mmu.c 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
K
Kees Cook 已提交
25
#include <asm/fixmap.h>
26
#include <asm/sections.h>
27
#include <asm/setup.h>
28
#include <asm/smp_plat.h>
29
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
30
#include <asm/highmem.h>
31
#include <asm/system_info.h>
32
#include <asm/traps.h>
33 34
#include <asm/procinfo.h>
#include <asm/memory.h>
35 36 37

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
38
#include <asm/mach/pci.h>
39
#include <asm/fixmap.h>
40 41

#include "mm.h"
42
#include "tcm.h"
43 44 45 46 47 48

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
49
EXPORT_SYMBOL(empty_zero_page);
50 51 52 53 54 55

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

56 57
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

58 59 60 61 62 63 64 65
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
66
pgprot_t pgprot_user;
67
pgprot_t pgprot_kernel;
68 69 70
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
71

72
EXPORT_SYMBOL(pgprot_user);
73 74 75 76 77
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
78
	pmdval_t	pmd;
79
	pteval_t	pte;
80
	pteval_t	pte_s2;
81 82
};

83 84 85 86 87 88
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

89 90 91 92 93
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
94
		.pte		= L_PTE_MT_UNCACHED,
95
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
96 97 98 99
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
100
		.pte		= L_PTE_MT_BUFFERABLE,
101
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
102 103 104 105
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
106
		.pte		= L_PTE_MT_WRITETHROUGH,
107
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
108 109 110 111
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
112
		.pte		= L_PTE_MT_WRITEBACK,
113
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
114 115 116 117
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
118
		.pte		= L_PTE_MT_WRITEALLOC,
119
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
120 121 122
	}
};

123
#ifdef CONFIG_CPU_CP15
124 125
static unsigned long initial_pmd_value __initdata = 0;

126
/*
127 128 129 130 131
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
132
 */
133
void __init init_default_cache_policy(unsigned long pmd)
134 135 136
{
	int i;

137 138
	initial_pmd_value = pmd;

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

160 161 162
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

163
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
164
			selected = i;
165 166 167
			break;
		}
	}
168 169 170 171

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

172 173 174 175 176 177 178
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
179 180 181 182 183 184 185 186 187 188 189
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
190
	}
191
	return 0;
192
}
193
early_param("cachepolicy", early_cachepolicy);
194

195
static int __init early_nocache(char *__unused)
196 197
{
	char *p = "buffered";
R
Russell King 已提交
198
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
199 200
	early_cachepolicy(p);
	return 0;
201
}
202
early_param("nocache", early_nocache);
203

204
static int __init early_nowrite(char *__unused)
205 206
{
	char *p = "uncached";
R
Russell King 已提交
207
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
208 209
	early_cachepolicy(p);
	return 0;
210
}
211
early_param("nowb", early_nowrite);
212

213
#ifndef CONFIG_ARM_LPAE
214
static int __init early_ecc(char *p)
215
{
216
	if (memcmp(p, "on", 2) == 0)
217
		ecc_mask = PMD_PROTECTION;
218
	else if (memcmp(p, "off", 3) == 0)
219
		ecc_mask = 0;
220
	return 0;
221
}
222
early_param("ecc", early_ecc);
223
#endif
224

225 226 227 228
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
229
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
230 231 232 233 234
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
235
	pr_warn("noalign kernel parameter not supported without cp15\n");
236 237 238 239 240
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

241
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
243
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
244

