i915_gem_request.c 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27 28
#include <linux/sched.h>
#include <linux/sched/clock.h>
29
#include <linux/sched/signal.h>
30

31 32
#include "i915_drv.h"

33
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 35 36 37
{
	return "i915";
}

38
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39
{
40
	return to_request(fence)->timeline->common->name;
41 42
}

43
static bool i915_fence_signaled(struct dma_fence *fence)
44 45 46 47
{
	return i915_gem_request_completed(to_request(fence));
}

48
static bool i915_fence_enable_signaling(struct dma_fence *fence)
49 50 51 52 53 54 55 56
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

57
static signed long i915_fence_wait(struct dma_fence *fence,
58
				   bool interruptible,
59
				   signed long timeout)
60
{
61
	return i915_wait_request(to_request(fence), interruptible, timeout);
62 63
}

64
static void i915_fence_release(struct dma_fence *fence)
65 66 67
{
	struct drm_i915_gem_request *req = to_request(fence);

68 69 70 71 72 73 74 75
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);

76 77 78
	kmem_cache_free(req->i915->requests, req);
}

79
const struct dma_fence_ops i915_fence_ops = {
80 81 82 83 84 85 86 87
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

88 89 90
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
91
	struct drm_i915_file_private *file_priv;
92

93
	file_priv = request->file_priv;
94 95 96 97
	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
98 99 100 101
	if (request->file_priv) {
		list_del(&request->client_link);
		request->file_priv = NULL;
	}
102 103 104
	spin_unlock(&file_priv->mm.lock);
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
124
	INIT_LIST_HEAD(&dep->dfs_link);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

151 152
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
177 178
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	ret = i915_gem_wait_for_idle(i915,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

	i915_gem_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests > 1);

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	for_each_engine(engine, i915, id) {
		struct intel_timeline *tl = &timeline->engine[id];

202 203 204
		if (wait_for(intel_engine_is_idle(engine), 50))
			return -EBUSY;

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
		if (!i915_seqno_passed(seqno, tl->seqno)) {
			/* spin until threads are complete */
			while (intel_breadcrumbs_busy(engine))
				cond_resched();
		}

		/* Finally reset hw state */
		tl->seqno = seqno;
		intel_engine_init_global_seqno(engine, seqno);
	}

	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

	return 0;
}

int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	return reset_all_global_seqno(dev_priv, seqno - 1);
}

static int reserve_seqno(struct intel_engine_cs *engine)
{
	u32 active = ++engine->timeline->inflight_seqnos;
	u32 seqno = engine->timeline->seqno;
	int ret;

	/* Reservation is fine until we need to wrap around */
	if (likely(!add_overflows(seqno, active)))
		return 0;

	ret = reset_all_global_seqno(engine->i915, 0);
	if (ret) {
		engine->timeline->inflight_seqnos--;
		return ret;
	}

	return 0;
}

261 262 263 264 265 266
static void unreserve_seqno(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
	engine->timeline->inflight_seqnos--;
}

267 268 269 270 271 272
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

273 274
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
275
	struct intel_engine_cs *engine = request->engine;
276 277
	struct i915_gem_active *active, *next;

278
	lockdep_assert_held(&request->i915->drm.struct_mutex);
279
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
280
	GEM_BUG_ON(!i915_gem_request_completed(request));
281
	GEM_BUG_ON(!request->i915->gt.active_requests);
282

283
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
284

285
	spin_lock_irq(&engine->timeline->lock);
286
	list_del_init(&request->link);
287
	spin_unlock_irq(&engine->timeline->lock);
288 289 290 291 292 293 294 295 296

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
297
	list_del(&request->ring_link);
298
	request->ring->head = request->postfix;
299 300 301 302 303 304
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
305
	unreserve_seqno(request->engine);
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
329
		RCU_INIT_POINTER(active->request, NULL);
330 331 332 333

		active->retire(active, request);
	}

334 335
	i915_gem_request_remove_from_client(request);

336
	/* Retirement decays the ban score as it is a sign of ctx progress */
337 338
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
339

340 341 342 343 344 345 346 347 348 349
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
350 351

	dma_fence_signal(&request->fence);
352 353

	i915_priotree_fini(request->i915, &request->priotree);
354
	i915_gem_request_put(request);
355 356 357 358 359 360 361 362
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
363 364
	GEM_BUG_ON(!i915_gem_request_completed(req));

