i915_gem_request.c 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27 28
#include <linux/sched.h>
#include <linux/sched/clock.h>
29
#include <linux/sched/signal.h>
30

31 32
#include "i915_drv.h"

33
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 35 36 37
{
	return "i915";
}

38
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39
{
40 41 42 43 44 45 46 47 48 49 50
	/* The timeline struct (as part of the ppgtt underneath a context)
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

51
	return to_request(fence)->timeline->common->name;
52 53
}

54
static bool i915_fence_signaled(struct dma_fence *fence)
55 56 57 58
{
	return i915_gem_request_completed(to_request(fence));
}

59
static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 61 62 63 64 65 66 67
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

68
static signed long i915_fence_wait(struct dma_fence *fence,
69
				   bool interruptible,
70
				   signed long timeout)
71
{
72
	return i915_wait_request(to_request(fence), interruptible, timeout);
73 74
}

75
static void i915_fence_release(struct dma_fence *fence)
76 77 78
{
	struct drm_i915_gem_request *req = to_request(fence);

79 80 81 82 83 84 85 86
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);

87 88 89
	kmem_cache_free(req->i915->requests, req);
}

90
const struct dma_fence_ops i915_fence_ops = {
91 92 93 94 95 96 97 98
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

99 100 101
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
102
	struct drm_i915_file_private *file_priv;
103

104
	file_priv = request->file_priv;
105 106 107 108
	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
109 110 111 112
	if (request->file_priv) {
		list_del(&request->client_link);
		request->file_priv = NULL;
	}
113 114 115
	spin_unlock(&file_priv->mm.lock);
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
135
	INIT_LIST_HEAD(&dep->dfs_link);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

162 163
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
188 189
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	ret = i915_gem_wait_for_idle(i915,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	for_each_engine(engine, i915, id) {
207 208
		struct i915_gem_timeline *timeline;
		struct intel_timeline *tl = engine->timeline;
209 210 211 212 213 214 215 216 217

		if (!i915_seqno_passed(seqno, tl->seqno)) {
			/* spin until threads are complete */
			while (intel_breadcrumbs_busy(engine))
				cond_resched();
		}

		/* Finally reset hw state */
		intel_engine_init_global_seqno(engine, seqno);
218
		tl->seqno = seqno;
219

220 221 222
		list_for_each_entry(timeline, &i915->gt.timelines, link)
			memset(timeline->engine[id].sync_seqno, 0,
			       sizeof(timeline->engine[id].sync_seqno));
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	}

	return 0;
}

int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	return reset_all_global_seqno(dev_priv, seqno - 1);
}

static int reserve_seqno(struct intel_engine_cs *engine)
{
	u32 active = ++engine->timeline->inflight_seqnos;
	u32 seqno = engine->timeline->seqno;
	int ret;

	/* Reservation is fine until we need to wrap around */
	if (likely(!add_overflows(seqno, active)))
		return 0;

	ret = reset_all_global_seqno(engine->i915, 0);
	if (ret) {
		engine->timeline->inflight_seqnos--;
		return ret;
	}

	return 0;
}

262 263 264 265 266 267
static void unreserve_seqno(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
	engine->timeline->inflight_seqnos--;
}

268 269 270 271 272 273
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static void advance_ring(struct drm_i915_gem_request *request)
{
	unsigned int tail;

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	if (list_is_last(&request->ring_link, &request->ring->request_list))
		tail = request->ring->tail;
	else
		tail = request->postfix;
	list_del(&request->ring_link);

	request->ring->head = tail;
}

295 296
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
297
	struct intel_engine_cs *engine = request->engine;
298 299
	struct i915_gem_active *active, *next;

300
	lockdep_assert_held(&request->i915->drm.struct_mutex);
301
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
302
	GEM_BUG_ON(!i915_gem_request_completed(request));
303
	GEM_BUG_ON(!request->i915->gt.active_requests);
304

305
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
306

307
	spin_lock_irq(&engine->timeline->lock);
308
	list_del_init(&request->link);
309
	spin_unlock_irq(&engine->timeline->lock);
310

311 312 313 314 315 316
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
317
	unreserve_seqno(request->engine);
318
	advance_ring(request);
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
342
		RCU_INIT_POINTER(active->request, NULL);
343 344 345 346

		active->retire(active, request);
	}

347 348
	i915_gem_request_remove_from_client(request);

349
	/* Retirement decays the ban score as it is a sign of ctx progress */
350 351
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
352

