i915_gem_request.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36
{
37
	return to_request(fence)->timeline->common->name;
38 39
}

40
static bool i915_fence_signaled(struct dma_fence *fence)
41 42 43 44
{
	return i915_gem_request_completed(to_request(fence));
}

45
static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 47 48 49 50 51 52 53
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

54
static signed long i915_fence_wait(struct dma_fence *fence,
55
				   bool interruptible,
56
				   signed long timeout)
57
{
58
	return i915_wait_request(to_request(fence), interruptible, timeout);
59 60
}

61
static void i915_fence_release(struct dma_fence *fence)
62 63 64
{
	struct drm_i915_gem_request *req = to_request(fence);

65 66 67 68 69 70 71 72
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);

73 74 75
	kmem_cache_free(req->i915->requests, req);
}

76
const struct dma_fence_ops i915_fence_ops = {
77 78 79 80 81 82 83 84
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
143
	INIT_LIST_HEAD(&dep->dfs_link);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

170 171
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
196 197
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
198 199
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
{
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int ret;

	/* Carefully retire all requests without writing to the rings */
	ret = i915_gem_wait_for_idle(i915,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

	i915_gem_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests > 1);

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
	for_each_engine(engine, i915, id) {
		struct intel_timeline *tl = &timeline->engine[id];

		if (!i915_seqno_passed(seqno, tl->seqno)) {
			/* spin until threads are complete */
			while (intel_breadcrumbs_busy(engine))
				cond_resched();
		}

		/* Finally reset hw state */
		tl->seqno = seqno;
		intel_engine_init_global_seqno(engine, seqno);
	}

	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

	return 0;
}

int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	return reset_all_global_seqno(dev_priv, seqno - 1);
}

static int reserve_seqno(struct intel_engine_cs *engine)
{
	u32 active = ++engine->timeline->inflight_seqnos;
	u32 seqno = engine->timeline->seqno;
	int ret;

	/* Reservation is fine until we need to wrap around */
	if (likely(!add_overflows(seqno, active)))
		return 0;

	ret = reset_all_global_seqno(engine->i915, 0);
	if (ret) {
		engine->timeline->inflight_seqnos--;
		return ret;
	}

	return 0;
}

277 278 279 280 281 282
static void unreserve_seqno(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
	engine->timeline->inflight_seqnos--;
}

283 284 285 286 287 288
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

289 290
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
291
	struct intel_engine_cs *engine = request->engine;
292 293
	struct i915_gem_active *active, *next;

294
	lockdep_assert_held(&request->i915->drm.struct_mutex);
295
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
296
	GEM_BUG_ON(!i915_gem_request_completed(request));
297
	GEM_BUG_ON(!request->i915->gt.active_requests);
298

299
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
300

301
	spin_lock_irq(&engine->timeline->lock);
302
	list_del_init(&request->link);
303
	spin_unlock_irq(&engine->timeline->lock);
304 305 306 307 308 309 310 311 312

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
313
	list_del(&request->ring_link);
314
	request->ring->last_retired_head = request->postfix;
315 316 317 318 319 320
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
321
	unreserve_seqno(request->engine);
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
345
		RCU_INIT_POINTER(active->request, NULL);
346 347 348 349

		active->retire(active, request);
	}

350 351
	i915_gem_request_remove_from_client(request);

352
	/* Retirement decays the ban score as it is a sign of ctx progress */
353 354
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
355

356 357 358 359 360 361 362 363 364 365
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
366 367

	dma_fence_signal(&request->fence);
368 369

	i915_priotree_fini(request->i915, &request->priotree);
370
	i915_gem_request_put(request);
371 372 373 374 375 376 377 378
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
379 380
	GEM_BUG_ON(!i915_gem_request_completed(req));

381 382
	if (list_empty(&req->link))
		return;
383 384

	do {
385
		tmp = list_first_entry(&engine->timeline->requests,
386
				       typeof(*tmp), link);
387 388 389 390 391

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

392
static u32 timeline_get_seqno(struct intel_timeline *tl)
393
{
394
	return ++tl->seqno;
395 396
}

397
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
398
{
399
	struct intel_engine_cs *engine = request->engine;
400 401
	struct intel_timeline *timeline;
	u32 seqno;
402

403 404
	trace_i915_gem_request_execute(request);

C
Chris Wilson 已提交
405 406 407
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
408
	assert_spin_locked(&timeline->lock);
409

410
	seqno = timeline_get_seqno(timeline);
411 412 413 414 415 416 417 418 419 420
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

C
Chris Wilson 已提交
421 422
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
423

424
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
425 426 427
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

428
	wake_up_all(&request->execute);
429 430 431 432 433 434
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
435

436 437 438 439 440 441 442 443 444 445 446
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
447 448
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);
449

450 451
	switch (state) {
	case FENCE_COMPLETE:
452
		trace_i915_gem_request_submit(request);
453
		request->engine->submit_request(request);
454 455 456 457 458
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
459
	}
C
Chris Wilson 已提交
460

