error;

	if (i915_terminally_wedged(error))
302 303
		return -EIO;

304
	if (i915_reset_in_progress(error)) {
305 306 307
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these.
		 */
308
		if (!dev_priv->mm.interruptible)
309 310 311 312 313 314 315 316
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

317
static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
318
{
319
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
320
	struct intel_engine_cs *engine;
321
	enum intel_engine_id id;
322 323 324
	int ret;

	/* Carefully retire all requests without writing to the rings */
325
	ret = i915_gem_wait_for_idle(i915,
326 327 328 329 330
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

331
	i915_gem_retire_requests(i915);
332
	GEM_BUG_ON(i915->gt.active_requests > 1);
333 334

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
335
	if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
336 337
		while (intel_breadcrumbs_busy(i915))
			cond_resched(); /* spin until threads are complete */
338
	}
339
	atomic_set(&timeline->seqno, seqno);
340 341

	/* Finally reset hw state */
342
	for_each_engine(engine, i915, id)
343
		intel_engine_init_global_seqno(engine, seqno);
344

345 346 347 348 349 350 351 352
	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

353 354 355
	return 0;
}

356
int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
357 358 359
{
	struct drm_i915_private *dev_priv = to_i915(dev);

360 361
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

362 363 364 365 366 367
	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
368
	return i915_gem_init_global_seqno(dev_priv, seqno - 1);
369 370
}

371
static int reserve_global_seqno(struct drm_i915_private *i915)
372
{
373
	u32 active_requests = ++i915->gt.active_requests;
374
	u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
375
	int ret;
376

377
	/* Reservation is fine until we need to wrap around */
378
	if (likely(seqno + active_requests > seqno))
379
		return 0;
380

381 382 383 384
	ret = i915_gem_init_global_seqno(i915, 0);
	if (ret) {
		i915->gt.active_requests--;
		return ret;
385 386 387 388 389
	}

	return 0;
}

C
Chris Wilson 已提交
390 391
static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
{
392 393
	/* seqno only incremented under a mutex */
	return ++tl->seqno.counter;
C
Chris Wilson 已提交
394 395
}

396 397
static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
{
398
	return atomic_inc_return(&tl->seqno);
399 400
}

401
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
402
{
403
	struct intel_engine_cs *engine = request->engine;
404 405
	struct intel_timeline *timeline;
	u32 seqno;
406

C
Chris Wilson 已提交
407 408 409
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
410
	assert_spin_locked(&timeline->lock);
411

C
Chris Wilson 已提交
412
	seqno = timeline_get_seqno(timeline->common);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
	request->previous_seqno = timeline->last_submitted_seqno;
	timeline->last_submitted_seqno = seqno;

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

	GEM_BUG_ON(!request->global_seqno);
C
Chris Wilson 已提交
428 429
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
430

431
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
432 433 434
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

435
	i915_sw_fence_commit(&request->execute);
436 437 438 439 440 441
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
442

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	if (state == FENCE_COMPLETE) {
		struct drm_i915_gem_request *request =
			container_of(fence, typeof(*request), submit);

		request->engine->submit_request(request);
	}
C
Chris Wilson 已提交
460

461 462 463
	return NOTIFY_DONE;
}

464 465 466 467 468 469
static int __i915_sw_fence_call
execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	return NOTIFY_DONE;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
485 486 487 488 489
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

490 491
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

492 493 494 495
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
496
	ret = i915_gem_check_wedge(dev_priv);
497
	if (ret)
498
		return ERR_PTR(ret);
499

500 501 502 503
	ret = reserve_global_seqno(dev_priv);
	if (ret)
		return ERR_PTR(ret);

504
	/* Move the oldest request to the slab-cache (if not in use!) */
505
	req = list_first_entry_or_null(&engine->timeline->requests,
506
				       typeof(*req), link);
C
Chris Wilson 已提交
507
	if (req && __i915_gem_request_completed(req))
508
		i915_gem_request_retire(req);
509

510 511 512 513 514
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
515
	 * of being read by __i915_gem_active_get_rcu(). As such,
516 517
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
518
	 * read the request->global_seqno and increment the reference count.
519 520 521 522
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
523 524
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
525 526 527 528 529 530 531 532 533 534 535 536 537 538
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
539 540 541 542
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
543

