i915_gem_request.c 34.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36
{
37
	return to_request(fence)->timeline->common->name;
38 39
}

40
static bool i915_fence_signaled(struct dma_fence *fence)
41 42 43 44
{
	return i915_gem_request_completed(to_request(fence));
}

45
static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 47 48 49 50 51 52 53
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

54
static signed long i915_fence_wait(struct dma_fence *fence,
55
				   bool interruptible,
56
				   signed long timeout)
57
{
58
	return i915_wait_request(to_request(fence), interruptible, timeout);
59 60
}

61
static void i915_fence_release(struct dma_fence *fence)
62 63 64
{
	struct drm_i915_gem_request *req = to_request(fence);

65 66 67 68 69 70 71 72 73
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);
	i915_sw_fence_fini(&req->execute);

74 75 76
	kmem_cache_free(req->i915->requests, req);
}

77
const struct dma_fence_ops i915_fence_ops = {
78 79 80 81 82 83 84 85
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
144
	INIT_LIST_HEAD(&dep->dfs_link);
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

171 172
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
197 198
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
199 200
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	ret = i915_gem_wait_for_idle(i915,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

	i915_gem_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests > 1);

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	for_each_engine(engine, i915, id) {
		struct intel_timeline *tl = &timeline->engine[id];

		if (!i915_seqno_passed(seqno, tl->seqno)) {
			/* spin until threads are complete */
			while (intel_breadcrumbs_busy(engine))
				cond_resched();
		}

		/* Finally reset hw state */
		tl->seqno = seqno;
		intel_engine_init_global_seqno(engine, seqno);
	}

	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

	return 0;
}

int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	return reset_all_global_seqno(dev_priv, seqno - 1);
}

static int reserve_seqno(struct intel_engine_cs *engine)
{
	u32 active = ++engine->timeline->inflight_seqnos;
	u32 seqno = engine->timeline->seqno;
	int ret;

	/* Reservation is fine until we need to wrap around */
	if (likely(!add_overflows(seqno, active)))
		return 0;

	ret = reset_all_global_seqno(engine->i915, 0);
	if (ret) {
		engine->timeline->inflight_seqnos--;
		return ret;
	}

	return 0;
}

278 279 280 281 282 283
static void unreserve_seqno(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
	engine->timeline->inflight_seqnos--;
}

284 285 286 287 288 289
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

290 291
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
292
	struct intel_engine_cs *engine = request->engine;
293 294
	struct i915_gem_active *active, *next;

295
	lockdep_assert_held(&request->i915->drm.struct_mutex);
296 297
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
298
	GEM_BUG_ON(!i915_gem_request_completed(request));
299
	GEM_BUG_ON(!request->i915->gt.active_requests);
300

301
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
302

303
	spin_lock_irq(&engine->timeline->lock);
304
	list_del_init(&request->link);
305
	spin_unlock_irq(&engine->timeline->lock);
306 307 308 309 310 311 312 313 314

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
315
	list_del(&request->ring_link);
316
	request->ring->last_retired_head = request->postfix;
317 318 319 320 321 322
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
323
	unreserve_seqno(request->engine);
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
347
		RCU_INIT_POINTER(active->request, NULL);
348 349 350 351

		active->retire(active, request);
	}

352 353
	i915_gem_request_remove_from_client(request);

354
	/* Retirement decays the ban score as it is a sign of ctx progress */
355 356
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
357

358 359 360 361 362 363 364 365 366 367
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
368 369

	dma_fence_signal(&request->fence);
370 371

	i915_priotree_fini(request->i915, &request->priotree);
372
	i915_gem_request_put(request);
373 374 375 376 377 378 379 380
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
381 382
	GEM_BUG_ON(!i915_gem_request_completed(req));

383 384
	if (list_empty(&req->link))
		return;
385 386

	do {
387
		tmp = list_first_entry(&engine->timeline->requests,
388
				       typeof(*tmp), link);
389 390 391 392 393

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

394
static u32 timeline_get_seqno(struct intel_timeline *tl)
395
{
396
	return ++tl->seqno;
397 398
}

399
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
400
{
401
	struct intel_engine_cs *engine = request->engine;
402 403
	struct intel_timeline *timeline;
	u32 seqno;
404

C
Chris Wilson 已提交
405 406 407
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
408
	assert_spin_locked(&timeline->lock);
409

410
	seqno = timeline_get_seqno(timeline);
411 412 413 414 415 416 417 418 419 420 421
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

	GEM_BUG_ON(!request->global_seqno);
C
Chris Wilson 已提交
422 423
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
424

425
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
426 427 428
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

429
	i915_sw_fence_commit(&request->execute);
430
	trace_i915_gem_request_execute(request);
431 432 433 434 435 436
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
437

438 439 440 441 442 443 444 445 446 447 448
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
449 450
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);
451

452 453
	switch (state) {
	case FENCE_COMPLETE:
454
		trace_i915_gem_request_submit(request);
455
		request->engine->submit_request(request);
456 457 458 459 460
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
461
	}
C
Chris Wilson 已提交
462

