mmu.c 40.2 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/sections.h>
26
#include <asm/setup.h>
27
#include <asm/smp_plat.h>
28
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
29
#include <asm/highmem.h>
30
#include <asm/system_info.h>
31
#include <asm/traps.h>
32 33
#include <asm/procinfo.h>
#include <asm/memory.h>
34 35 36

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
37
#include <asm/mach/pci.h>
38 39

#include "mm.h"
40
#include "tcm.h"
41 42 43 44 45 46

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
47
EXPORT_SYMBOL(empty_zero_page);
48 49 50 51 52 53

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

54 55 56 57 58 59 60 61
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
62
pgprot_t pgprot_user;
63
pgprot_t pgprot_kernel;
64 65 66
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
67

68
EXPORT_SYMBOL(pgprot_user);
69 70 71 72 73
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
74
	pmdval_t	pmd;
75
	pteval_t	pte;
76
	pteval_t	pte_s2;
77 78
};

79 80 81 82 83 84
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

85 86 87 88 89
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
90
		.pte		= L_PTE_MT_UNCACHED,
91
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
92 93 94 95
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
96
		.pte		= L_PTE_MT_BUFFERABLE,
97
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
98 99 100 101
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
102
		.pte		= L_PTE_MT_WRITETHROUGH,
103
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 105 106 107
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
108
		.pte		= L_PTE_MT_WRITEBACK,
109
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
110 111 112 113
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
114
		.pte		= L_PTE_MT_WRITEALLOC,
115
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
116 117 118
	}
};

119
#ifdef CONFIG_CPU_CP15
120
/*
S
Simon Arlott 已提交
121
 * These are useful for identifying cache coherency
122 123 124 125
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
126
static int __init early_cachepolicy(char *p)
127 128 129 130 131 132
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

133
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 135 136 137 138 139 140 141
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 143 144 145 146 147 148
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
149 150 151 152
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
153 154
	flush_cache_all();
	set_cr(cr_alignment);
155
	return 0;
156
}
157
early_param("cachepolicy", early_cachepolicy);
158

159
static int __init early_nocache(char *__unused)
160 161 162
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 164
	early_cachepolicy(p);
	return 0;
165
}
166
early_param("nocache", early_nocache);
167

168
static int __init early_nowrite(char *__unused)
169 170 171
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 173
	early_cachepolicy(p);
	return 0;
174
}
175
early_param("nowb", early_nowrite);
176

177
#ifndef CONFIG_ARM_LPAE
178
static int __init early_ecc(char *p)
179
{
180
	if (memcmp(p, "on", 2) == 0)
181
		ecc_mask = PMD_PROTECTION;
182
	else if (memcmp(p, "off", 3) == 0)
183
		ecc_mask = 0;
184
	return 0;
185
}
186
early_param("ecc", early_ecc);
187
#endif
188 189 190 191 192 193 194 195 196 197

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

234
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
236
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
237

238
static struct mem_type mem_types[] = {
239
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
240 241
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
242 243 244
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
245
		.prot_l1	= PMD_TYPE_TABLE,
246
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
247 248 249
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
250
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
251
		.prot_l1	= PMD_TYPE_TABLE,
252
		.prot_sect	= PROT_SECT_DEVICE,
253 254 255
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
256
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
257 258 259
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
260
	},
261
	[MT_DEVICE_WC] = {	/* ioremap_wc */
262
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
263
		.prot_l1	= PMD_TYPE_TABLE,
264
		.prot_sect	= PROT_SECT_DEVICE,
265
		.domain		= DOMAIN_IO,
266
	},
267 268 269 270 271 272
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
273
	[MT_CACHECLEAN] = {
274
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275 276
		.domain    = DOMAIN_KERNEL,
	},
277
#ifndef CONFIG_ARM_LPAE
278
	[MT_MINICLEAN] = {
279
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
280 281
		.domain    = DOMAIN_KERNEL,
	},
282
#endif
283 284
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285
				L_PTE_RDONLY,
286 287 288 289 290
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
291
				L_PTE_USER | L_PTE_RDONLY,
292 293 294
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
295
	[MT_MEMORY_RWX] = {
296
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
297
		.prot_l1   = PMD_TYPE_TABLE,
298
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
299 300
		.domain    = DOMAIN_KERNEL,
	},
301 302 303 304 305 306 307
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
308
	[MT_ROM] = {
309
		.prot_sect = PMD_TYPE_SECT,
310 311
		.domain    = DOMAIN_KERNEL,
	},
312
	[MT_MEMORY_RWX_NONCACHED] = {
313
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
314
				L_PTE_MT_BUFFERABLE,
315
		.prot_l1   = PMD_TYPE_TABLE,
316 317 318
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
319
	[MT_MEMORY_RW_DTCM] = {
320
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321
				L_PTE_XN,
322 323 324
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
325
	},
326
	[MT_MEMORY_RWX_ITCM] = {
327
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
328
		.prot_l1   = PMD_TYPE_TABLE,
329
		.domain    = DOMAIN_KERNEL,
330
	},
331
	[MT_MEMORY_RW_SO] = {
332
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
333
				L_PTE_MT_UNCACHED | L_PTE_XN,
334 335 336 337 338
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
339
	[MT_MEMORY_DMA_READY] = {
340 341
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
342 343 344
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
345 346
};

