mmu.c 27.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/sort.h>
18

19
#include <asm/cputype.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
22 23
#include <asm/setup.h>
#include <asm/sizes.h>
24
#include <asm/smp_plat.h>
25
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
26
#include <asm/highmem.h>
27 28 29 30 31 32 33 34 35 36 37 38 39

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
40
EXPORT_SYMBOL(empty_zero_page);
41 42 43 44 45 46

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

47 48 49 50 51 52 53 54
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
55
pgprot_t pgprot_user;
56 57
pgprot_t pgprot_kernel;

58
EXPORT_SYMBOL(pgprot_user);
59 60 61 62 63 64 65 66 67 68 69 70 71 72
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
	unsigned int	pmd;
	unsigned int	pte;
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
73
		.pte		= L_PTE_MT_UNCACHED,
74 75 76 77
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
78
		.pte		= L_PTE_MT_BUFFERABLE,
79 80 81 82
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
83
		.pte		= L_PTE_MT_WRITETHROUGH,
84 85 86 87
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
88
		.pte		= L_PTE_MT_WRITEBACK,
89 90 91 92
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
93
		.pte		= L_PTE_MT_WRITEALLOC,
94 95 96 97
	}
};

/*
S
Simon Arlott 已提交
98
 * These are useful for identifying cache coherency
99 100 101 102
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
103
static int __init early_cachepolicy(char *p)
104 105 106 107 108 109
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

110
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
111 112 113 114 115 116 117 118
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 120 121 122 123 124 125
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
126 127 128 129
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
130 131
	flush_cache_all();
	set_cr(cr_alignment);
132
	return 0;
133
}
134
early_param("cachepolicy", early_cachepolicy);
135

136
static int __init early_nocache(char *__unused)
137 138 139
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 141
	early_cachepolicy(p);
	return 0;
142
}
143
early_param("nocache", early_nocache);
144

145
static int __init early_nowrite(char *__unused)
146 147 148
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149 150
	early_cachepolicy(p);
	return 0;
151
}
152
early_param("nowb", early_nowrite);
153

154
static int __init early_ecc(char *p)
155
{
156
	if (memcmp(p, "on", 2) == 0)
157
		ecc_mask = PMD_PROTECTION;
158
	else if (memcmp(p, "off", 3) == 0)
159
		ecc_mask = 0;
160
	return 0;
161
}
162
early_param("ecc", early_ecc);
163 164 165 166 167 168 169 170 171 172

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

193
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195

196
static struct mem_type mem_types[] = {
197
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
198 199
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
200
		.prot_l1	= PMD_TYPE_TABLE,
201
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
202 203 204
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206
		.prot_l1	= PMD_TYPE_TABLE,
207
		.prot_sect	= PROT_SECT_DEVICE,
208 209 210
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
211
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212 213 214 215
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
216
	[MT_DEVICE_WC] = {	/* ioremap_wc */
217
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218
		.prot_l1	= PMD_TYPE_TABLE,
219
		.prot_sect	= PROT_SECT_DEVICE,
220
		.domain		= DOMAIN_IO,
221
	},
222 223 224 225 226 227
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
228
	[MT_CACHECLEAN] = {
229
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 231 232
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
233
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_USER | L_PTE_EXEC,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
249
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 251 252
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
253
		.prot_sect = PMD_TYPE_SECT,
254 255
		.domain    = DOMAIN_KERNEL,
	},
256 257 258 259
	[MT_MEMORY_NONCACHED] = {
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
260 261
};

262 263 264 265
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
266
EXPORT_SYMBOL(get_mem_type);
267

268 269 270 271 272 273 274
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
275
	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
276 277 278
	int cpu_arch = cpu_architecture();
	int i;

279
	if (cpu_arch < CPU_ARCH_ARMv6) {
280
#if defined(CONFIG_CPU_DCACHE_DISABLE)
281 282
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
283
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
284 285
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
286
#endif
287
	}
288 289 290 291 292
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
293 294 295
#ifdef CONFIG_SMP
	cachepolicy = CPOLICY_WRITEALLOC;
#endif
296

297
	/*
298 299 300
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
301
	 */
302 303 304 305 306 307
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
308 309

	/*
310 311 312
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
313
	 */
314
	if (cpu_is_xscale() || cpu_is_xsc3()) {
315
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
316
			mem_types[i].prot_sect &= ~PMD_BIT4;
317 318 319 320
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
321 322
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
323 324 325 326
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
386
	cp = &cache_policies[cachepolicy];
387 388 389 390 391 392 393 394 395
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

