mmu.c 37.4 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/setup.h>
26
#include <asm/smp_plat.h>
27
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
28
#include <asm/highmem.h>
29
#include <asm/system_info.h>
30
#include <asm/traps.h>
31 32
#include <asm/procinfo.h>
#include <asm/memory.h>
33 34 35

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
36
#include <asm/mach/pci.h>
37 38

#include "mm.h"
39
#include "tcm.h"
40 41 42 43 44 45

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
46
EXPORT_SYMBOL(empty_zero_page);
47 48 49 50 51 52

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

53 54 55 56 57 58 59 60
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
61
pgprot_t pgprot_user;
62
pgprot_t pgprot_kernel;
63 64 65
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
66

67
EXPORT_SYMBOL(pgprot_user);
68 69 70 71 72
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
73
	pmdval_t	pmd;
74
	pteval_t	pte;
75
	pteval_t	pte_s2;
76 77
};

78 79 80 81 82 83
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

84 85 86 87 88
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
89
		.pte		= L_PTE_MT_UNCACHED,
90
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
91 92 93 94
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
95
		.pte		= L_PTE_MT_BUFFERABLE,
96
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
97 98 99 100
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
101
		.pte		= L_PTE_MT_WRITETHROUGH,
102
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
103 104 105 106
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
107
		.pte		= L_PTE_MT_WRITEBACK,
108
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
109 110 111 112
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
113
		.pte		= L_PTE_MT_WRITEALLOC,
114
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
115 116 117
	}
};

118
#ifdef CONFIG_CPU_CP15
119
/*
S
Simon Arlott 已提交
120
 * These are useful for identifying cache coherency
121 122 123 124
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
125
static int __init early_cachepolicy(char *p)
126 127 128 129 130 131
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

132
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
133 134 135 136 137 138 139 140
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
141 142 143 144 145 146 147
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
148 149 150 151
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
152 153
	flush_cache_all();
	set_cr(cr_alignment);
154
	return 0;
155
}
156
early_param("cachepolicy", early_cachepolicy);
157

158
static int __init early_nocache(char *__unused)
159 160 161
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
162 163
	early_cachepolicy(p);
	return 0;
164
}
165
early_param("nocache", early_nocache);
166

167
static int __init early_nowrite(char *__unused)
168 169 170
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
171 172
	early_cachepolicy(p);
	return 0;
173
}
174
early_param("nowb", early_nowrite);
175

176
#ifndef CONFIG_ARM_LPAE
177
static int __init early_ecc(char *p)
178
{
179
	if (memcmp(p, "on", 2) == 0)
180
		ecc_mask = PMD_PROTECTION;
181
	else if (memcmp(p, "off", 3) == 0)
182
		ecc_mask = 0;
183
	return 0;
184
}
185
early_param("ecc", early_ecc);
186
#endif
187 188 189 190 191 192 193 194 195 196

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

233
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
234
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
235

236
static struct mem_type mem_types[] = {
237
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
238 239
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
240
		.prot_l1	= PMD_TYPE_TABLE,
241
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
242 243 244
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
245
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
246
		.prot_l1	= PMD_TYPE_TABLE,
247
		.prot_sect	= PROT_SECT_DEVICE,
248 249 250
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
251
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
252 253 254
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
255
	},
256
	[MT_DEVICE_WC] = {	/* ioremap_wc */
257
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
258
		.prot_l1	= PMD_TYPE_TABLE,
259
		.prot_sect	= PROT_SECT_DEVICE,
260
		.domain		= DOMAIN_IO,
261
	},
262 263 264 265 266 267
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
268
	[MT_CACHECLEAN] = {
269
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
270 271
		.domain    = DOMAIN_KERNEL,
	},
272
#ifndef CONFIG_ARM_LPAE
273
	[MT_MINICLEAN] = {
274
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
275 276
		.domain    = DOMAIN_KERNEL,
	},
277
#endif
278 279
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280
				L_PTE_RDONLY,
281 282 283 284 285
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286
				L_PTE_USER | L_PTE_RDONLY,
287 288 289
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
290
	[MT_MEMORY_RWX] = {
291
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
292
		.prot_l1   = PMD_TYPE_TABLE,
293
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
294 295 296
		.domain    = DOMAIN_KERNEL,
	},
	[MT_ROM] = {
297
		.prot_sect = PMD_TYPE_SECT,
298 299
		.domain    = DOMAIN_KERNEL,
	},
300
	[MT_MEMORY_RWX_NONCACHED] = {
301
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
302
				L_PTE_MT_BUFFERABLE,
303
		.prot_l1   = PMD_TYPE_TABLE,
304 305 306
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
307
	[MT_MEMORY_RW_DTCM] = {
308
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
309
				L_PTE_XN,
310 311 312
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
313
	},
314
	[MT_MEMORY_RWX_ITCM] = {
315
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
316
		.prot_l1   = PMD_TYPE_TABLE,
317
		.domain    = DOMAIN_KERNEL,
318
	},
319
	[MT_MEMORY_RW_SO] = {
320
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321
				L_PTE_MT_UNCACHED | L_PTE_XN,
322 323 324 325 326
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
327 328 329 330 331
	[MT_MEMORY_DMA_READY] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
332 333
};