347 348 349 350
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
351
EXPORT_SYMBOL(get_mem_type);
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
#define PTE_SET_FN(_name, pteop) \
static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
			void *data) \
{ \
	pte_t pte = pteop(*ptep); \
\
	set_pte_ext(ptep, pte, 0); \
	return 0; \
} \

#define SET_MEMORY_FN(_name, callback) \
int set_memory_##_name(unsigned long addr, int numpages) \
{ \
	unsigned long start = addr; \
	unsigned long size = PAGE_SIZE*numpages; \
	unsigned end = start + size; \
\
	if (start < MODULES_VADDR || start >= MODULES_END) \
		return -EINVAL;\
\
	if (end < MODULES_VADDR || end >= MODULES_END) \
		return -EINVAL; \
\
	apply_to_page_range(&init_mm, start, size, callback, NULL); \
	flush_tlb_kernel_range(start, end); \
	return 0;\
}

PTE_SET_FN(ro, pte_wrprotect)
PTE_SET_FN(rw, pte_mkwrite)
PTE_SET_FN(x, pte_mkexec)
PTE_SET_FN(nx, pte_mknexec)

SET_MEMORY_FN(ro, pte_set_ro)
SET_MEMORY_FN(rw, pte_set_rw)
SET_MEMORY_FN(x, pte_set_x)
SET_MEMORY_FN(nx, pte_set_nx)

391 392 393 394 395 396 397
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
398
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
399
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
400 401 402
	int cpu_arch = cpu_architecture();
	int i;

403
	if (cpu_arch < CPU_ARCH_ARMv6) {
404
#if defined(CONFIG_CPU_DCACHE_DISABLE)
405 406
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
407
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
408 409
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
410
#endif
411
	}
412 413 414 415 416
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
417 418
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
419

420
	/*
421 422 423
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
424
	 */
425 426 427 428 429 430
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
431 432

	/*
433 434 435
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
436
	 */
437
	if (cpu_is_xscale() || cpu_is_xsc3()) {
438
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
439
			mem_types[i].prot_sect &= ~PMD_BIT4;
440 441 442 443
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
444 445
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
446 447 448 449
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
450

451 452 453 454 455 456 457 458 459 460 461 462 463
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
464 465 466

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
512
	cp = &cache_policies[cachepolicy];
513
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
514
	s2_pgprot = cp->pte_s2;
515 516
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
517

518 519 520 521 522 523 524 525 526
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
#ifndef CONFIG_ARM_LPAE
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
#endif
527

528 529 530 531
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
532
#ifndef CONFIG_ARM_LPAE
533 534 535 536 537 538 539
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
540
#endif
541

542 543 544 545 546 547 548 549
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
550
			s2_pgprot |= L_PTE_SHARED;
551 552 553 554
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
555 556
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
557 558
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
559
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
560 561
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
562
		}
563 564
	}

565 566 567 568 569 570 571
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
572
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
573 574 575
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
576
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
577 578 579
				PMD_SECT_TEX(1);
		}
	} else {
580
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
581 582
	}

583 584 585 586 587 588
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
589 590
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
591 592 593 594 595
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

596
	for (i = 0; i < 16; i++) {
597
		pteval_t v = pgprot_val(protection_map[i]);
598
		protection_map[i] = __pgprot(v | user_pgprot);
599 600
	}

601 602
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
603

604
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
605
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
606
				 L_PTE_DIRTY | kern_pgprot);
607 608 609
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
610 611 612

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
613 614
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
615 616
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
617
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
618
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
619 620 621 622 623 624 625 626 627 628 629
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
630 631
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
632 633 634 635 636 637 638 639

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
640 641
}

642 643 644 645 646 647 648 649 650 651 652 653 654
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

655 656
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

657
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
658
{
659
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
660 661
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
662 663
}

664 665 666 667 668
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
669
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
670
{
671
	if (pmd_none(*pmd)) {
672
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
673
		__pmd_populate(pmd, __pa(pte), prot);
674
	}
R
Russell King 已提交
675 676 677
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
678

R
Russell King 已提交
679 680 681 682 683
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
684
	do {
685
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
686 687
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
688 689
}

690
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
691 692
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
693
{
694 695
	pmd_t *p = pmd;