461 462 463
	return NOTIFY_DONE;
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
479 480 481 482 483
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

484 485
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

486
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
487
	 * EIO if the GPU is already wedged.
488
	 */
489 490
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return ERR_PTR(-EIO);
491

492 493 494 495 496
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
497 498 499
	if (ret)
		return ERR_PTR(ret);

500
	ret = reserve_seqno(engine);
501 502 503
	if (ret)
		goto err_unpin;

504
	/* Move the oldest request to the slab-cache (if not in use!) */
505
	req = list_first_entry_or_null(&engine->timeline->requests,
506
				       typeof(*req), link);
507
	if (req && i915_gem_request_completed(req))
508
		i915_gem_request_retire(req);
509

510 511 512 513 514
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
515
	 * of being read by __i915_gem_active_get_rcu(). As such,
516 517
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
518
	 * read the request->global_seqno and increment the reference count.
519 520 521 522
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
523 524
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
525 526 527 528 529 530 531 532 533 534 535 536 537 538
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
539 540 541 542
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
543

C
Chris Wilson 已提交
544 545
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
546

547
	spin_lock_init(&req->lock);
548 549 550
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
551
		       req->timeline->fence_context,
552
		       timeline_get_seqno(req->timeline));
553

554 555
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
556
	init_waitqueue_head(&req->execute);
557

558 559
	i915_priotree_init(&req->priotree);

560
	INIT_LIST_HEAD(&req->active_list);
561 562
	req->i915 = dev_priv;
	req->engine = engine;
563
	req->ctx = ctx;
564

565
	/* No zalloc, must clear what we need by hand */
566
	req->global_seqno = 0;
567
	req->file_priv = NULL;
C
Chris Wilson 已提交
568
	req->batch = NULL;
569

570 571 572 573 574 575 576 577
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
578
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
579

580
	ret = engine->request_alloc(req);
581 582 583
	if (ret)
		goto err_ctx;

584 585 586 587 588 589 590
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

591 592
	/* Check that we didn't interrupt ourselves with a new request */
	GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
593
	return req;
594 595

err_ctx:
596 597 598 599 600
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

601
	kmem_cache_free(dev_priv->requests, req);
602
err_unreserve:
603
	unreserve_seqno(engine);
604 605
err_unpin:
	engine->context_unpin(engine, ctx);
606
	return ERR_PTR(ret);
607 608
}

609 610 611 612
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
613
	u32 seqno;
614
	int ret;
615 616 617

	GEM_BUG_ON(to == from);

618 619 620 621 622 623 624 625
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

626
	if (to->timeline == from->timeline)
627 628
		return 0;

629 630 631 632 633 634 635
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

636 637
	seqno = i915_gem_request_global_seqno(from);
	if (!seqno) {
638 639 640 641 642 643
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

644
	if (seqno <= to->timeline->sync_seqno[from->engine->id])
645 646 647 648
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
649 650 651 652 653 654 655
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
656 657 658 659 660 661
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

662
	to->timeline->sync_seqno[from->engine->id] = seqno;
663 664 665
	return 0;
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
738 739
	struct dma_fence *excl;
	int ret = 0;
740 741

	if (write) {
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
761
	} else {
762
		excl = reservation_object_get_excl_rcu(obj->resv);
763 764
	}

765 766 767
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
768

769
		dma_fence_put(excl);
770 771
	}

772
	return ret;
773 774
}

775 776 777 778 779 780 781
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

782 783
	GEM_BUG_ON(!dev_priv->gt.active_requests);

784 785 786
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

787
	intel_enable_gt_powersave(dev_priv);
788 789 790 791 792 793 794 795 796 797 798 799 800 801
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
802
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
803
{
804 805
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
806
	struct intel_timeline *timeline = request->timeline;
807
	struct drm_i915_gem_request *prev;
808
	u32 *cs;
C
Chris Wilson 已提交
809
	int err;
810

811
	lockdep_assert_held(&request->i915->drm.struct_mutex);
812 813
	trace_i915_gem_request_add(request);

814 815 816 817
	/* Make sure that no request gazumped us - if it was allocated after
	 * our i915_gem_request_alloc() and called __i915_add_request() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
818
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
835
		err = engine->emit_flush(request, EMIT_FLUSH);
836

837
		/* Not allowed to fail! */
C
Chris Wilson 已提交
838
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
839 840
	}

841
	/* Record the position of the start of the breadcrumb so that
842 843
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
844
	 * position of the ring's HEAD.
845
	 */
846 847 848
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);
849

850 851 852 853 854
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
855

856
	prev = i915_gem_active_raw(&timeline->last_request,
857
				   &request->i915->drm.struct_mutex);
858
	if (prev) {
859 860
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
861 862 863 864 865 866
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
867

C
Chris Wilson 已提交
868
	spin_lock_irq(&timeline->lock);
869
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
870 871
	spin_unlock_irq(&timeline->lock);

872
	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
873
	i915_gem_active_set(&timeline->last_request, request);
874