245
static struct mem_type mem_types[] = {
246
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
247 248
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
249 250 251
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
252
		.prot_l1	= PMD_TYPE_TABLE,
253
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
254 255 256
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
257
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
258
		.prot_l1	= PMD_TYPE_TABLE,
259
		.prot_sect	= PROT_SECT_DEVICE,
260 261 262
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
263
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
264 265 266
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
267
	},
268
	[MT_DEVICE_WC] = {	/* ioremap_wc */
269
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
270
		.prot_l1	= PMD_TYPE_TABLE,
271
		.prot_sect	= PROT_SECT_DEVICE,
272
		.domain		= DOMAIN_IO,
273
	},
274 275 276 277 278 279
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
280
	[MT_CACHECLEAN] = {
281
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
282 283
		.domain    = DOMAIN_KERNEL,
	},
284
#ifndef CONFIG_ARM_LPAE
285
	[MT_MINICLEAN] = {
286
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
287 288
		.domain    = DOMAIN_KERNEL,
	},
289
#endif
290 291
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292
				L_PTE_RDONLY,
293
		.prot_l1   = PMD_TYPE_TABLE,
294
		.domain    = DOMAIN_VECTORS,
295 296 297
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
298
				L_PTE_USER | L_PTE_RDONLY,
299
		.prot_l1   = PMD_TYPE_TABLE,
300
		.domain    = DOMAIN_VECTORS,
301
	},
302
	[MT_MEMORY_RWX] = {
303
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
304
		.prot_l1   = PMD_TYPE_TABLE,
305
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 307
		.domain    = DOMAIN_KERNEL,
	},
308 309 310 311 312 313 314
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
315
	[MT_ROM] = {
316
		.prot_sect = PMD_TYPE_SECT,
317 318
		.domain    = DOMAIN_KERNEL,
	},
319
	[MT_MEMORY_RWX_NONCACHED] = {
320
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321
				L_PTE_MT_BUFFERABLE,
322
		.prot_l1   = PMD_TYPE_TABLE,
323 324 325
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
326
	[MT_MEMORY_RW_DTCM] = {
327
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328
				L_PTE_XN,
329 330 331
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
332
	},
333
	[MT_MEMORY_RWX_ITCM] = {
334
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
335
		.prot_l1   = PMD_TYPE_TABLE,
336
		.domain    = DOMAIN_KERNEL,
337
	},
338
	[MT_MEMORY_RW_SO] = {
339
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340
				L_PTE_MT_UNCACHED | L_PTE_XN,
341 342 343 344 345
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
346
	[MT_MEMORY_DMA_READY] = {
347 348
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
349 350 351
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
352 353
};

354 355 356 357
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
358
EXPORT_SYMBOL(get_mem_type);
359

K
Kees Cook 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
	pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

383 384 385 386 387 388 389
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
390
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
391
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
392 393 394
	int cpu_arch = cpu_architecture();
	int i;

395
	if (cpu_arch < CPU_ARCH_ARMv6) {
396
#if defined(CONFIG_CPU_DCACHE_DISABLE)
397 398
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
399
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
400 401
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
402
#endif
403
	}
404 405 406 407 408
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
409

410 411 412 413 414 415 416 417 418
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
419
	}
420

421
	/*
422 423 424
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
425
	 */
426 427 428 429 430 431
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
432 433

	/*
434 435 436
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
437
	 */
438
	if (cpu_is_xscale() || cpu_is_xsc3()) {
439
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
440
			mem_types[i].prot_sect &= ~PMD_BIT4;
441 442 443 444
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
445 446
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
447 448 449 450
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
451

452 453 454 455 456 457 458 459 460 461 462 463 464
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
465 466 467

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
513
	cp = &cache_policies[cachepolicy];
514
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
515
	s2_pgprot = cp->pte_s2;
516 517
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
518

519
#ifndef CONFIG_ARM_LPAE
520 521 522 523 524 525 526
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
527 528 529 530 531 532 533 534 535

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
		user_pmd_table |= PMD_PXNTABLE;
	}
536
#endif
537

538 539 540 541
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
542
#ifndef CONFIG_ARM_LPAE
543 544 545 546 547 548 549
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
550
#endif
551

552 553 554 555 556 557
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
558 559 560
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
561
			s2_pgprot |= L_PTE_SHARED;
562 563 564 565
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
566 567
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
568 569
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
570
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
571 572
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
573
		}
574 575
	}

576 577 578 579 580 581 582
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
583
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
584 585 586
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
587
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
588 589 590
				PMD_SECT_TEX(1);
		}
	} else {
591
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
592 593
	}

594 595 596 597 598 599
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
600 601
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
602 603 604
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
605 606 607 608 609

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
610 611
#endif

612
	for (i = 0; i < 16; i++) {
613
		pteval_t v = pgprot_val(protection_map[i]);
614
		protection_map[i] = __pgprot(v | user_pgprot);
615 616
	}

617 618
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
619

620
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
621
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
622
				 L_PTE_DIRTY | kern_pgprot);
623 624 625
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
626 627 628

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
629 630
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
631 632
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
633
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
634
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
635 636 637 638 639 640 641 642 643 644 645
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
646 647
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
648 649 650 651 652 653 654 655