334 335 336 337
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
338
EXPORT_SYMBOL(get_mem_type);
339

340 341 342 343 344 345 346
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
347
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
348
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
349 350 351
	int cpu_arch = cpu_architecture();
	int i;

352
	if (cpu_arch < CPU_ARCH_ARMv6) {
353
#if defined(CONFIG_CPU_DCACHE_DISABLE)
354 355
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
356
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
357 358
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
359
#endif
360
	}
361 362 363 364 365
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
366 367
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
368

369
	/*
370 371 372
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
373
	 */
374 375 376 377 378 379
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
380 381

	/*
382 383 384
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
385
	 */
386
	if (cpu_is_xscale() || cpu_is_xsc3()) {
387
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
388
			mem_types[i].prot_sect &= ~PMD_BIT4;
389 390 391 392
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
393 394
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
395 396 397 398
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
458
	cp = &cache_policies[cachepolicy];
459
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
460 461
	s2_pgprot = cp->pte_s2;
	hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
462

463 464 465 466
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
467
#ifndef CONFIG_ARM_LPAE
468 469 470 471 472 473 474
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
475
#endif
476

477 478 479 480 481 482 483 484
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
485
			s2_pgprot |= L_PTE_SHARED;
486 487 488 489
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
490 491
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
492
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
493 494
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
495
		}
496 497
	}

498 499 500 501 502 503 504
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
505
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
506 507 508
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
509
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
510 511 512
				PMD_SECT_TEX(1);
		}
	} else {
513
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
514 515
	}

516 517 518 519 520 521
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
522 523
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
524 525 526 527 528
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

529
	for (i = 0; i < 16; i++) {
530
		pteval_t v = pgprot_val(protection_map[i]);
531
		protection_map[i] = __pgprot(v | user_pgprot);
532 533
	}

534 535
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
536

537
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
538
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
539
				 L_PTE_DIRTY | kern_pgprot);
540 541 542
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
543 544 545

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
546 547
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
548
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
549
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
550 551 552 553 554 555 556 557 558 559 560
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
561 562
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
563 564 565 566 567 568 569 570

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

586 587
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

588
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
589
{
590
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
591 592
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
593 594
}

595 596 597 598 599
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
600
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
601
{
602
	if (pmd_none(*pmd)) {
603
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
604
		__pmd_populate(pmd, __pa(pte), prot);
605
	}
R
Russell King 已提交
606 607 608
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
609

R
Russell King 已提交
610 611 612 613 614
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
615
	do {
616
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
617 618
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
619 620
}

621
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
622 623
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
624
{
625 626
	pmd_t *p = pmd;

627
#ifndef CONFIG_ARM_LPAE
628
	/*
629 630 631 632 633 634 635
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
636
	 */
637 638
	if (addr & SECTION_SIZE)
		pmd++;
639
#endif
640 641 642 643
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
644

645
	flush_pmd_entry(p);
646
}
647

648 649 650 651 652 653 654 655
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
656
		/*
657 658
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
659
		 */
660 661 662 663 664 665 666 667
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
668
			__map_init_section(pmd, addr, next, phys, type);
669 670 671 672 673 674 675 676
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
677 678
}

679
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
680 681
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
682 683 684 685 686 687
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
688
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
689 690 691 692
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