696
#ifndef CONFIG_ARM_LPAE
697
	/*
698 699 700 701 702 703 704
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
705
	 */
706 707
	if (addr & SECTION_SIZE)
		pmd++;
708
#endif
709 710 711 712
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
713

714
	flush_pmd_entry(p);
715
}
716

717 718 719 720 721 722 723 724
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
725
		/*
726 727
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
728
		 */
729 730 731 732 733 734 735 736
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
737
			__map_init_section(pmd, addr, next, phys, type);
738 739 740 741 742 743 744 745
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
746 747
}

748
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
749 750
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
751 752 753 754 755 756
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
757
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
758 759 760 761
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

762
#ifndef CONFIG_ARM_LPAE
763 764 765
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
766 767
	unsigned long addr, length, end;
	phys_addr_t phys;
768 769 770
	pgd_t *pgd;

	addr = md->virtual;
771
	phys = __pfn_to_phys(md->pfn);
772 773 774 775 776
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
777
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
778 779 780 781 782 783 784 785 786 787 788 789
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
790
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
791 792 793 794
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
795 796 797
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
798 799 800 801 802 803 804 805 806 807 808 809
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
810 811
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
812 813 814 815 816 817 818 819 820 821
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
822
#endif	/* !CONFIG_ARM_LPAE */
823

824 825 826 827 828 829 830
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
831
static void __init create_mapping(struct map_desc *md)
832
{
833 834
	unsigned long addr, length, end;
	phys_addr_t phys;
835
	const struct mem_type *type;
836
	pgd_t *pgd;
837 838

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
839 840 841
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
842 843 844 845
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
846 847
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
848
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
849
		       " at 0x%08lx out of vmalloc space\n",
850
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
851 852
	}

853
	type = &mem_types[md->type];
854

855
#ifndef CONFIG_ARM_LPAE
856 857 858
	/*
	 * Catch 36-bit addresses
	 */
859 860 861
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
862
	}
863
#endif
864

865
	addr = md->virtual & PAGE_MASK;
866
	phys = __pfn_to_phys(md->pfn);
867
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
868

869
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
870
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
871
		       "be mapped using pages, ignoring.\n",
872
		       (long long)__pfn_to_phys(md->pfn), addr);
873 874 875
		return;
	}

876 877 878 879
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
880

R
Russell King 已提交
881
		alloc_init_pud(pgd, addr, next, phys, type);
882

883 884 885
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
886 887 888 889 890 891 892
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
893 894
	struct map_desc *md;
	struct vm_struct *vm;
895
	struct static_vm *svm;
896 897 898

	if (!nr)
		return;
899

900
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
901 902 903

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
904 905

		vm = &svm->vm;
906 907
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
908 909
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
910
		vm->flags |= VM_ARM_MTYPE(md->type);
911
		vm->caller = iotable_init;
912
		add_static_vm_early(svm++);
913
	}
914 915
}

R
Rob Herring 已提交
916 917 918 919
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
920 921 922
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
923

924
	vm = &svm->vm;
R
Rob Herring 已提交
925 926
	vm->addr = (void *)addr;
	vm->size = size;
927
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
928
	vm->caller = caller;
929
	add_static_vm_early(svm);
R
Rob Herring 已提交
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
949
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
950 951 952 953
}

static void __init fill_pmd_gaps(void)
{
954
	struct static_vm *svm;
955 956 957 958
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

959 960
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
997 998 999
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1000
	struct static_vm *svm;
R
Rob Herring 已提交
1001

1002 1003 1004
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1005 1006 1007 1008 1009 1010 1011

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1024
	iotable_init(&map, 1);
R
Rob Herring 已提交
1025 1026 1027
}
#endif

1028 1029
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1030 1031 1032 1033

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1034
 * area - the default is 240m.
1035
 */
1036
static int __init early_vmalloc(char *arg)
1037
{
R
Russell King 已提交
1038
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1039 1040 1041 1042 1043 1044 1045

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
1046 1047 1048 1049 1050 1051 1052

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1053 1054

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1055
	return 0;
1056
}
1057
early_param("vmalloc", early_vmalloc);
1058

1059
phys_addr_t arm_lowmem_limit __initdata = 0;
1060

1061
void __init sanity_check_meminfo(void)
1062
{
1063
	phys_addr_t memblock_limit = 0;
R
Russell King 已提交
1064
	int i, j, highmem = 0;
1065
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1066

1067
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1068
		struct membank *bank = &meminfo.bank[j];
1069
		phys_addr_t size_limit;
1070

1071
		*bank = meminfo.bank[i];
1072
		size_limit = bank->size;
1073

1074
		if (bank->start >= vmalloc_limit)
R
Russell King 已提交
1075
			highmem = 1;
1076 1077
		else
			size_limit = vmalloc_limit - bank->start;
R
Russell King 已提交
1078 1079 1080

		bank->highmem = highmem;