365 366
	if (list_empty(&req->link))
		return;
367 368

	do {
369
		tmp = list_first_entry(&engine->timeline->requests,
370
				       typeof(*tmp), link);
371 372 373 374 375

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

376
static u32 timeline_get_seqno(struct intel_timeline *tl)
377
{
378
	return ++tl->seqno;
379 380
}

381
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
382
{
383
	struct intel_engine_cs *engine = request->engine;
384 385
	struct intel_timeline *timeline;
	u32 seqno;
386

387
	GEM_BUG_ON(!irqs_disabled());
388
	lockdep_assert_held(&engine->timeline->lock);
389

390 391
	trace_i915_gem_request_execute(request);

C
Chris Wilson 已提交
392 393 394
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
395

396
	seqno = timeline_get_seqno(timeline);
397 398 399 400 401 402 403 404 405 406
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

C
Chris Wilson 已提交
407 408
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
409

410
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
411 412 413
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

414
	wake_up_all(&request->execute);
415 416 417 418 419 420
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
421

422 423 424 425 426 427 428 429
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

430
void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
431
{
432 433
	struct intel_engine_cs *engine = request->engine;
	struct intel_timeline *timeline;
434

435
	GEM_BUG_ON(!irqs_disabled());
436
	lockdep_assert_held(&engine->timeline->lock);
437

438 439 440 441 442
	/* Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
	GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
	engine->timeline->seqno--;
C
Chris Wilson 已提交
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = 0;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_cancel_signaling(request);
	spin_unlock(&request->lock);

	/* Transfer back from the global per-engine timeline to per-context */
	timeline = request->timeline;
	GEM_BUG_ON(timeline == engine->timeline);

	spin_lock(&timeline->lock);
	list_move(&request->link, &timeline->requests);
	spin_unlock(&timeline->lock);

	/* We don't need to wake_up any waiters on request->execute, they
	 * will get woken by any other event or us re-adding this request
	 * to the engine timeline (__i915_gem_request_submit()). The waiters
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_unsubmit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
478 479
}

480
static int __i915_sw_fence_call
481
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
482
{
483 484 485 486 487
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
488
		trace_i915_gem_request_submit(request);
489
		request->engine->submit_request(request);
490 491 492 493 494 495 496
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
	}

497 498 499
	return NOTIFY_DONE;
}

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
515 516 517 518 519
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

520 521
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

522
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
523
	 * EIO if the GPU is already wedged.
524
	 */
525 526
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return ERR_PTR(-EIO);
527

528 529 530 531 532
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
533 534 535
	if (ret)
		return ERR_PTR(ret);

536
	ret = reserve_seqno(engine);
537 538 539
	if (ret)
		goto err_unpin;

540
	/* Move the oldest request to the slab-cache (if not in use!) */
541
	req = list_first_entry_or_null(&engine->timeline->requests,
542
				       typeof(*req), link);
543
	if (req && i915_gem_request_completed(req))
544
		i915_gem_request_retire(req);
545

546 547 548 549 550
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
551
	 * of being read by __i915_gem_active_get_rcu(). As such,
552 553
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
554
	 * read the request->global_seqno and increment the reference count.
555 556 557 558
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
559 560
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
561 562 563 564 565 566 567 568 569 570 571 572 573 574
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
575 576 577 578
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
579

C
Chris Wilson 已提交
580 581
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
582

583
	spin_lock_init(&req->lock);
584 585 586
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
587
		       req->timeline->fence_context,
588
		       timeline_get_seqno(req->timeline));
589

590 591
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
592
	init_waitqueue_head(&req->execute);
593

594 595
	i915_priotree_init(&req->priotree);

596
	INIT_LIST_HEAD(&req->active_list);
597 598
	req->i915 = dev_priv;
	req->engine = engine;
599
	req->ctx = ctx;
600

601
	/* No zalloc, must clear what we need by hand */
602
	req->global_seqno = 0;
603
	req->file_priv = NULL;
C
Chris Wilson 已提交
604
	req->batch = NULL;
605

606 607 608 609 610 611 612 613
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
614
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
615

616
	ret = engine->request_alloc(req);
617 618 619
	if (ret)
		goto err_ctx;