C
Chris Wilson 已提交
544 545
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
546

547
	spin_lock_init(&req->lock);
548 549 550
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
551
		       req->timeline->fence_context,
C
Chris Wilson 已提交
552
		       __timeline_get_seqno(req->timeline->common));
553

554
	i915_sw_fence_init(&req->submit, submit_notify);
555 556 557 558 559 560
	i915_sw_fence_init(&req->execute, execute_notify);
	/* Ensure that the execute fence completes after the submit fence -
	 * as we complete the execute fence from within the submit fence
	 * callback, its completion would otherwise be visible first.
	 */
	i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
561

562 563
	i915_priotree_init(&req->priotree);

564
	INIT_LIST_HEAD(&req->active_list);
565 566
	req->i915 = dev_priv;
	req->engine = engine;
567
	req->ctx = i915_gem_context_get(ctx);
568

569
	/* No zalloc, must clear what we need by hand */
570
	req->global_seqno = 0;
571 572
	req->previous_context = NULL;
	req->file_priv = NULL;
C
Chris Wilson 已提交
573
	req->batch = NULL;
574

575 576 577 578 579 580 581 582
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
583
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
584 585 586 587 588 589 590 591

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;

592 593 594 595 596 597 598
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

599
	return req;
600 601

err_ctx:
602 603 604 605 606
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

607
	i915_gem_context_put(ctx);
608
	kmem_cache_free(dev_priv->requests, req);
609 610
err_unreserve:
	dev_priv->gt.active_requests--;
611
	return ERR_PTR(ret);
612 613
}

614 615 616 617
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
618
	int ret;
619 620 621

	GEM_BUG_ON(to == from);

622 623 624 625 626 627 628 629
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

630
	if (to->timeline == from->timeline)
631 632
		return 0;

633 634 635 636 637 638 639
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

640 641 642 643 644 645 646
	if (!from->global_seqno) {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

647
	if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
648 649 650 651
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
652 653 654 655 656 657 658
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
659 660 661 662 663 664
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

665
	to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
666 667 668
	return 0;
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
741 742
	struct dma_fence *excl;
	int ret = 0;
743 744

	if (write) {
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
764
	} else {
765
		excl = reservation_object_get_excl_rcu(obj->resv);
766 767
	}

768 769 770
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
771

772
		dma_fence_put(excl);
773 774
	}

775
	return ret;
776 777
}

778 779 780 781 782 783 784
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

785 786
	GEM_BUG_ON(!dev_priv->gt.active_requests);

787 788 789
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

790
	intel_enable_gt_powersave(dev_priv);
791 792 793 794 795 796 797 798 799 800 801 802 803 804
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
805
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
806
{
807 808
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
809
	struct intel_timeline *timeline = request->timeline;
810
	struct drm_i915_gem_request *prev;
C
Chris Wilson 已提交
811
	int err;
812

813
	lockdep_assert_held(&request->i915->drm.struct_mutex);
814 815
	trace_i915_gem_request_add(request);

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
831
		err = engine->emit_flush(request, EMIT_FLUSH);
832

833
		/* Not allowed to fail! */
C
Chris Wilson 已提交
834
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
835 836
	}

837
	/* Record the position of the start of the breadcrumb so that
838 839
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
840
	 * position of the ring's HEAD.
841
	 */
C
Chris Wilson 已提交
842 843
	err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(err);
844
	request->postfix = ring->tail;
C
Chris Wilson 已提交
845
	ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
846

847 848 849 850 851
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
852

853
	prev = i915_gem_active_raw(&timeline->last_request,
854
				   &request->i915->drm.struct_mutex);
855
	if (prev) {
856 857
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
858 859 860 861 862 863
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
864

C
Chris Wilson 已提交
865
	spin_lock_irq(&timeline->lock);
866
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
867 868 869 870
	spin_unlock_irq(&timeline->lock);

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
				     request->fence.seqno));
871

C
Chris Wilson 已提交
872
	timeline->last_submitted_seqno = request->fence.seqno;
873
	i915_gem_active_set(&timeline->last_request, request);
874

