mmu.c 39.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/sections.h>
26
#include <asm/setup.h>
27
#include <asm/smp_plat.h>
28
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
29
#include <asm/highmem.h>
30
#include <asm/system_info.h>
31
#include <asm/traps.h>
32 33
#include <asm/procinfo.h>
#include <asm/memory.h>
34 35 36

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
37
#include <asm/mach/pci.h>
38 39

#include "mm.h"
40
#include "tcm.h"
41 42 43 44 45 46

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
47
EXPORT_SYMBOL(empty_zero_page);
48 49 50 51 52 53

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

54 55 56 57 58 59 60 61
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
62
pgprot_t pgprot_user;
63
pgprot_t pgprot_kernel;
64 65 66
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
67

68
EXPORT_SYMBOL(pgprot_user);
69 70 71 72 73
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
74
	pmdval_t	pmd;
75
	pteval_t	pte;
76
	pteval_t	pte_s2;
77 78
};

79 80 81 82 83 84
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

85 86 87 88 89
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
90
		.pte		= L_PTE_MT_UNCACHED,
91
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
92 93 94 95
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
96
		.pte		= L_PTE_MT_BUFFERABLE,
97
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
98 99 100 101
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
102
		.pte		= L_PTE_MT_WRITETHROUGH,
103
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 105 106 107
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
108
		.pte		= L_PTE_MT_WRITEBACK,
109
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
110 111 112 113
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
114
		.pte		= L_PTE_MT_WRITEALLOC,
115
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
116 117 118
	}
};

119
#ifdef CONFIG_CPU_CP15
120
/*
S
Simon Arlott 已提交
121
 * These are useful for identifying cache coherency
122 123 124 125
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
126
static int __init early_cachepolicy(char *p)
127 128 129 130 131 132
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

133
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 135 136 137 138 139 140 141
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 143 144 145 146 147 148
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
149 150 151 152
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
153 154
	flush_cache_all();
	set_cr(cr_alignment);
155
	return 0;
156
}
157
early_param("cachepolicy", early_cachepolicy);
158

159
static int __init early_nocache(char *__unused)
160 161 162
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 164
	early_cachepolicy(p);
	return 0;
165
}
166
early_param("nocache", early_nocache);
167

168
static int __init early_nowrite(char *__unused)
169 170 171
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 173
	early_cachepolicy(p);
	return 0;
174
}
175
early_param("nowb", early_nowrite);
176

177
#ifndef CONFIG_ARM_LPAE
178
static int __init early_ecc(char *p)
179
{
180
	if (memcmp(p, "on", 2) == 0)
181
		ecc_mask = PMD_PROTECTION;
182
	else if (memcmp(p, "off", 3) == 0)
183
		ecc_mask = 0;
184
	return 0;
185
}
186
early_param("ecc", early_ecc);
187
#endif
188 189 190 191 192 193 194 195 196 197

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

234
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
236

237
static struct mem_type mem_types[] = {
238
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
239 240
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
241
		.prot_l1	= PMD_TYPE_TABLE,
242
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
243 244 245
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
246
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
247
		.prot_l1	= PMD_TYPE_TABLE,
248
		.prot_sect	= PROT_SECT_DEVICE,
249 250 251
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
252
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
253 254 255
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
256
	},
257
	[MT_DEVICE_WC] = {	/* ioremap_wc */
258
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
259
		.prot_l1	= PMD_TYPE_TABLE,
260
		.prot_sect	= PROT_SECT_DEVICE,
261
		.domain		= DOMAIN_IO,
262
	},
263 264 265 266 267 268
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
269
	[MT_CACHECLEAN] = {
270
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 272
		.domain    = DOMAIN_KERNEL,
	},
273
#ifndef CONFIG_ARM_LPAE
274
	[MT_MINICLEAN] = {
275
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
276 277
		.domain    = DOMAIN_KERNEL,
	},
278
#endif
279 280
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
281
				L_PTE_RDONLY,
282 283 284 285 286
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
287
				L_PTE_USER | L_PTE_RDONLY,
288 289 290
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
291
	[MT_MEMORY_RWX] = {
292
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293
		.prot_l1   = PMD_TYPE_TABLE,
294
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 296
		.domain    = DOMAIN_KERNEL,
	},
297 298 299 300 301 302 303
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
304
	[MT_ROM] = {
305
		.prot_sect = PMD_TYPE_SECT,
306 307
		.domain    = DOMAIN_KERNEL,
	},
308
	[MT_MEMORY_RWX_NONCACHED] = {
309
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310
				L_PTE_MT_BUFFERABLE,
311
		.prot_l1   = PMD_TYPE_TABLE,
312 313 314
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
315
	[MT_MEMORY_RW_DTCM] = {
316
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
317
				L_PTE_XN,
318 319 320
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
321
	},
322
	[MT_MEMORY_RWX_ITCM] = {
323
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
324
		.prot_l1   = PMD_TYPE_TABLE,
325
		.domain    = DOMAIN_KERNEL,
326
	},
327
	[MT_MEMORY_RW_SO] = {
328
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329
				L_PTE_MT_UNCACHED | L_PTE_XN,
330 331 332 333 334
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
335
	[MT_MEMORY_DMA_READY] = {
336 337
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
338 339 340
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
341 342
};