#ifndef CONFIG_SMP
	/*
	 * Only use write-through for non-SMP systems
	 */
	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
#endif
396 397 398 399 400

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
401 402
	if (arch_is_coherent() && cpu_is_xsc3())
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

#ifdef CONFIG_SMP
		/*
		 * Mark memory with the "shared" attribute for SMP systems
		 */
		user_pgprot |= L_PTE_SHARED;
		kern_pgprot |= L_PTE_SHARED;
422
		vecs_pgprot |= L_PTE_SHARED;
423 424 425 426
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
		mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
		mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
427
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
428
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
429 430 431
#endif
	}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

450 451
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
452
		protection_map[i] = __pgprot(v | user_pgprot);
453 454
	}

455 456
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
457

458
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
459
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
R
Russell King 已提交
460
				 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
478 479 480 481 482 483 484 485

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
486 487 488 489
}

#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

R
Russell King 已提交
490 491
static void __init *early_alloc(unsigned long sz)
{
R
Russell King 已提交
492 493 494
	void *ptr = __va(memblock_alloc(sz, sz));
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
495 496
}

R
Russell King 已提交
497
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
498
{
499
	if (pmd_none(*pmd)) {
R
Russell King 已提交
500 501
		pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
		__pmd_populate(pmd, __pa(pte) | prot);
502
	}
R
Russell King 已提交
503 504 505
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
506

R
Russell King 已提交
507 508 509 510 511
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
512
	do {
513
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
514 515
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
516 517
}

518 519 520
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
				      unsigned long end, unsigned long phys,
				      const struct mem_type *type)
521
{
522
	pmd_t *pmd = pmd_offset(pgd, addr);
523

524 525 526 527 528 529 530 531
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
532

533 534 535 536 537 538 539
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
540

541 542 543 544 545 546 547 548
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
	unsigned long phys, addr, length, end;
	pgd_t *pgd;

	addr = md->virtual;
	phys = (unsigned long)__pfn_to_phys(md->pfn);
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
		printk(KERN_ERR "MM: cannot create mapping for "
		       "0x%08llx at 0x%08lx invalid alignment\n",
		       __pfn_to_phys((u64)md->pfn), addr);
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		pmd_t *pmd = pmd_offset(pgd, addr);
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

609 610 611 612 613 614 615
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
616
static void __init create_mapping(struct map_desc *md)
617
{
618
	unsigned long phys, addr, length, end;
619
	const struct mem_type *type;
620
	pgd_t *pgd;
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		printk(KERN_WARNING "BUG: not creating mapping for "
		       "0x%08llx at 0x%08lx in user region\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
		       "overlaps vmalloc space\n",
		       __pfn_to_phys((u64)md->pfn), md->virtual);
	}

636
	type = &mem_types[md->type];
637 638 639 640

	/*
	 * Catch 36-bit addresses
	 */
641 642 643
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
644 645
	}

646
	addr = md->virtual & PAGE_MASK;
647
	phys = (unsigned long)__pfn_to_phys(md->pfn);
648
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
649

650
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
651 652
		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
		       "be mapped using pages, ignoring.\n",
653
		       __pfn_to_phys(md->pfn), addr);
654 655 656
		return;
	}

657 658 659 660
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
661

662
		alloc_init_section(pgd, addr, next, phys, type);
663

664 665 666
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
667 668 669 670 671 672 673 674 675 676 677 678 679
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

R
Russell King 已提交
680
static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
681 682 683 684 685 686

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
 * area - the default is 128m.
 */
687
static int __init early_vmalloc(char *arg)
688
{
R
Russell King 已提交
689
	unsigned long vmalloc_reserve = memparse(arg, NULL);
690 691 692 693 694 695 696

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
697 698 699 700 701 702 703

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
704 705

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
706
	return 0;
707
}
708
early_param("vmalloc", early_vmalloc);
709

R
Russell King 已提交
710 711
phys_addr_t lowmem_end_addr;

712
static void __init sanity_check_meminfo(void)
713
{
R
Russell King 已提交
714
	int i, j, highmem = 0;
715

R
Russell King 已提交
716 717
	lowmem_end_addr = __pa(vmalloc_min - 1) + 1;

718
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
719 720
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
721

722
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
723
		if (__va(bank->start) > vmalloc_min ||
R
Russell King 已提交
724 725 726 727 728
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