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
656 657
}

658 659 660 661 662 663 664 665 666 667 668 669 670
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

671 672
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

673
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
674
{
675
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
676 677
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
678 679
}

680 681 682 683 684
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
685
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
686
{
687
	if (pmd_none(*pmd)) {
688
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
689
		__pmd_populate(pmd, __pa(pte), prot);
690
	}
R
Russell King 已提交
691 692 693
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
694

R
Russell King 已提交
695 696 697 698 699
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
700
	do {
701
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
702 703
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
704 705
}

706
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
707 708
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
709
{
710 711
	pmd_t *p = pmd;

712
#ifndef CONFIG_ARM_LPAE
713
	/*
714 715 716 717 718 719 720
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
721
	 */
722 723
	if (addr & SECTION_SIZE)
		pmd++;
724
#endif
725 726 727 728
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
729

730
	flush_pmd_entry(p);
731
}
732

733 734 735 736 737 738 739 740
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
741
		/*
742 743
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
744
		 */
745 746 747 748 749 750 751 752
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
753
			__map_init_section(pmd, addr, next, phys, type);
754 755 756 757 758 759 760 761
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
762 763
}

764
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
765 766
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
767 768 769 770 771 772
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
773
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
774 775 776 777
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

778
#ifndef CONFIG_ARM_LPAE
779 780 781
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
782 783
	unsigned long addr, length, end;
	phys_addr_t phys;
784 785 786
	pgd_t *pgd;

	addr = md->virtual;
787
	phys = __pfn_to_phys(md->pfn);
788 789 790
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
R
Russell King 已提交
791
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
792
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
793 794 795 796 797 798 799 800 801 802
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
R
Russell King 已提交
803
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
804
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
805 806 807 808
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
R
Russell King 已提交
809
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
810
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
811 812 813 814 815 816 817 818 819 820 821 822
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
823 824
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
825 826 827 828 829 830 831 832 833 834
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
835
#endif	/* !CONFIG_ARM_LPAE */
836

837 838 839 840 841 842 843
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
844
static void __init create_mapping(struct map_desc *md)
845
{
846 847
	unsigned long addr, length, end;
	phys_addr_t phys;
848
	const struct mem_type *type;
849
	pgd_t *pgd;
850 851

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
R
Russell King 已提交
852 853
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
854 855 856 857
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
858 859
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
R
Russell King 已提交
860 861
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
862 863
	}

864
	type = &mem_types[md->type];
865

866
#ifndef CONFIG_ARM_LPAE
867 868 869
	/*
	 * Catch 36-bit addresses
	 */
870 871 872
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
873
	}
874
#endif
875

876
	addr = md->virtual & PAGE_MASK;
877
	phys = __pfn_to_phys(md->pfn);
878
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
879

880
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
R
Russell King 已提交
881 882
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
883 884 885
		return;
	}

886 887 888 889
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
890

R
Russell King 已提交
891
		alloc_init_pud(pgd, addr, next, phys, type);
892

893 894 895
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
896 897 898 899 900 901 902
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
903 904
	struct map_desc *md;
	struct vm_struct *vm;
905
	struct static_vm *svm;
906 907 908

	if (!nr)
		return;
909

910
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
911 912 913

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
914 915

		vm = &svm->vm;
916 917
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
918 919
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
920
		vm->flags |= VM_ARM_MTYPE(md->type);
921
		vm->caller = iotable_init;
922
		add_static_vm_early(svm++);
923
	}
924 925
}

R
Rob Herring 已提交
926 927 928 929
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
930 931 932
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
933

934
	vm = &svm->vm;
R
Rob Herring 已提交
935 936
	vm->addr = (void *)addr;
	vm->size = size;
937
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
938
	vm->caller = caller;
939
	add_static_vm_early(svm);
R
Rob Herring 已提交
940 941
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
959
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
960 961 962 963
}

static void __init fill_pmd_gaps(void)
{
964
	struct static_vm *svm;
965 966 967 968
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

969 970
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1007 1008 1009
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1010
	struct static_vm *svm;
R
Rob Herring 已提交
1011

1012 1013 1014
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1015 1016 1017 1018 1019 1020 1021

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1034
	iotable_init(&map, 1);
R
Rob Herring 已提交
1035 1036 1037
}
#endif

