mmu.c 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18

19
#include <asm/cputype.h>
R
Russell King 已提交
20
#include <asm/sections.h>
21
#include <asm/cachetype.h>
22 23
#include <asm/setup.h>
#include <asm/sizes.h>
24
#include <asm/smp_plat.h>
25
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
26
#include <asm/highmem.h>
27
#include <asm/traps.h>
28 29 30 31 32 33 34 35 36 37 38

#include <asm/mach/arch.h>
#include <asm/mach/map.h>

#include "mm.h"

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
39
EXPORT_SYMBOL(empty_zero_page);
40 41 42 43 44 45

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

46 47 48 49 50 51 52 53
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
54
pgprot_t pgprot_user;
55 56
pgprot_t pgprot_kernel;

57
EXPORT_SYMBOL(pgprot_user);
58 59 60 61 62 63
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
	unsigned int	pmd;
64
	pteval_t	pte;
65 66 67 68 69 70 71
};

static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
72
		.pte		= L_PTE_MT_UNCACHED,
73 74 75 76
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
77
		.pte		= L_PTE_MT_BUFFERABLE,
78 79 80 81
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
82
		.pte		= L_PTE_MT_WRITETHROUGH,
83 84 85 86
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
87
		.pte		= L_PTE_MT_WRITEBACK,
88 89 90 91
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
92
		.pte		= L_PTE_MT_WRITEALLOC,
93 94 95 96
	}
};

/*
S
Simon Arlott 已提交
97
 * These are useful for identifying cache coherency
98 99 100 101
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
102
static int __init early_cachepolicy(char *p)
103 104 105 106 107 108
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

109
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
110 111 112 113 114 115 116 117
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
118 119 120 121 122 123 124
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
125 126 127 128
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
129 130
	flush_cache_all();
	set_cr(cr_alignment);
131
	return 0;
132
}
133
early_param("cachepolicy", early_cachepolicy);
134

135
static int __init early_nocache(char *__unused)
136 137 138
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
139 140
	early_cachepolicy(p);
	return 0;
141
}
142
early_param("nocache", early_nocache);
143

144
static int __init early_nowrite(char *__unused)
145 146 147
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 149
	early_cachepolicy(p);
	return 0;
150
}
151
early_param("nowb", early_nowrite);
152

153
static int __init early_ecc(char *p)
154
{
155
	if (memcmp(p, "on", 2) == 0)
156
		ecc_mask = PMD_PROTECTION;
157
	else if (memcmp(p, "off", 3) == 0)
158
		ecc_mask = 0;
159
	return 0;
160
}
161
early_param("ecc", early_ecc);
162 163 164 165 166 167 168 169 170 171

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

192
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
193
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
194

195
static struct mem_type mem_types[] = {
196
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
197 198
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
199
		.prot_l1	= PMD_TYPE_TABLE,
200
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
201 202 203
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
204
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
205
		.prot_l1	= PMD_TYPE_TABLE,
206
		.prot_sect	= PROT_SECT_DEVICE,
207 208 209
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
210
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
211 212 213 214
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
	},	
215
	[MT_DEVICE_WC] = {	/* ioremap_wc */
216
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
217
		.prot_l1	= PMD_TYPE_TABLE,
218
		.prot_sect	= PROT_SECT_DEVICE,
219
		.domain		= DOMAIN_IO,
220
	},
221 222 223 224 225 226
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
227
	[MT_CACHECLEAN] = {
228
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
229 230 231
		.domain    = DOMAIN_KERNEL,
	},
	[MT_MINICLEAN] = {
232
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
233 234 235 236
		.domain    = DOMAIN_KERNEL,
	},
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
237
				L_PTE_RDONLY,
238 239 240 241 242
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
243
				L_PTE_USER | L_PTE_RDONLY,
244 245 246 247
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_MEMORY] = {
248
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
249
		.prot_l1   = PMD_TYPE_TABLE,
250
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251 252 253
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
254
		.prot_sect = PMD_TYPE_SECT,
255 256
		.domain    = DOMAIN_KERNEL,
	},
257
	[MT_MEMORY_NONCACHED] = {
258
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
259
				L_PTE_MT_BUFFERABLE,
260
		.prot_l1   = PMD_TYPE_TABLE,
261 262 263
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
264
	[MT_MEMORY_DTCM] = {
265
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266
				L_PTE_XN,
267 268 269
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
270 271
	},
	[MT_MEMORY_ITCM] = {
272
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
273
		.prot_l1   = PMD_TYPE_TABLE,
274
		.domain    = DOMAIN_KERNEL,
275
	},
276 277
};