353 354 355 356 357 358 359 360 361 362
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
363 364

	dma_fence_signal(&request->fence);
365 366

	i915_priotree_fini(request->i915, &request->priotree);
367
	i915_gem_request_put(request);
368 369 370 371 372 373 374 375
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
376 377
	GEM_BUG_ON(!i915_gem_request_completed(req));

378 379
	if (list_empty(&req->link))
		return;
380 381

	do {
382
		tmp = list_first_entry(&engine->timeline->requests,
383
				       typeof(*tmp), link);
384 385 386 387 388

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

389
static u32 timeline_get_seqno(struct intel_timeline *tl)
390
{
391
	return ++tl->seqno;
392 393
}

394
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
395
{
396
	struct intel_engine_cs *engine = request->engine;
397 398
	struct intel_timeline *timeline;
	u32 seqno;
399

400
	GEM_BUG_ON(!irqs_disabled());
401
	lockdep_assert_held(&engine->timeline->lock);
402

403 404
	trace_i915_gem_request_execute(request);

C
Chris Wilson 已提交
405 406 407
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
408

409
	seqno = timeline_get_seqno(timeline);
410 411 412 413 414 415 416 417 418 419
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

C
Chris Wilson 已提交
420 421
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
422

423
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
424 425 426
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

427
	wake_up_all(&request->execute);
428 429 430 431 432 433
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
434

435 436 437 438 439 440 441 442
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

443
void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
444
{
445 446
	struct intel_engine_cs *engine = request->engine;
	struct intel_timeline *timeline;
447

448
	GEM_BUG_ON(!irqs_disabled());
449
	lockdep_assert_held(&engine->timeline->lock);
450

451 452 453 454 455
	/* Only unwind in reverse order, required so that the per-context list
	 * is kept in seqno/ring order.
	 */
	GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
	engine->timeline->seqno--;
C
Chris Wilson 已提交
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = 0;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_cancel_signaling(request);
	spin_unlock(&request->lock);

	/* Transfer back from the global per-engine timeline to per-context */
	timeline = request->timeline;
	GEM_BUG_ON(timeline == engine->timeline);

	spin_lock(&timeline->lock);
	list_move(&request->link, &timeline->requests);
	spin_unlock(&timeline->lock);

	/* We don't need to wake_up any waiters on request->execute, they
	 * will get woken by any other event or us re-adding this request
	 * to the engine timeline (__i915_gem_request_submit()). The waiters
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_unsubmit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
491 492
}

493
static int __i915_sw_fence_call
494
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
495
{
496 497 498 499 500
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
501
		trace_i915_gem_request_submit(request);
502
		request->engine->submit_request(request);
503 504 505 506 507 508 509
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
	}

510 511 512
	return NOTIFY_DONE;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
528 529 530 531 532
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

533 534
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

535
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
536
	 * EIO if the GPU is already wedged.
537
	 */
538 539
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return ERR_PTR(-EIO);
540

541 542 543 544 545
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
546 547 548
	if (ret)
		return ERR_PTR(ret);

549
	ret = reserve_seqno(engine);
550 551 552
	if (ret)
		goto err_unpin;

553
	/* Move the oldest request to the slab-cache (if not in use!) */
554
	req = list_first_entry_or_null(&engine->timeline->requests,
555
				       typeof(*req), link);
556
	if (req && i915_gem_request_completed(req))
557
		i915_gem_request_retire(req);
558

559 560 561 562 563
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
564
	 * of being read by __i915_gem_active_get_rcu(). As such,
565 566
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
567
	 * read the request->global_seqno and increment the reference count.
568 569 570 571
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
572 573
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
574 575 576 577 578 579 580 581 582 583 584 585 586 587
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
588 589 590 591
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
592

C
Chris Wilson 已提交
593 594
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
595

596
	spin_lock_init(&req->lock);
597 598 599
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
600
		       req->timeline->fence_context,
601
		       timeline_get_seqno(req->timeline));
602

603 604
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
605
	init_waitqueue_head(&req->execute);
606

607 608
	i915_priotree_init(&req->priotree);

609
	INIT_LIST_HEAD(&req->active_list);
610 611
	req->i915 = dev_priv;
	req->engine = engine;
612
	req->ctx = ctx;
613

614
	/* No zalloc, must clear what we need by hand */
615
	req->global_seqno = 0;
616
	req->file_priv = NULL;
C
Chris Wilson 已提交
617
	req->batch = NULL;
618