1038 1039
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1040 1041 1042 1043

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1044
 * area - the default is 240m.
1045
 */
1046
static int __init early_vmalloc(char *arg)
1047
{
R
Russell King 已提交
1048
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1049 1050 1051

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
R
Russell King 已提交
1052
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1053 1054
			vmalloc_reserve >> 20);
	}
1055 1056 1057

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
R
Russell King 已提交
1058
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1059 1060
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1061 1062

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1063
	return 0;
1064
}
1065
early_param("vmalloc", early_vmalloc);
1066

1067
phys_addr_t arm_lowmem_limit __initdata = 0;
1068

1069
void __init sanity_check_meminfo(void)
1070
{
1071
	phys_addr_t memblock_limit = 0;
L
Laura Abbott 已提交
1072
	int highmem = 0;
1073
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
L
Laura Abbott 已提交
1074
	struct memblock_region *reg;
1075
	bool should_use_highmem = false;
1076

L
Laura Abbott 已提交
1077 1078 1079 1080
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
		phys_addr_t size_limit = reg->size;
1081

L
Laura Abbott 已提交
1082
		if (reg->base >= vmalloc_limit)
R
Russell King 已提交
1083
			highmem = 1;
1084
		else
L
Laura Abbott 已提交
1085
			size_limit = vmalloc_limit - reg->base;
R
Russell King 已提交
1086 1087


L
Laura Abbott 已提交
1088 1089 1090 1091
		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {

			if (highmem) {
				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
R
Russell King 已提交
1092
					  &block_start, &block_end);
L
Laura Abbott 已提交
1093
				memblock_remove(reg->base, reg->size);
1094
				should_use_highmem = true;
L
Laura Abbott 已提交
1095
				continue;
1096
			}
1097

L
Laura Abbott 已提交
1098 1099 1100 1101
			if (reg->size > size_limit) {
				phys_addr_t overlap_size = reg->size - size_limit;

				pr_notice("Truncating RAM at %pa-%pa to -%pa",
R
Russell King 已提交
1102
					  &block_start, &block_end, &vmalloc_limit);
L
Laura Abbott 已提交
1103 1104
				memblock_remove(vmalloc_limit, overlap_size);
				block_end = vmalloc_limit;
1105
				should_use_highmem = true;
L
Laura Abbott 已提交
1106
			}
1107
		}
1108

L
Laura Abbott 已提交
1109 1110 1111 1112 1113 1114 1115
		if (!highmem) {
			if (block_end > arm_lowmem_limit) {
				if (reg->size > size_limit)
					arm_lowmem_limit = vmalloc_limit;
				else
					arm_lowmem_limit = block_end;
			}
1116 1117

			/*
1118
			 * Find the first non-pmd-aligned page, and point
1119
			 * memblock_limit at it. This relies on rounding the
1120 1121
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1122 1123
			 *
			 * With this algorithm, the start or end of almost any
1124 1125
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1126 1127 1128 1129 1130
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1131
				if (!IS_ALIGNED(block_start, PMD_SIZE))
L
Laura Abbott 已提交
1132
					memblock_limit = block_start;
1133
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
L
Laura Abbott 已提交
1134
					memblock_limit = arm_lowmem_limit;
1135
			}
1136 1137 1138

		}
	}
L
Laura Abbott 已提交
1139

1140 1141 1142
	if (should_use_highmem)
		pr_notice("Consider using a HIGHMEM enabled kernel.\n");

1143
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1144 1145

	/*
1146
	 * Round the memblock limit down to a pmd size.  This
1147
	 * helps to ensure that we will allocate memory from the
1148
	 * last full pmd, which should be mapped.
1149 1150
	 */
	if (memblock_limit)
1151
		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1152 1153 1154 1155
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1156 1157
}

1158
static inline void prepare_page_table(void)
1159 1160
{
	unsigned long addr;
1161
	phys_addr_t end;
1162 1163 1164 1165

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1166
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1167 1168 1169 1170
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1171
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1172
#endif
1173
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1174 1175
		pmd_clear(pmd_off_k(addr));

1176 1177 1178 1179
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1180 1181
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1182