620 621 622 623 624 625 626
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

627 628
	/* Check that we didn't interrupt ourselves with a new request */
	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
629
	return req;
630 631

err_ctx:
632 633 634 635 636
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

637
	kmem_cache_free(dev_priv->requests, req);
638
err_unreserve:
639
	unreserve_seqno(engine);
640 641
err_unpin:
	engine->context_unpin(engine, ctx);
642
	return ERR_PTR(ret);
643 644
}

645 646 647 648
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
649
	u32 seqno;
650
	int ret;
651 652 653

	GEM_BUG_ON(to == from);

654 655 656 657 658 659 660 661
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

662
	if (to->timeline == from->timeline)
663 664
		return 0;

665 666 667 668 669 670 671
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

672 673
	seqno = i915_gem_request_global_seqno(from);
	if (!seqno) {
674 675 676 677 678 679
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

680
	if (seqno <= to->timeline->sync_seqno[from->engine->id])
681 682 683 684
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
685 686 687 688 689 690 691
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
692 693 694 695 696 697
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

698
	to->timeline->sync_seqno[from->engine->id] = seqno;
699 700 701
	return 0;
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
774 775
	struct dma_fence *excl;
	int ret = 0;
776 777

	if (write) {
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
797
	} else {
798
		excl = reservation_object_get_excl_rcu(obj->resv);
799 800
	}

801 802 803
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
804

805
		dma_fence_put(excl);
806 807
	}

808
	return ret;
809 810
}

811 812 813 814 815 816 817
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

818 819
	GEM_BUG_ON(!dev_priv->gt.active_requests);

820 821 822
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

823
	intel_enable_gt_powersave(dev_priv);
824 825 826 827 828 829 830 831 832 833 834 835 836 837
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
838
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
839
{
840 841
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
842
	struct intel_timeline *timeline = request->timeline;
843
	struct drm_i915_gem_request *prev;
844
	u32 *cs;
C
Chris Wilson 已提交
845
	int err;
846

847
	lockdep_assert_held(&request->i915->drm.struct_mutex);
848 849
	trace_i915_gem_request_add(request);

850 851 852 853
	/* Make sure that no request gazumped us - if it was allocated after
	 * our i915_gem_request_alloc() and called __i915_add_request() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
854
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
855

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
871
		err = engine->emit_flush(request, EMIT_FLUSH);
872

873
		/* Not allowed to fail! */
C
Chris Wilson 已提交
874
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
875 876
	}

877
	/* Record the position of the start of the breadcrumb so that
878 879
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
880
	 * position of the ring's HEAD.
881
	 */
882 883 884
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);
885

886 887 888 889 890
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
891

892
	prev = i915_gem_active_raw(&timeline->last_request,
893
				   &request->i915->drm.struct_mutex);
894
	if (prev) {
895 896
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
897 898 899 900 901 902
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
903

C
Chris Wilson 已提交
904
	spin_lock_irq(&timeline->lock);
905
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
906 907
	spin_unlock_irq(&timeline->lock);

908
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
909
	i915_gem_active_set(&timeline->last_request, request);
910

911
	list_add_tail(&request->ring_link, &ring->request_list);
912
	request->emitted_jiffies = jiffies;
913

914 915
	if (!request->i915->gt.active_requests++)
		i915_gem_mark_busy(engine);
916

917 918 919 920 921 922 923 924 925 926 927
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
928
		engine->schedule(request, request->ctx->priority);
929

930 931 932
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
968
			 u32 seqno, int state, unsigned long timeout_us)
969
{
970 971
	struct intel_engine_cs *engine = req->engine;
	unsigned int irq, cpu;
972 973 974 975 976 977 978 979 980 981 982

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

983
	irq = atomic_read(&engine->irq_count);
984 985
	timeout_us += local_clock_us(&cpu);
	do {
986 987 988 989 990
		if (seqno != i915_gem_request_global_seqno(req))
			break;

		if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
				      seqno))
991 992
			return true;

993 994 995 996 997 998 999 1000
		/* Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (atomic_read(&engine->irq_count) != irq)
			break;

1001 1002 1003 1004 1005 1006
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1007
		cpu_relax();
1008 1009 1010 1011 1012
	} while (!need_resched());

	return false;
}

1013
static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1014
{
1015
	if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1016
		return false;
1017