278 279 280 281
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
282
EXPORT_SYMBOL(get_mem_type);
283

284 285 286 287 288 289 290
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
291
	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
292 293 294
	int cpu_arch = cpu_architecture();
	int i;

295
	if (cpu_arch < CPU_ARCH_ARMv6) {
296
#if defined(CONFIG_CPU_DCACHE_DISABLE)
297 298
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
299
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
300 301
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
302
#endif
303
	}
304 305 306 307 308
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
309 310
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
311

312
	/*
313 314 315
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
316
	 */
317 318 319 320 321 322
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
323 324

	/*
325 326 327
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
328
	 */
329
	if (cpu_is_xscale() || cpu_is_xsc3()) {
330
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
331
			mem_types[i].prot_sect &= ~PMD_BIT4;
332 333 334 335
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
336 337
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
338 339 340 341
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
401
	cp = &cache_policies[cachepolicy];
402 403 404 405 406
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;

	/*
	 * Only use write-through for non-SMP systems
	 */
407
	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
408
		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
409 410 411 412 413

	/*
	 * Enable CPU-specific coherency if supported.
	 * (Only available on XSC3 at the moment.)
	 */
414
	if (arch_is_coherent() && cpu_is_xsc3()) {
415
		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
416 417 418 419
		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
	}
420 421 422 423 424 425 426 427 428 429 430 431
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
		}
449 450
	}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
				PMD_SECT_TEX(1);
		}
	} else {
		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
	}

469 470
	for (i = 0; i < 16; i++) {
		unsigned long v = pgprot_val(protection_map[i]);
471
		protection_map[i] = __pgprot(v | user_pgprot);
472 473
	}

474 475
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
476

477
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
478
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
479
				 L_PTE_DIRTY | kern_pgprot);
480 481 482 483

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
484 485
	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
486 487 488 489 490 491 492 493 494 495 496 497 498
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
	printk("Memory policy: ECC %sabled, Data cache %s\n",
		ecc_mask ? "en" : "dis", cp->policy);
499 500 501 502 503 504 505 506

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
507 508
}

509 510 511 512 513 514 515 516 517 518 519 520 521
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

522 523
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

R
Russell King 已提交
524 525
static void __init *early_alloc(unsigned long sz)
{
R
Russell King 已提交
526 527 528
	void *ptr = __va(memblock_alloc(sz, sz));
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
529 530
}

R
Russell King 已提交
531
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
532
{
533
	if (pmd_none(*pmd)) {
534
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
535
		__pmd_populate(pmd, __pa(pte), prot);
536
	}
R
Russell King 已提交
537 538 539
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
540

R
Russell King 已提交
541 542 543 544 545
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
546
	do {
547
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
548 549
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
550 551
}

R
Russell King 已提交
552
static void __init alloc_init_section(pud_t *pud, unsigned long addr,
553
				      unsigned long end, phys_addr_t phys,
554
				      const struct mem_type *type)
555
{
R
Russell King 已提交
556
	pmd_t *pmd = pmd_offset(pud, addr);
557

558 559 560 561 562 563 564 565
	/*
	 * Try a section mapping - end, addr and phys must all be aligned
	 * to a section boundary.  Note that PMDs refer to the individual
	 * L1 entries, whereas PGDs refer to a group of L1 entries making
	 * up one logical pointer to an L2 table.
	 */
	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
		pmd_t *p = pmd;
566