619 620 621 622 623 624 625 626
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
627
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
628

629
	ret = engine->request_alloc(req);
630 631 632
	if (ret)
		goto err_ctx;

633 634 635 636 637 638 639
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

640 641
	/* Check that we didn't interrupt ourselves with a new request */
	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
642
	return req;
643 644

err_ctx:
645 646 647 648 649
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

650
	kmem_cache_free(dev_priv->requests, req);
651
err_unreserve:
652
	unreserve_seqno(engine);
653 654
err_unpin:
	engine->context_unpin(engine, ctx);
655
	return ERR_PTR(ret);
656 657
}

658 659 660 661
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
662
	u32 seqno;
663
	int ret;
664 665 666

	GEM_BUG_ON(to == from);

667 668 669 670 671 672 673 674
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

675
	if (to->timeline == from->timeline)
676 677
		return 0;

678 679 680 681 682 683 684
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

685 686
	seqno = i915_gem_request_global_seqno(from);
	if (!seqno) {
687 688 689 690 691 692
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

693
	if (seqno <= to->timeline->sync_seqno[from->engine->id])
694 695 696 697
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
698 699 700 701 702 703 704
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
705 706 707 708 709 710
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

711
	to->timeline->sync_seqno[from->engine->id] = seqno;
712 713 714
	return 0;
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
787 788
	struct dma_fence *excl;
	int ret = 0;
789 790

	if (write) {
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
810
	} else {
811
		excl = reservation_object_get_excl_rcu(obj->resv);
812 813
	}

814 815 816
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
817

818
		dma_fence_put(excl);
819 820
	}

821
	return ret;
822 823
}

824 825 826 827 828 829 830
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

831 832
	GEM_BUG_ON(!dev_priv->gt.active_requests);

833 834 835
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

836
	intel_enable_gt_powersave(dev_priv);
837 838 839 840 841 842 843 844 845 846 847 848 849 850
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
851
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
852
{
853 854
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
855
	struct intel_timeline *timeline = request->timeline;
856
	struct drm_i915_gem_request *prev;
857
	u32 *cs;
C
Chris Wilson 已提交
858
	int err;
859

860
	lockdep_assert_held(&request->i915->drm.struct_mutex);
861 862
	trace_i915_gem_request_add(request);

863 864 865 866
	/* Make sure that no request gazumped us - if it was allocated after
	 * our i915_gem_request_alloc() and called __i915_add_request() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
867
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
884
		err = engine->emit_flush(request, EMIT_FLUSH);
885

886
		/* Not allowed to fail! */
C
Chris Wilson 已提交
887
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
888 889
	}

890
	/* Record the position of the start of the breadcrumb so that
891 892
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
893
	 * position of the ring's HEAD.
894
	 */
895 896 897
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);
898

899 900 901 902 903
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
904

905
	prev = i915_gem_active_raw(&timeline->last_request,
906
				   &request->i915->drm.struct_mutex);
907
	if (prev) {
908 909
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
910 911 912 913 914 915
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
916

C
Chris Wilson 已提交
917
	spin_lock_irq(&timeline->lock);
918
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
919 920
	spin_unlock_irq(&timeline->lock);

921
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
922
	i915_gem_active_set(&timeline->last_request, request);
923

924
	list_add_tail(&request->ring_link, &ring->request_list);
925
	request->emitted_jiffies = jiffies;
926

927 928
	if (!request->i915->gt.active_requests++)
		i915_gem_mark_busy(engine);
929

930 931 932 933 934 935 936 937 938 939 940
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
941
		engine->schedule(request, request->ctx->priority);
942

943 944 945
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
981
			 u32 seqno, int state, unsigned long timeout_us)
982
{
983 984
	struct intel_engine_cs *engine = req->engine;
	unsigned int irq, cpu;
985 986 987 988 989 990 991 992 993 994 995

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

996
	irq = atomic_read(&engine->irq_count);
997 998
	timeout_us += local_clock_us(&cpu);
	do {
999 1000 1001 1002 1003
		if (seqno != i915_gem_request_global_seqno(req))
			break;

		if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
				      seqno))
1004 1005
			return true;

1006 1007 1008 1009 1010 1011 1012 1013
		/* Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (atomic_read(&engine->irq_count) != irq)
			break;