729 730 731 732
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
R
Russell King 已提交
733 734
		if (__va(bank->start) < vmalloc_min &&
		    bank->size > vmalloc_min - __va(bank->start)) {
735 736 737 738 739 740 741 742
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
743 744
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
745
				bank[1].highmem = highmem = 1;
746 747
				j++;
			}
R
Russell King 已提交
748
			bank->size = vmalloc_min - __va(bank->start);
749 750
		}
#else
751 752
		bank->highmem = highmem;

753 754 755 756
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
757
		if (__va(bank->start) >= vmalloc_min ||
758
		    __va(bank->start) < (void *)PAGE_OFFSET) {
759 760 761 762 763
			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
			       "(vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1);
			continue;
		}
764

765 766 767 768
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
769
		if (__va(bank->start + bank->size) > vmalloc_min ||
770
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
771
			unsigned long newsize = vmalloc_min - __va(bank->start);
772 773 774 775 776 777 778 779
			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
			       "to -%.8lx (vmalloc region overlap).\n",
			       bank->start, bank->start + bank->size - 1,
			       bank->start + newsize - 1);
			bank->size = newsize;
		}
#endif
		j++;
780
	}
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
#ifdef CONFIG_SMP
		} else if (tlb_ops_need_broadcast()) {
			/*
			 * kmap_high needs to occasionally flush TLB entries,
			 * however, if the TLB entries need to be broadcast
			 * we may deadlock:
			 *  kmap_high(irqs off)->flush_all_zero_pkmaps->
			 *  flush_tlb_kernel_range->smp_call_function_many
			 *   (must not be called with irqs off)
			 */
			reason = "without hardware TLB ops broadcasting";
#endif
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
813
	meminfo.nr_banks = j;
814 815
}

816
static inline void prepare_page_table(void)
817 818 819 820 821 822
{
	unsigned long addr;

	/*
	 * Clear out all the mappings below the kernel image.
	 */
823
	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
824 825 826 827
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
R
Russell King 已提交
828
	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
829 830 831 832 833 834 835 836
#endif
	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
837
	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
838 839 840 841 842
	     addr < VMALLOC_END; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));
}

/*
R
Russell King 已提交
843
 * Reserve the special regions of memory
844
 */
R
Russell King 已提交
845
void __init arm_mm_memblock_reserve(void)
846 847 848 849 850
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
R
Russell King 已提交
851
	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
852 853 854 855 856 857

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
858
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
#endif
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;
	void *vectors;

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
878
	vectors = early_alloc(PAGE_SIZE);
879 880 881 882 883 884 885 886 887 888

	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
889
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
890
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
946 947 948
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
949 950
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
951 952 953
#endif
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
static inline void map_memory_bank(struct membank *bank)
{
	struct map_desc map;

	map.pfn = bank_pfn_start(bank);
	map.virtual = __phys_to_virt(bank_phys_start(bank));
	map.length = bank_phys_size(bank);
	map.type = MT_MEMORY;

	create_mapping(&map);
}

static void __init map_lowmem(void)
{
	struct meminfo *mi = &meminfo;
	int i;

	/* Map all the lowmem memory banks. */
	for (i = 0; i < mi->nr_banks; i++) {
		struct membank *bank = &mi->bank[i];

		if (!bank->highmem)
			map_memory_bank(bank);
	}
}

980 981 982 983 984 985 986
static int __init meminfo_cmp(const void *_a, const void *_b)
{
	const struct membank *a = _a, *b = _b;
	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
}

987 988 989 990
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
991
void __init paging_init(struct machine_desc *mdesc)
992 993 994
{
	void *zero_page;

995 996
	sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);

997
	build_mem_type_table();
998 999
	sanity_check_meminfo();
	prepare_page_table();
1000
	map_lowmem();
1001
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1002
	kmap_init();
1003 1004 1005

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1006 1007
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1008 1009 1010

	bootmem_init(mdesc);

1011
	empty_zero_page = virt_to_page(zero_page);
1012
	__flush_dcache_page(NULL, empty_zero_page);
1013
}
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

/*
 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 * the user-mode pages.  This will then ensure that we have predictable
 * results when turning the mmu off
 */
void setup_mm_for_reboot(char mode)
{
	unsigned long base_pmdval;
	pgd_t *pgd;
	int i;

1026 1027 1028 1029 1030 1031
	/*
	 * We need to access to user-mode page tables here. For kernel threads
	 * we don't have any user-mode mappings so we use the context that we
	 * "borrowed".
	 */
	pgd = current->active_mm->pgd;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
		base_pmdval |= PMD_BIT4;

	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
		pmd_t *pmd;

		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
		pmd[0] = __pmd(pmdval);
		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
		flush_pmd_entry(pmd);
	}
1046 1047

	local_flush_tlb_all();
1048
}