567 568 569 570 571 572 573
		if (addr & SECTION_SIZE)
			pmd++;

		do {
			*pmd = __pmd(phys | type->prot_sect);
			phys += SECTION_SIZE;
		} while (pmd++, addr += SECTION_SIZE, addr != end);
574

575 576 577 578 579 580 581 582
		flush_pmd_entry(p);
	} else {
		/*
		 * No need to loop; pte's aren't interested in the
		 * individual L1 entries.
		 */
		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
	}
583 584
}

R
Russell King 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597
static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
	unsigned long phys, const struct mem_type *type)
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
		alloc_init_section(pud, addr, next, phys, type);
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

598 599 600
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
601 602
	unsigned long addr, length, end;
	phys_addr_t phys;
603 604 605
	pgd_t *pgd;

	addr = md->virtual;
606
	phys = __pfn_to_phys(md->pfn);
607 608 609 610 611
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
612
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
613 614 615 616 617 618 619 620 621 622 623 624
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
625
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
626 627 628 629
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
630 631 632
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
633 634 635 636 637 638 639 640 641 642 643 644
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
645 646
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
647 648 649 650 651 652 653 654 655 656 657
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}

658 659 660 661 662 663 664
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
665
static void __init create_mapping(struct map_desc *md)
666
{
667 668
	unsigned long addr, length, end;
	phys_addr_t phys;
669
	const struct mem_type *type;
670
	pgd_t *pgd;
671 672

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
673 674 675
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
676 677 678 679 680
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
681 682 683
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
		       " at 0x%08lx overlaps vmalloc space\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
684 685
	}

686
	type = &mem_types[md->type];
687 688 689 690

	/*
	 * Catch 36-bit addresses
	 */
691 692 693
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
694 695
	}

696
	addr = md->virtual & PAGE_MASK;
697
	phys = __pfn_to_phys(md->pfn);
698
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
699

700
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
701
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
702
		       "be mapped using pages, ignoring.\n",
703
		       (long long)__pfn_to_phys(md->pfn), addr);
704 705 706
		return;
	}

707 708 709 710
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
711

R
Russell King 已提交
712
		alloc_init_pud(pgd, addr, next, phys, type);
713

714 715 716
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
717 718 719 720 721 722 723 724 725 726 727 728 729
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
	int i;

	for (i = 0; i < nr; i++)
		create_mapping(io_desc + i);
}

R
Russell King 已提交
730
static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
731 732 733 734 735 736

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
 * area - the default is 128m.
 */
737
static int __init early_vmalloc(char *arg)
738
{
R
Russell King 已提交
739
	unsigned long vmalloc_reserve = memparse(arg, NULL);
740 741 742 743 744 745 746

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
747 748 749 750 751 752 753

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
754 755

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
756
	return 0;
757
}
758
early_param("vmalloc", early_vmalloc);
759

760 761
static phys_addr_t lowmem_limit __initdata = 0;

762
void __init sanity_check_meminfo(void)
763
{
R
Russell King 已提交
764
	int i, j, highmem = 0;
765

766
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
767 768
		struct membank *bank = &meminfo.bank[j];
		*bank = meminfo.bank[i];
769

770
#ifdef CONFIG_HIGHMEM
771
		if (__va(bank->start) >= vmalloc_min ||
R
Russell King 已提交
772 773 774 775 776
		    __va(bank->start) < (void *)PAGE_OFFSET)
			highmem = 1;

		bank->highmem = highmem;

777 778 779 780
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
R
Russell King 已提交
781 782
		if (__va(bank->start) < vmalloc_min &&
		    bank->size > vmalloc_min - __va(bank->start)) {
783 784 785 786 787 788 789 790
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
R
Russell King 已提交
791 792
				bank[1].size -= vmalloc_min - __va(bank->start);
				bank[1].start = __pa(vmalloc_min - 1) + 1;
R
Russell King 已提交
793
				bank[1].highmem = highmem = 1;
794 795
				j++;
			}
R
Russell King 已提交
796
			bank->size = vmalloc_min - __va(bank->start);
797 798
		}
#else
799 800
		bank->highmem = highmem;