1014 1015 1016 1017 1018 1019
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1020
		cpu_relax();
1021 1022 1023 1024 1025
	} while (!need_resched());

	return false;
}

1026
static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1027
{
1028
	if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1029
		return false;
1030

1031 1032 1033
	__set_current_state(TASK_RUNNING);
	i915_reset(request->i915);
	return true;
1034 1035
}

1036
/**
1037
 * i915_wait_request - wait until execution of request has finished
1038
 * @req: the request to wait upon
1039
 * @flags: how to wait
1040 1041 1042 1043 1044
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1045
 *
1046 1047 1048
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1049
 *
1050 1051 1052 1053
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1054
 */
1055 1056 1057
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1058
{
1059 1060
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1061
	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1062 1063
	DEFINE_WAIT_FUNC(reset, default_wake_function);
	DEFINE_WAIT_FUNC(exec, default_wake_function);
1064 1065 1066
	struct intel_wait wait;

	might_sleep();
1067
#if IS_ENABLED(CONFIG_LOCKDEP)
1068 1069
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1070 1071
		   !!(flags & I915_WAIT_LOCKED));
#endif
1072
	GEM_BUG_ON(timeout < 0);
1073 1074

	if (i915_gem_request_completed(req))
1075
		return timeout;
1076

1077 1078
	if (!timeout)
		return -ETIME;
1079

1080
	trace_i915_gem_request_wait_begin(req, flags);
1081

1082
	add_wait_queue(&req->execute, &exec);
1083 1084 1085
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(errq, &reset);

1086
	intel_wait_init(&wait, req);
1087

1088
restart:
1089 1090 1091 1092
	do {
		set_current_state(state);
		if (intel_wait_update_request(&wait, req))
			break;
1093

1094 1095 1096
		if (flags & I915_WAIT_LOCKED &&
		    __i915_wait_request_check_and_reset(req))
			continue;
1097

1098 1099
		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
1100
			goto complete;
1101
		}
1102

1103 1104 1105 1106
		if (!timeout) {
			timeout = -ETIME;
			goto complete;
		}
1107

1108 1109
		timeout = io_schedule_timeout(timeout);
	} while (1);
1110

1111
	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1112
	GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1113

1114
	/* Optimistic short spin before touching IRQs */
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

1126 1127 1128
	if (flags & I915_WAIT_LOCKED)
		__i915_wait_request_check_and_reset(req);

1129 1130
	for (;;) {
		if (signal_pending_state(state, current)) {
1131
			timeout = -ERESTARTSYS;
1132 1133 1134
			break;
		}

1135 1136
		if (!timeout) {
			timeout = -ETIME;
1137 1138 1139
			break;
		}

1140 1141
		timeout = io_schedule_timeout(timeout);

1142 1143
		if (intel_wait_complete(&wait) &&
		    intel_wait_check_request(&wait, req))
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
1168
		    __i915_wait_request_check_and_reset(req))
1169 1170
			continue;

1171 1172 1173
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
1174 1175 1176 1177 1178

		if (!intel_wait_check_request(&wait, req)) {
			intel_engine_remove_wait(req->engine, &wait);
			goto restart;
		}
1179 1180 1181 1182
	}

	intel_engine_remove_wait(req->engine, &wait);
complete:
1183
	__set_current_state(TASK_RUNNING);
1184 1185
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(errq, &reset);
1186
	remove_wait_queue(&req->execute, &exec);
1187 1188
	trace_i915_gem_request_wait_end(req);

1189
	return timeout;
1190
}
1191

1192
static void engine_retire_requests(struct intel_engine_cs *engine)
1193 1194
{
	struct drm_i915_gem_request *request, *next;
1195 1196
	u32 seqno = intel_engine_get_seqno(engine);
	LIST_HEAD(retire);
1197

1198
	spin_lock_irq(&engine->timeline->lock);
1199 1200
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
1201 1202
		if (!i915_seqno_passed(seqno, request->global_seqno))
			break;
1203

1204
		list_move_tail(&request->link, &retire);
1205
	}
1206 1207 1208 1209
	spin_unlock_irq(&engine->timeline->lock);

	list_for_each_entry_safe(request, next, &retire, link)
		i915_gem_request_retire(request);
1210 1211 1212 1213 1214
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1215
	enum intel_engine_id id;
1216 1217 1218

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1219
	if (!dev_priv->gt.active_requests)
1220 1221
		return;

1222 1223
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1224
}
1225 1226 1227 1228 1229

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_gem_request.c"
#endif