463 464 465
	return NOTIFY_DONE;
}

466 467 468
static int __i915_sw_fence_call
execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
469 470 471 472 473 474 475 476 477 478 479 480
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), execute);

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
	}

481 482 483
	return NOTIFY_DONE;
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
499 500 501 502 503
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

504 505
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

506
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
507
	 * EIO if the GPU is already wedged.
508
	 */
509 510
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return ERR_PTR(-EIO);
511

512 513 514 515 516
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
517 518 519
	if (ret)
		return ERR_PTR(ret);

520
	ret = reserve_seqno(engine);
521 522 523
	if (ret)
		goto err_unpin;

524
	/* Move the oldest request to the slab-cache (if not in use!) */
525
	req = list_first_entry_or_null(&engine->timeline->requests,
526
				       typeof(*req), link);
C
Chris Wilson 已提交
527
	if (req && __i915_gem_request_completed(req))
528
		i915_gem_request_retire(req);
529

530 531 532 533 534
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
535
	 * of being read by __i915_gem_active_get_rcu(). As such,
536 537
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
538
	 * read the request->global_seqno and increment the reference count.
539 540 541 542
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
543 544
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
545 546 547 548 549 550 551 552 553 554 555 556 557 558
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
559 560 561 562
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
563

C
Chris Wilson 已提交
564 565
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
566

567
	spin_lock_init(&req->lock);
568 569 570
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
571
		       req->timeline->fence_context,
572
		       timeline_get_seqno(req->timeline));
573

574 575 576 577
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
	i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);

578 579 580 581 582
	/* Ensure that the execute fence completes after the submit fence -
	 * as we complete the execute fence from within the submit fence
	 * callback, its completion would otherwise be visible first.
	 */
	i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
583

584 585
	i915_priotree_init(&req->priotree);

586
	INIT_LIST_HEAD(&req->active_list);
587 588
	req->i915 = dev_priv;
	req->engine = engine;
589
	req->ctx = ctx;
590

591
	/* No zalloc, must clear what we need by hand */
592
	req->global_seqno = 0;
593
	req->file_priv = NULL;
C
Chris Wilson 已提交
594
	req->batch = NULL;
595

596 597 598 599 600 601 602 603
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
604
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
605

606
	ret = engine->request_alloc(req);
607 608 609
	if (ret)
		goto err_ctx;

610 611 612 613 614 615 616
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

617 618
	/* Check that we didn't interrupt ourselves with a new request */
	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
619
	return req;
620 621

err_ctx:
622 623 624 625 626
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

627
	kmem_cache_free(dev_priv->requests, req);
628
err_unreserve:
629
	unreserve_seqno(engine);
630 631
err_unpin:
	engine->context_unpin(engine, ctx);
632
	return ERR_PTR(ret);
633 634
}

635 636 637 638
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
639
	int ret;
640 641 642

	GEM_BUG_ON(to == from);

643 644 645 646 647 648 649 650
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

651
	if (to->timeline == from->timeline)
652 653
		return 0;

654 655 656 657 658 659 660
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

661 662 663 664 665 666 667
	if (!from->global_seqno) {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

668
	if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
669 670 671 672
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
673 674 675 676 677 678 679
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
680 681 682 683 684 685
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

686
	to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
687 688 689
	return 0;
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
762 763
	struct dma_fence *excl;
	int ret = 0;
764 765

	if (write) {
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
785
	} else {
786
		excl = reservation_object_get_excl_rcu(obj->resv);
787 788
	}

789 790 791
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
792

793
		dma_fence_put(excl);
794 795
	}

796
	return ret;
797 798
}

799 800 801 802 803 804 805
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

806 807
	GEM_BUG_ON(!dev_priv->gt.active_requests);

808 809 810
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

811
	intel_enable_gt_powersave(dev_priv);
812 813 814 815 816 817 818 819 820 821 822 823 824 825
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
826
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
827
{
828 829
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
830
	struct intel_timeline *timeline = request->timeline;
831
	struct drm_i915_gem_request *prev;
832
	u32 *cs;
C
Chris Wilson 已提交
833
	int err;
834

835
	lockdep_assert_held(&request->i915->drm.struct_mutex);
836 837
	trace_i915_gem_request_add(request);

838 839 840 841
	/* Make sure that no request gazumped us - if it was allocated after
	 * our i915_gem_request_alloc() and called __i915_add_request() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
842
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
859
		err = engine->emit_flush(request, EMIT_FLUSH);
860

861
		/* Not allowed to fail! */
C
Chris Wilson 已提交
862
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
863 864
	}

865
	/* Record the position of the start of the breadcrumb so that
866 867
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
868
	 * position of the ring's HEAD.
869
	 */
870 871 872
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);
873

874 875 876 877 878
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
879

880
	prev = i915_gem_active_raw(&timeline->last_request,
881
				   &request->i915->drm.struct_mutex);
882
	if (prev) {
883 884
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
885 886 887 888 889 890
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
891