875
	list_add_tail(&request->ring_link, &ring->request_list);
876
	request->emitted_jiffies = jiffies;
877

878 879
	if (!request->i915->gt.active_requests++)
		i915_gem_mark_busy(engine);
880

881 882 883 884 885 886 887 888 889 890 891
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
892
		engine->schedule(request, request->ctx->priority);
893

894 895 896
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
897 898
}

899 900 901 902 903 904 905 906 907 908
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
942
			 u32 seqno, int state, unsigned long timeout_us)
943
{
944 945
	struct intel_engine_cs *engine = req->engine;
	unsigned int irq, cpu;
946 947 948 949 950 951 952 953 954 955 956

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

957
	irq = atomic_read(&engine->irq_count);
958 959
	timeout_us += local_clock_us(&cpu);
	do {
960 961 962 963 964
		if (seqno != i915_gem_request_global_seqno(req))
			break;

		if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
				      seqno))
965 966
			return true;

967 968 969 970 971 972 973 974
		/* Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (atomic_read(&engine->irq_count) != irq)
			break;

975 976 977 978 979 980
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

981
		cpu_relax();
982 983 984 985 986 987
	} while (!need_resched());

	return false;
}

/**
988
 * i915_wait_request - wait until execution of request has finished
989
 * @req: the request to wait upon
990
 * @flags: how to wait
991 992 993 994 995
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
996
 *
997 998 999
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1000
 *
1001 1002 1003 1004
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1005
 */
1006 1007 1008
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1009
{
1010 1011
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1012
	wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1013
	DEFINE_WAIT(reset);
1014
	DEFINE_WAIT(exec);
1015 1016 1017
	struct intel_wait wait;

	might_sleep();
1018
#if IS_ENABLED(CONFIG_LOCKDEP)
1019 1020
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1021 1022
		   !!(flags & I915_WAIT_LOCKED));
#endif
1023
	GEM_BUG_ON(timeout < 0);
1024 1025

	if (i915_gem_request_completed(req))
1026
		return timeout;
1027

1028 1029
	if (!timeout)
		return -ETIME;
1030

1031
	trace_i915_gem_request_wait_begin(req, flags);
1032

1033 1034 1035
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(errq, &reset);

1036 1037
	intel_wait_init(&wait);

1038
	reset_wait_queue(&req->execute, &exec);
1039
	if (!intel_wait_update_request(&wait, req)) {
1040
		do {
1041
			set_current_state(state);
1042 1043

			if (intel_wait_update_request(&wait, req))
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
				break;

			if (flags & I915_WAIT_LOCKED &&
			    i915_reset_in_progress(&req->i915->gpu_error)) {
				__set_current_state(TASK_RUNNING);
				i915_reset(req->i915);
				reset_wait_queue(errq, &reset);
				continue;
			}

			if (signal_pending_state(state, current)) {
				timeout = -ERESTARTSYS;
				break;
			}

			if (!timeout) {
				timeout = -ETIME;
				break;
			}

			timeout = io_schedule_timeout(timeout);
		} while (1);
1066
		finish_wait(&req->execute, &exec);
1067

1068 1069 1070
		if (timeout < 0)
			goto complete;

1071
		GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1072
	}
1073
	GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1074

1075
	/* Optimistic short spin before touching IRQs */
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
1089
			timeout = -ERESTARTSYS;
1090 1091 1092
			break;
		}

1093 1094
		if (!timeout) {
			timeout = -ETIME;
1095 1096 1097
			break;
		}

1098 1099
		timeout = io_schedule_timeout(timeout);

1100 1101
		if (intel_wait_complete(&wait) &&
		    intel_wait_check_request(&wait, req))
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
1129
			reset_wait_queue(errq, &reset);
1130 1131 1132
			continue;
		}

1133 1134 1135 1136 1137 1138 1139
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
	__set_current_state(TASK_RUNNING);
1140

1141
complete:
1142 1143
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(errq, &reset);
1144 1145
	trace_i915_gem_request_wait_end(req);

1146
	return timeout;
1147
}
1148

1149
static void engine_retire_requests(struct intel_engine_cs *engine)
1150 1151
{
	struct drm_i915_gem_request *request, *next;
1152 1153
	u32 seqno = intel_engine_get_seqno(engine);
	LIST_HEAD(retire);
1154

1155
	spin_lock_irq(&engine->timeline->lock);
1156 1157
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
1158 1159
		if (!i915_seqno_passed(seqno, request->global_seqno))
			break;
1160

1161
		list_move_tail(&request->link, &retire);
1162
	}
1163 1164 1165 1166
	spin_unlock_irq(&engine->timeline->lock);

	list_for_each_entry_safe(request, next, &retire, link)
		i915_gem_request_retire(request);
1167 1168 1169 1170 1171
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1172
	enum intel_engine_id id;
1173 1174 1175

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1176
	if (!dev_priv->gt.active_requests)
1177 1178
		return;

1179 1180
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1181
}
1182 1183 1184 1185 1186

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_gem_request.c"
#endif