875
	list_add_tail(&request->ring_link, &ring->request_list);
876
	request->emitted_jiffies = jiffies;
877

878
	i915_gem_mark_busy(engine);
879

880 881 882 883 884 885 886 887 888 889 890
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
891
		engine->schedule(request, request->ctx->priority);
892

893 894 895
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
896 897
}

898 899 900 901 902 903 904 905 906 907
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
	unsigned int cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
957
		if (__i915_gem_request_completed(req))
958 959 960 961 962 963 964 965 966 967 968 969 970 971
			return true;

		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

		cpu_relax_lowlatency();
	} while (!need_resched());

	return false;
}

972
static long
973 974 975
__i915_request_wait_for_execute(struct drm_i915_gem_request *request,
				unsigned int flags,
				long timeout)
976 977 978 979 980 981 982 983 984 985 986
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
	DEFINE_WAIT(reset);
	DEFINE_WAIT(wait);

	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(q, &reset);

	do {
987
		prepare_to_wait(&request->execute.wait, &wait, state);
988

989
		if (i915_sw_fence_done(&request->execute))
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
			break;

		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&request->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(request->i915);
			reset_wait_queue(q, &reset);
			continue;
		}

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	} while (timeout);
1007
	finish_wait(&request->execute.wait, &wait);
1008 1009 1010 1011 1012 1013 1014

	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(q, &reset);

	return timeout;
}

1015
/**
1016
 * i915_wait_request - wait until execution of request has finished
1017
 * @req: the request to wait upon
1018
 * @flags: how to wait
1019 1020 1021 1022 1023
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1024
 *
1025 1026 1027
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1028
 *
1029 1030 1031 1032
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1033
 */
1034 1035 1036
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1037
{
1038 1039
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1040 1041 1042 1043
	DEFINE_WAIT(reset);
	struct intel_wait wait;

	might_sleep();
1044
#if IS_ENABLED(CONFIG_LOCKDEP)
1045 1046
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1047 1048
		   !!(flags & I915_WAIT_LOCKED));
#endif
1049
	GEM_BUG_ON(timeout < 0);
1050 1051

	if (i915_gem_request_completed(req))
1052
		return timeout;
1053

1054 1055
	if (!timeout)
		return -ETIME;
1056 1057 1058

	trace_i915_gem_request_wait_begin(req);

1059 1060
	if (!i915_sw_fence_done(&req->execute)) {
		timeout = __i915_request_wait_for_execute(req, flags, timeout);
1061 1062 1063
		if (timeout < 0)
			goto complete;

1064
		GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1065
	}
1066
	GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1067
	GEM_BUG_ON(!req->global_seqno);
1068

1069
	/* Optimistic short spin before touching IRQs */
1070 1071 1072 1073
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
1074 1075
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1076

1077
	intel_wait_init(&wait, req->global_seqno);
1078 1079 1080 1081 1082 1083 1084 1085 1086
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
1087
			timeout = -ERESTARTSYS;
1088 1089 1090
			break;
		}

1091 1092
		if (!timeout) {
			timeout = -ETIME;
1093 1094 1095
			break;
		}

1096 1097
		timeout = io_schedule_timeout(timeout);

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
			reset_wait_queue(&req->i915->gpu_error.wait_queue,
					 &reset);
			continue;
		}

1131 1132 1133 1134 1135 1136
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
1137 1138
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1139
	__set_current_state(TASK_RUNNING);
1140

1141 1142 1143
complete:
	trace_i915_gem_request_wait_end(req);

1144
	return timeout;
1145
}
1146

1147
static void engine_retire_requests(struct intel_engine_cs *engine)
1148 1149 1150
{
	struct drm_i915_gem_request *request, *next;

1151 1152
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
C
Chris Wilson 已提交
1153
		if (!__i915_gem_request_completed(request))
1154
			return;
1155 1156 1157 1158 1159 1160 1161 1162

		i915_gem_request_retire(request);
	}
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1163
	enum intel_engine_id id;
1164 1165 1166

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1167
	if (!dev_priv->gt.active_requests)
1168 1169
		return;

1170 1171
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1172
}