1183 1184
	/*
	 * Clear out all the kernel space mappings, except for the first
1185
	 * memory bank, up to the vmalloc region.
1186
	 */
1187
	for (addr = __phys_to_virt(end);
1188
	     addr < VMALLOC_START; addr += PMD_SIZE)
1189 1190 1191
		pmd_clear(pmd_off_k(addr));
}

1192 1193 1194 1195 1196
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1197
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1198
#endif
1199

1200
/*
R
Russell King 已提交
1201
 * Reserve the special regions of memory
1202
 */
R
Russell King 已提交
1203
void __init arm_mm_memblock_reserve(void)
1204 1205 1206 1207 1208
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1209
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1210 1211 1212 1213 1214 1215

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1216
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1217 1218 1219 1220
#endif
}

/*
1221 1222
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1223 1224 1225 1226
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1227
static void __init devicemaps_init(const struct machine_desc *mdesc)
1228 1229 1230
{
	struct map_desc map;
	unsigned long addr;
1231
	void *vectors;
1232 1233 1234 1235

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1236
	vectors = early_alloc(PAGE_SIZE * 2);
1237 1238

	early_trap_init(vectors);
1239

1240
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1241 1242 1243 1244 1245 1246 1247 1248
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1249
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1250
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1278
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1279 1280
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1281
#ifdef CONFIG_KUSER_HELPERS
1282
	map.type = MT_HIGH_VECTORS;
1283 1284 1285
#else
	map.type = MT_LOW_VECTORS;
#endif
1286 1287 1288 1289
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1290
		map.length = PAGE_SIZE * 2;
1291 1292 1293 1294
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1295 1296 1297 1298 1299 1300 1301
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1302 1303 1304 1305 1306
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1307 1308
	else
		debug_ll_io_init();
1309
	fill_pmd_gaps();
1310

R
Rob Herring 已提交
1311 1312 1313
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1324 1325 1326
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1327 1328
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1329
#endif
R
Rob Herring 已提交
1330 1331 1332

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1333 1334
}

1335 1336
static void __init map_lowmem(void)
{
1337
	struct memblock_region *reg;
1338 1339
	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1340 1341

	/* Map all the lowmem memory banks. */
1342 1343 1344 1345 1346
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1347 1348
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1349 1350 1351
		if (start >= end)
			break;

1352
		if (end < kernel_x_start) {
1353 1354 1355 1356
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1357

1358 1359 1360 1361 1362 1363 1364
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1393 1394 1395
	}
}

1396 1397 1398 1399 1400
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
pgtables_remap lpae_pgtables_remap_asm;

1401 1402 1403 1404
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1405
void __init early_paging_init(const struct machine_desc *mdesc)
1406
{
1407 1408 1409
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1410
	long long offset;
1411
	void *boot_data;
1412

1413
	if (!mdesc->pv_fixup)
1414 1415
		return;

1416
	offset = mdesc->pv_fixup();
1417 1418
	if (offset == 0)
		return;
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	boot_data = __va(__atags_pointer);
	barrier();
1430

1431 1432
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1433

1434 1435 1436
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1437 1438 1439 1440 1441 1442

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1443 1444 1445 1446 1447 1448 1449
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1450
	 */
1451 1452 1453 1454 1455
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1456
	flush_cache_all();
1457 1458

	/*
1459 1460 1461 1462
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1463
	 */
1464
	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1465

1466 1467 1468
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1469 1470 1471 1472
}

#else

1473
void __init early_paging_init(const struct machine_desc *mdesc)
1474
{
1475 1476
	long long offset;

1477
	if (!mdesc->pv_fixup)
1478 1479
		return;

1480
	offset = mdesc->pv_fixup();
1481 1482 1483 1484 1485 1486 1487
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1488 1489 1490 1491
}

#endif

1492 1493 1494 1495
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1496
void __init paging_init(const struct machine_desc *mdesc)
1497 1498 1499 1500
{
	void *zero_page;

	build_mem_type_table();
1501
	prepare_page_table();
1502
	map_lowmem();
1503
	memblock_set_current_limit(arm_lowmem_limit);
1504
	dma_contiguous_remap();
1505
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1506
	kmap_init();
1507
	tcm_init();
1508 1509 1510

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1511 1512
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1513

1514
	bootmem_init();
R
Russell King 已提交
1515

1516
	empty_zero_page = virt_to_page(zero_page);
1517
	__flush_dcache_page(NULL, empty_zero_page);
1518
}