693
#ifndef CONFIG_ARM_LPAE
694 695 696
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
697 698
	unsigned long addr, length, end;
	phys_addr_t phys;
699 700 701
	pgd_t *pgd;

	addr = md->virtual;
702
	phys = __pfn_to_phys(md->pfn);
703 704 705 706 707
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
708
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
709 710 711 712 713 714 715 716 717 718 719 720
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
721
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
722 723 724 725
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
726 727 728
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
729 730 731 732 733 734 735 736 737 738 739 740
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
741 742
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
743 744 745 746 747 748 749 750 751 752
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
753
#endif	/* !CONFIG_ARM_LPAE */
754

755 756 757 758 759 760 761
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
762
static void __init create_mapping(struct map_desc *md)
763
{
764 765
	unsigned long addr, length, end;
	phys_addr_t phys;
766
	const struct mem_type *type;
767
	pgd_t *pgd;
768 769

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
770 771 772
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
773 774 775 776
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
777 778
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
779
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
780
		       " at 0x%08lx out of vmalloc space\n",
781
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
782 783
	}

784
	type = &mem_types[md->type];
785

786
#ifndef CONFIG_ARM_LPAE
787 788 789
	/*
	 * Catch 36-bit addresses
	 */
790 791 792
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
793
	}
794
#endif
795

796
	addr = md->virtual & PAGE_MASK;
797
	phys = __pfn_to_phys(md->pfn);
798
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
799

800
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
801
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
802
		       "be mapped using pages, ignoring.\n",
803
		       (long long)__pfn_to_phys(md->pfn), addr);
804 805 806
		return;
	}

807 808 809 810
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
811

R
Russell King 已提交
812
		alloc_init_pud(pgd, addr, next, phys, type);
813

814 815 816
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
817 818 819 820 821 822 823
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
824 825
	struct map_desc *md;
	struct vm_struct *vm;
826
	struct static_vm *svm;
827 828 829

	if (!nr)
		return;
830

831
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
832 833 834

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
835 836

		vm = &svm->vm;
837 838
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
839 840
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
841
		vm->flags |= VM_ARM_MTYPE(md->type);
842
		vm->caller = iotable_init;
843
		add_static_vm_early(svm++);
844
	}
845 846
}

R
Rob Herring 已提交
847 848 849 850
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
851 852 853
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
854

855
	vm = &svm->vm;
R
Rob Herring 已提交
856 857
	vm->addr = (void *)addr;
	vm->size = size;
858
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
859
	vm->caller = caller;
860
	add_static_vm_early(svm);
R
Rob Herring 已提交
861 862
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
880
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
881 882 883 884
}

static void __init fill_pmd_gaps(void)
{
885
	struct static_vm *svm;
886 887 888 889
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

890 891
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
928 929 930
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
931
	struct static_vm *svm;
R
Rob Herring 已提交
932

933 934 935
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
936 937 938 939 940 941 942

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
943 944 945 946 947 948 949 950 951 952 953 954
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
955
	iotable_init(&map, 1);
R
Rob Herring 已提交
956 957 958
}
#endif

959 960
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
961 962 963 964

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
965
 * area - the default is 240m.
966
 */
967
static int __init early_vmalloc(char *arg)
968
{
R
Russell King 已提交
969
	unsigned long vmalloc_reserve = memparse(arg, NULL);
970 971 972 973 974 975 976

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
977 978 979 980 981 982 983

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
984 985

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
986
	return 0;
987
}
988
early_param("vmalloc", early_vmalloc);
989

990
phys_addr_t arm_lowmem_limit __initdata = 0;
991

992
void __init sanity_check_meminfo(void)
993
{
994
	phys_addr_t memblock_limit = 0;
R
Russell King 已提交
995
	int i, j, highmem = 0;
996
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
997

998
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
999
		struct membank *bank = &meminfo.bank[j];
1000
		phys_addr_t size_limit;
1001

1002
		*bank = meminfo.bank[i];
1003
		size_limit = bank->size;
1004

1005
		if (bank->start >= vmalloc_limit)
R
Russell King 已提交
1006
			highmem = 1;
1007 1008
		else
			size_limit = vmalloc_limit - bank->start;
R
Russell King 已提交
1009 1010 1011

		bank->highmem = highmem;

1012
#ifdef CONFIG_HIGHMEM
1013 1014 1015 1016
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
1017
		if (!highmem && bank->size > size_limit) {
1018 1019 1020 1021 1022 1023 1024 1025
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
1026
				bank[1].size -= size_limit;
1027
				bank[1].start = vmalloc_limit;
R
Russell King 已提交
1028
				bank[1].highmem = highmem = 1;
1029 1030
				j++;
			}
1031
			bank->size = size_limit;
1032 1033
		}
#else
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