C
Chris Wilson 已提交
892
	spin_lock_irq(&timeline->lock);
893
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
894 895
	spin_unlock_irq(&timeline->lock);

896
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
897
	i915_gem_active_set(&timeline->last_request, request);
898

899
	list_add_tail(&request->ring_link, &ring->request_list);
900
	request->emitted_jiffies = jiffies;
901

902 903
	if (!request->i915->gt.active_requests++)
		i915_gem_mark_busy(engine);
904

905 906 907 908 909 910 911 912 913 914 915
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
916
		engine->schedule(request, request->ctx->priority);
917

918 919 920
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
921 922
}

923 924 925 926 927 928 929 930 931 932
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
968 969
	struct intel_engine_cs *engine = req->engine;
	unsigned int irq, cpu;
970 971 972 973 974 975 976 977 978 979 980

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

981
	irq = atomic_read(&engine->irq_count);
982 983
	timeout_us += local_clock_us(&cpu);
	do {
984
		if (__i915_gem_request_completed(req))
985 986
			return true;

987 988 989 990 991 992 993 994
		/* Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (atomic_read(&engine->irq_count) != irq)
			break;

995 996 997 998 999 1000
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1001
		cpu_relax();
1002 1003 1004 1005 1006
	} while (!need_resched());

	return false;
}

1007
static long
1008 1009 1010
__i915_request_wait_for_execute(struct drm_i915_gem_request *request,
				unsigned int flags,
				long timeout)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
	DEFINE_WAIT(reset);
	DEFINE_WAIT(wait);

	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(q, &reset);

	do {
1022
		prepare_to_wait(&request->execute.wait, &wait, state);
1023

1024
		if (i915_sw_fence_done(&request->execute))
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
			break;

		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&request->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(request->i915);
			reset_wait_queue(q, &reset);
			continue;
		}

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

1040 1041 1042 1043 1044
		if (!timeout) {
			timeout = -ETIME;
			break;
		}

1045
		timeout = io_schedule_timeout(timeout);
1046
	} while (1);
1047
	finish_wait(&request->execute.wait, &wait);
1048 1049 1050 1051 1052 1053 1054

	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(q, &reset);

	return timeout;
}

1055
/**
1056
 * i915_wait_request - wait until execution of request has finished
1057
 * @req: the request to wait upon
1058
 * @flags: how to wait
1059 1060 1061 1062 1063
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1064
 *
1065 1066 1067
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1068
 *
1069 1070 1071 1072
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1073
 */
1074 1075 1076
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1077
{
1078 1079
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1080
	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1081 1082 1083 1084
	DEFINE_WAIT(reset);
	struct intel_wait wait;

	might_sleep();
1085
#if IS_ENABLED(CONFIG_LOCKDEP)
1086 1087
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1088 1089
		   !!(flags & I915_WAIT_LOCKED));
#endif
1090
	GEM_BUG_ON(timeout < 0);
1091 1092

	if (i915_gem_request_completed(req))
1093
		return timeout;
1094

1095 1096
	if (!timeout)
		return -ETIME;
1097

1098
	trace_i915_gem_request_wait_begin(req, flags);
1099

1100 1101 1102
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(errq, &reset);

1103 1104
	if (!i915_sw_fence_done(&req->execute)) {
		timeout = __i915_request_wait_for_execute(req, flags, timeout);
1105 1106 1107
		if (timeout < 0)
			goto complete;

1108
		GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1109
	}
1110
	GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1111
	GEM_BUG_ON(!req->global_seqno);
1112

1113
	/* Optimistic short spin before touching IRQs */
1114 1115 1116 1117
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
1118
	intel_wait_init(&wait, req->global_seqno);
1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
1128
			timeout = -ERESTARTSYS;
1129 1130 1131
			break;
		}

1132 1133
		if (!timeout) {
			timeout = -ETIME;
1134 1135 1136
			break;
		}

1137 1138
		timeout = io_schedule_timeout(timeout);

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
1167
			reset_wait_queue(errq, &reset);
1168 1169 1170
			continue;
		}

1171 1172 1173 1174 1175 1176 1177
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
	__set_current_state(TASK_RUNNING);
1178

1179
complete:
1180 1181
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(errq, &reset);
1182 1183
	trace_i915_gem_request_wait_end(req);

1184
	return timeout;
1185
}
1186

1187
static void engine_retire_requests(struct intel_engine_cs *engine)
1188 1189 1190
{
	struct drm_i915_gem_request *request, *next;

1191 1192
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
C
Chris Wilson 已提交
1193
		if (!__i915_gem_request_completed(request))
1194
			return;
1195 1196 1197 1198 1199 1200 1201 1202

		i915_gem_request_retire(request);
	}
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1203
	enum intel_engine_id id;
1204 1205 1206

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1207
	if (!dev_priv->gt.active_requests)
1208 1209
		return;

1210 1211
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1212
}
1213 1214 1215 1216 1217

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_gem_request.c"
#endif