343 344 345 346
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
347
EXPORT_SYMBOL(get_mem_type);
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#define PTE_SET_FN(_name, pteop) \
static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
			void *data) \
{ \
	pte_t pte = pteop(*ptep); \
\
	set_pte_ext(ptep, pte, 0); \
	return 0; \
} \

#define SET_MEMORY_FN(_name, callback) \
int set_memory_##_name(unsigned long addr, int numpages) \
{ \
	unsigned long start = addr; \
	unsigned long size = PAGE_SIZE*numpages; \
	unsigned end = start + size; \
\
	if (start < MODULES_VADDR || start >= MODULES_END) \
		return -EINVAL;\
\
	if (end < MODULES_VADDR || end >= MODULES_END) \
		return -EINVAL; \
\
	apply_to_page_range(&init_mm, start, size, callback, NULL); \
	flush_tlb_kernel_range(start, end); \
	return 0;\
}

PTE_SET_FN(ro, pte_wrprotect)
PTE_SET_FN(rw, pte_mkwrite)
PTE_SET_FN(x, pte_mkexec)
PTE_SET_FN(nx, pte_mknexec)

SET_MEMORY_FN(ro, pte_set_ro)
SET_MEMORY_FN(rw, pte_set_rw)
SET_MEMORY_FN(x, pte_set_x)
SET_MEMORY_FN(nx, pte_set_nx)

387 388 389 390 391 392 393
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
394
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
395
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
396 397 398
	int cpu_arch = cpu_architecture();
	int i;

399
	if (cpu_arch < CPU_ARCH_ARMv6) {
400
#if defined(CONFIG_CPU_DCACHE_DISABLE)
401 402
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
403
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
404 405
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
406
#endif
407
	}
408 409 410 411 412
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
413 414
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
415

416
	/*
417 418 419
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
420
	 */
421 422 423 424 425 426
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
427 428

	/*
429 430 431
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
432
	 */
433
	if (cpu_is_xscale() || cpu_is_xsc3()) {
434
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
435
			mem_types[i].prot_sect &= ~PMD_BIT4;
436 437 438 439
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
440 441
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
442 443 444 445
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
446

447 448 449 450 451 452 453 454 455 456 457 458 459
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
460 461 462

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
508
	cp = &cache_policies[cachepolicy];
509
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
510 511
	s2_pgprot = cp->pte_s2;
	hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
512

513 514 515 516
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
517
#ifndef CONFIG_ARM_LPAE
518 519 520 521 522 523 524
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
525
#endif
526

527 528 529 530 531 532 533 534
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
535
			s2_pgprot |= L_PTE_SHARED;
536 537 538 539
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
540 541
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
542 543
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
544
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
545 546
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
547
		}
548 549
	}

550 551 552 553 554 555 556
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
557
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
558 559 560
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
561
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
562 563 564
				PMD_SECT_TEX(1);
		}
	} else {
565
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
566 567
	}

568 569 570 571 572 573
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
574 575
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
576 577 578 579 580
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

581
	for (i = 0; i < 16; i++) {
582
		pteval_t v = pgprot_val(protection_map[i]);
583
		protection_map[i] = __pgprot(v | user_pgprot);
584 585
	}

586 587
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
588

589
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
590
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
591
				 L_PTE_DIRTY | kern_pgprot);
592 593 594
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
595 596 597

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
598 599
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
600 601
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
602
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
603
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
604 605 606 607 608 609 610 611 612 613 614
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
615 616
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
617 618 619 620 621 622 623 624

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

640 641
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

642
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
643
{
644
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
645 646
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
647 648
}