1045 1046 1047 1048
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
1049
		if (bank->size > size_limit) {
1050 1051 1052 1053
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
1054 1055
			       (unsigned long long)bank->start + size_limit - 1);
			bank->size = size_limit;
1056 1057
		}
#endif
1058 1059
		if (!bank->highmem) {
			phys_addr_t bank_end = bank->start + bank->size;
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
			if (bank_end > arm_lowmem_limit)
				arm_lowmem_limit = bank_end;

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
					memblock_limit = bank->start;
				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
					memblock_limit = bank_end;
			}
		}
1084
		j++;
1085
	}
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1106
	meminfo.nr_banks = j;
1107
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1120 1121
}

1122
static inline void prepare_page_table(void)
1123 1124
{
	unsigned long addr;
1125
	phys_addr_t end;
1126 1127 1128 1129

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1130
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1131 1132 1133 1134
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1135
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1136
#endif
1137
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1138 1139
		pmd_clear(pmd_off_k(addr));

1140 1141 1142 1143
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1144 1145
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1146

1147 1148
	/*
	 * Clear out all the kernel space mappings, except for the first
1149
	 * memory bank, up to the vmalloc region.
1150
	 */
1151
	for (addr = __phys_to_virt(end);
1152
	     addr < VMALLOC_START; addr += PMD_SIZE)
1153 1154 1155
		pmd_clear(pmd_off_k(addr));
}

1156 1157 1158 1159 1160
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1161
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1162
#endif
1163

1164
/*
R
Russell King 已提交
1165
 * Reserve the special regions of memory
1166
 */
R
Russell King 已提交
1167
void __init arm_mm_memblock_reserve(void)
1168 1169 1170 1171 1172
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1173
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1174 1175 1176 1177 1178 1179

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1180
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1181 1182 1183 1184
#endif
}

/*
1185 1186
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1187 1188 1189 1190
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1191
static void __init devicemaps_init(const struct machine_desc *mdesc)
1192 1193 1194
{
	struct map_desc map;
	unsigned long addr;
1195
	void *vectors;
1196 1197 1198 1199

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1200
	vectors = early_alloc(PAGE_SIZE * 2);
1201 1202

	early_trap_init(vectors);
1203

1204
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1205 1206 1207 1208 1209 1210 1211 1212
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1213
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1214
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1242
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1243 1244
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1245
#ifdef CONFIG_KUSER_HELPERS
1246
	map.type = MT_HIGH_VECTORS;
1247 1248 1249
#else
	map.type = MT_LOW_VECTORS;
#endif
1250 1251 1252 1253
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1254
		map.length = PAGE_SIZE * 2;
1255 1256 1257 1258
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1259 1260 1261 1262 1263 1264 1265
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1266 1267 1268 1269 1270
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1271 1272
	else
		debug_ll_io_init();
1273
	fill_pmd_gaps();
1274

R
Rob Herring 已提交
1275 1276 1277
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1288 1289 1290
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1291 1292
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1293 1294 1295
#endif
}

1296 1297
static void __init map_lowmem(void)
{
1298
	struct memblock_region *reg;
1299 1300

	/* Map all the lowmem memory banks. */
1301 1302 1303 1304 1305
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1306 1307
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1308 1309 1310 1311 1312 1313 1314
		if (start >= end)
			break;

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY;
1315

1316
		create_mapping(&map);
1317 1318 1319
	}
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
	map_start = init_mm.start_code;
	map_end   = init_mm.brk;

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
	dsb();
	isb();

	/* remap level 1 table */
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

	/* remap pmds for kernel mapping */
	phys = __pa(map_start) & PMD_MASK;
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

	flush_cache_all();
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1400 1401 1402 1403
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1404
void __init paging_init(const struct machine_desc *mdesc)
1405 1406 1407 1408
{
	void *zero_page;

	build_mem_type_table();
1409
	prepare_page_table();
1410
	map_lowmem();
1411
	dma_contiguous_remap();
1412
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1413
	kmap_init();
1414
	tcm_init();
1415 1416 1417

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1418 1419
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1420

1421
	bootmem_init();
R
Russell King 已提交
1422

1423
	empty_zero_page = virt_to_page(zero_page);
1424
	__flush_dcache_page(NULL, empty_zero_page);
1425
}