1081
#ifdef CONFIG_HIGHMEM
1082 1083 1084 1085
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
1086
		if (!highmem && bank->size > size_limit) {
1087 1088 1089 1090 1091 1092 1093 1094
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
1095
				bank[1].size -= size_limit;
1096
				bank[1].start = vmalloc_limit;
R
Russell King 已提交
1097
				bank[1].highmem = highmem = 1;
1098 1099
				j++;
			}
1100
			bank->size = size_limit;
1101 1102
		}
#else
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

1114 1115 1116 1117
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
1118
		if (bank->size > size_limit) {
1119 1120 1121 1122
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
1123 1124
			       (unsigned long long)bank->start + size_limit - 1);
			bank->size = size_limit;
1125 1126
		}
#endif
1127 1128
		if (!bank->highmem) {
			phys_addr_t bank_end = bank->start + bank->size;
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
			if (bank_end > arm_lowmem_limit)
				arm_lowmem_limit = bank_end;

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
					memblock_limit = bank->start;
				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
					memblock_limit = bank_end;
			}
		}
1153
		j++;
1154
	}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1175
	meminfo.nr_banks = j;
1176
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1189 1190
}

1191
static inline void prepare_page_table(void)
1192 1193
{
	unsigned long addr;
1194
	phys_addr_t end;
1195 1196 1197 1198

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1199
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1200 1201 1202 1203
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1204
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1205
#endif
1206
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1207 1208
		pmd_clear(pmd_off_k(addr));

1209 1210 1211 1212
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1213 1214
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1215

1216 1217
	/*
	 * Clear out all the kernel space mappings, except for the first
1218
	 * memory bank, up to the vmalloc region.
1219
	 */
1220
	for (addr = __phys_to_virt(end);
1221
	     addr < VMALLOC_START; addr += PMD_SIZE)
1222 1223 1224
		pmd_clear(pmd_off_k(addr));
}

1225 1226 1227 1228 1229
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1230
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1231
#endif
1232

1233
/*
R
Russell King 已提交
1234
 * Reserve the special regions of memory
1235
 */
R
Russell King 已提交
1236
void __init arm_mm_memblock_reserve(void)
1237 1238 1239 1240 1241
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1242
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1243 1244 1245 1246 1247 1248

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1249
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1250 1251 1252 1253
#endif
}

/*
1254 1255
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1256 1257 1258 1259
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1260
static void __init devicemaps_init(const struct machine_desc *mdesc)
1261 1262 1263
{
	struct map_desc map;
	unsigned long addr;
1264
	void *vectors;
1265 1266 1267 1268

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1269
	vectors = early_alloc(PAGE_SIZE * 2);
1270 1271

	early_trap_init(vectors);
1272

1273
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1274 1275 1276 1277 1278 1279 1280 1281
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1282
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1283
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1311
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1312 1313
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1314
#ifdef CONFIG_KUSER_HELPERS
1315
	map.type = MT_HIGH_VECTORS;
1316 1317 1318
#else
	map.type = MT_LOW_VECTORS;
#endif
1319 1320 1321 1322
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1323
		map.length = PAGE_SIZE * 2;
1324 1325 1326 1327
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1328 1329 1330 1331 1332 1333 1334
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1335 1336 1337 1338 1339
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1340 1341
	else
		debug_ll_io_init();
1342
	fill_pmd_gaps();
1343

R
Rob Herring 已提交
1344 1345 1346
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1357 1358 1359
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1360 1361
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1362 1363 1364
#endif
}

1365 1366
static void __init map_lowmem(void)
{
1367
	struct memblock_region *reg;
1368 1369
	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1370 1371

	/* Map all the lowmem memory banks. */
1372 1373 1374 1375 1376
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1377 1378
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1379 1380 1381
		if (start >= end)
			break;

1382 1383 1384 1385 1386
		if (end < kernel_x_start || start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1416 1417 1418
	}
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
	map_start = init_mm.start_code;
	map_end   = init_mm.brk;

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
	dsb();
	isb();

	/* remap level 1 table */
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

	/* remap pmds for kernel mapping */
	phys = __pa(map_start) & PMD_MASK;
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

	flush_cache_all();
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1499 1500 1501 1502
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1503
void __init paging_init(const struct machine_desc *mdesc)
1504 1505 1506 1507
{
	void *zero_page;

	build_mem_type_table();
1508
	prepare_page_table();
1509
	map_lowmem();
1510
	dma_contiguous_remap();
1511
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1512
	kmap_init();
1513
	tcm_init();
1514 1515 1516

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1517 1518
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1519

1520
	bootmem_init();
R
Russell King 已提交
1521

1522
	empty_zero_page = virt_to_page(zero_page);
1523
	__flush_dcache_page(NULL, empty_zero_page);
1524
}