801 802 803 804
		/*
		 * Check whether this memory bank would entirely overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
805
		if (__va(bank->start) >= vmalloc_min ||
806
		    __va(bank->start) < (void *)PAGE_OFFSET) {
807
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
808
			       "(vmalloc region overlap).\n",
809 810
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
811 812
			continue;
		}
813

814 815 816 817
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
R
Russell King 已提交
818
		if (__va(bank->start + bank->size) > vmalloc_min ||
819
		    __va(bank->start + bank->size) < __va(bank->start)) {
R
Russell King 已提交
820
			unsigned long newsize = vmalloc_min - __va(bank->start);
821 822 823 824 825
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
			       (unsigned long long)bank->start + newsize - 1);
826 827 828
			bank->size = newsize;
		}
#endif
829 830 831
		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
			lowmem_limit = bank->start + bank->size;

832
		j++;
833
	}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
854
	meminfo.nr_banks = j;
855
	memblock_set_current_limit(lowmem_limit);
856 857
}

858
static inline void prepare_page_table(void)
859 860
{
	unsigned long addr;
861
	phys_addr_t end;
862 863 864 865

	/*
	 * Clear out all the mappings below the kernel image.
	 */
866
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
867 868 869 870
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
871
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
872
#endif
873
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
874 875
		pmd_clear(pmd_off_k(addr));

876 877 878 879 880 881 882
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
	if (end >= lowmem_limit)
		end = lowmem_limit;

883 884 885 886
	/*
	 * Clear out all the kernel space mappings, except for the first
	 * memory bank, up to the end of the vmalloc region.
	 */
887
	for (addr = __phys_to_virt(end);
888
	     addr < VMALLOC_END; addr += PMD_SIZE)
889 890 891
		pmd_clear(pmd_off_k(addr));
}

892 893
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))

894
/*
R
Russell King 已提交
895
 * Reserve the special regions of memory
896
 */
R
Russell King 已提交
897
void __init arm_mm_memblock_reserve(void)
898 899 900 901 902
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
903
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
904 905 906 907 908 909

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
910
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
#endif
}

/*
 * Set up device the mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_END, we will remove any debug device mappings.
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
static void __init devicemaps_init(struct machine_desc *mdesc)
{
	struct map_desc map;
	unsigned long addr;

	/*
	 * Allocate the vector page early.
	 */
929
	vectors_page = early_alloc(PAGE_SIZE);
930

931
	for (addr = VMALLOC_END; addr; addr += PMD_SIZE)
932 933 934 935 936 937 938 939
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
940
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
941
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
969
	map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
	map.type = MT_HIGH_VECTORS;
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();

	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
997 998 999
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1000 1001
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1002 1003 1004
#endif
}

1005 1006
static void __init map_lowmem(void)
{
1007
	struct memblock_region *reg;
1008 1009

	/* Map all the lowmem memory banks. */
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

		if (end > lowmem_limit)
			end = lowmem_limit;
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1024

1025
		create_mapping(&map);
1026 1027 1028
	}
}

1029 1030 1031 1032
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1033
void __init paging_init(struct machine_desc *mdesc)
1034 1035 1036
{
	void *zero_page;

1037 1038
	memblock_set_current_limit(lowmem_limit);

1039
	build_mem_type_table();
1040
	prepare_page_table();
1041
	map_lowmem();
1042
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1043
	kmap_init();
1044 1045 1046

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1047 1048
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1049

1050
	bootmem_init();
R
Russell King 已提交
1051

1052
	empty_zero_page = virt_to_page(zero_page);
1053
	__flush_dcache_page(NULL, empty_zero_page);
1054
}