1018 1019 1020
	__set_current_state(TASK_RUNNING);
	i915_reset(request->i915);
	return true;
1021 1022
}

1023
/**
1024
 * i915_wait_request - wait until execution of request has finished
1025
 * @req: the request to wait upon
1026
 * @flags: how to wait
1027 1028 1029 1030 1031
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1032
 *
1033 1034 1035
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1036
 *
1037 1038 1039 1040
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1041
 */
1042 1043 1044
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1045
{
1046 1047
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1048
	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1049 1050
	DEFINE_WAIT_FUNC(reset, default_wake_function);
	DEFINE_WAIT_FUNC(exec, default_wake_function);
1051 1052 1053
	struct intel_wait wait;

	might_sleep();
1054
#if IS_ENABLED(CONFIG_LOCKDEP)
1055 1056
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1057 1058
		   !!(flags & I915_WAIT_LOCKED));
#endif
1059
	GEM_BUG_ON(timeout < 0);
1060 1061

	if (i915_gem_request_completed(req))
1062
		return timeout;
1063

1064 1065
	if (!timeout)
		return -ETIME;
1066

1067
	trace_i915_gem_request_wait_begin(req, flags);
1068

1069
	add_wait_queue(&req->execute, &exec);
1070 1071 1072
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(errq, &reset);

1073
	intel_wait_init(&wait, req);
1074

1075
restart:
1076 1077 1078 1079
	do {
		set_current_state(state);
		if (intel_wait_update_request(&wait, req))
			break;
1080

1081 1082 1083
		if (flags & I915_WAIT_LOCKED &&
		    __i915_wait_request_check_and_reset(req))
			continue;
1084

1085 1086
		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
1087
			goto complete;
1088
		}
1089

1090 1091 1092 1093
		if (!timeout) {
			timeout = -ETIME;
			goto complete;
		}
1094

1095 1096
		timeout = io_schedule_timeout(timeout);
	} while (1);
1097

1098
	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1099
	GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1100

1101
	/* Optimistic short spin before touching IRQs */
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

1113 1114 1115
	if (flags & I915_WAIT_LOCKED)
		__i915_wait_request_check_and_reset(req);

1116 1117
	for (;;) {
		if (signal_pending_state(state, current)) {
1118
			timeout = -ERESTARTSYS;
1119 1120 1121
			break;
		}

1122 1123
		if (!timeout) {
			timeout = -ETIME;
1124 1125 1126
			break;
		}

1127 1128
		timeout = io_schedule_timeout(timeout);

1129 1130
		if (intel_wait_complete(&wait) &&
		    intel_wait_check_request(&wait, req))
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
1155
		    __i915_wait_request_check_and_reset(req))
1156 1157
			continue;

1158 1159 1160
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1161 1162 1163 1164 1165

		if (!intel_wait_check_request(&wait, req)) {
			intel_engine_remove_wait(req->engine, &wait);
			goto restart;
		}
1166 1167 1168 1169
	}

	intel_engine_remove_wait(req->engine, &wait);
complete:
1170
	__set_current_state(TASK_RUNNING);
1171 1172
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(errq, &reset);
1173
	remove_wait_queue(&req->execute, &exec);
1174 1175
	trace_i915_gem_request_wait_end(req);

1176
	return timeout;
1177
}
1178

1179
static void engine_retire_requests(struct intel_engine_cs *engine)
1180 1181
{
	struct drm_i915_gem_request *request, *next;
1182 1183
	u32 seqno = intel_engine_get_seqno(engine);
	LIST_HEAD(retire);
1184

1185
	spin_lock_irq(&engine->timeline->lock);
1186 1187
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
1188 1189
		if (!i915_seqno_passed(seqno, request->global_seqno))
			break;
1190

1191
		list_move_tail(&request->link, &retire);
1192
	}
1193 1194 1195 1196
	spin_unlock_irq(&engine->timeline->lock);

	list_for_each_entry_safe(request, next, &retire, link)
		i915_gem_request_retire(request);
1197 1198 1199 1200 1201
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1202
	enum intel_engine_id id;
1203 1204 1205

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1206
	if (!dev_priv->gt.active_requests)
1207 1208
		return;

1209 1210
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1211
}
1212 1213 1214 1215 1216

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_gem_request.c"
#endif