649 650 651 652 653
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
654
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
655
{
656
	if (pmd_none(*pmd)) {
657
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
658
		__pmd_populate(pmd, __pa(pte), prot);
659
	}
R
Russell King 已提交
660 661 662
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
663

R
Russell King 已提交
664 665 666 667 668
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
669
	do {
670
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
671 672
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
673 674
}

675
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
676 677
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
678
{
679 680
	pmd_t *p = pmd;

681
#ifndef CONFIG_ARM_LPAE
682
	/*
683 684 685 686 687 688 689
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
690
	 */
691 692
	if (addr & SECTION_SIZE)
		pmd++;
693
#endif
694 695 696 697
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
698

699
	flush_pmd_entry(p);
700
}
701

702 703 704 705 706 707 708 709
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
710
		/*
711 712
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
713
		 */
714 715 716 717 718 719 720 721
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
722
			__map_init_section(pmd, addr, next, phys, type);
723 724 725 726 727 728 729 730
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
731 732
}

733
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
734 735
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
736 737 738 739 740 741
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
742
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
743 744 745 746
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

747
#ifndef CONFIG_ARM_LPAE
748 749 750
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
751 752
	unsigned long addr, length, end;
	phys_addr_t phys;
753 754 755
	pgd_t *pgd;

	addr = md->virtual;
756
	phys = __pfn_to_phys(md->pfn);
757 758 759 760 761
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
762
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
763 764 765 766 767 768 769 770 771 772 773 774
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
775
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
776 777 778 779
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
780 781 782
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
783 784 785 786 787 788 789 790 791 792 793 794
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
795 796
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
797 798 799 800 801 802 803 804 805 806
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
807
#endif	/* !CONFIG_ARM_LPAE */
808

809 810 811 812 813 814 815
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
816
static void __init create_mapping(struct map_desc *md)
817
{
818 819
	unsigned long addr, length, end;
	phys_addr_t phys;
820
	const struct mem_type *type;
821
	pgd_t *pgd;
822 823

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
824 825 826
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
827 828 829 830
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
831 832
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
833
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
834
		       " at 0x%08lx out of vmalloc space\n",
835
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
836 837
	}

838
	type = &mem_types[md->type];
839

840
#ifndef CONFIG_ARM_LPAE
841 842 843
	/*
	 * Catch 36-bit addresses
	 */
844 845 846
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
847
	}
848
#endif
849

850
	addr = md->virtual & PAGE_MASK;
851
	phys = __pfn_to_phys(md->pfn);
852
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
853

854
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
855
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
856
		       "be mapped using pages, ignoring.\n",
857
		       (long long)__pfn_to_phys(md->pfn), addr);
858 859 860
		return;
	}

861 862 863 864
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
865

R
Russell King 已提交
866
		alloc_init_pud(pgd, addr, next, phys, type);
867

868 869 870
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
871 872 873 874 875 876 877
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
878 879
	struct map_desc *md;
	struct vm_struct *vm;
880
	struct static_vm *svm;
881 882 883

	if (!nr)
		return;
884

885
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
886 887 888

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
889 890

		vm = &svm->vm;
891 892
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
893 894
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
895
		vm->flags |= VM_ARM_MTYPE(md->type);
896
		vm->caller = iotable_init;
897
		add_static_vm_early(svm++);
898
	}
899 900
}

R
Rob Herring 已提交
901 902 903 904
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
905 906 907
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
908

909
	vm = &svm->vm;
R
Rob Herring 已提交
910 911
	vm->addr = (void *)addr;
	vm->size = size;
912
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
913
	vm->caller = caller;
914
	add_static_vm_early(svm);
R
Rob Herring 已提交
915 916
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
934
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
935 936 937 938
}

static void __init fill_pmd_gaps(void)
{
939
	struct static_vm *svm;
940 941 942 943
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

944 945
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
982 983 984
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
985
	struct static_vm *svm;
R
Rob Herring 已提交
986

987 988 989
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
990 991 992 993 994 995 996

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1009
	iotable_init(&map, 1);
R
Rob Herring 已提交
1010 1011 1012
}
#endif

1013 1014
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1015 1016 1017 1018

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1019
 * area - the default is 240m.
1020
 */
1021
static int __init early_vmalloc(char *arg)
1022
{
R
Russell King 已提交
1023
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1024 1025 1026 1027 1028 1029 1030

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
1031 1032 1033 1034 1035 1036 1037

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1038 1039

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1040
	return 0;
1041
}
1042
early_param("vmalloc", early_vmalloc);
1043

1044
phys_addr_t arm_lowmem_limit __initdata = 0;
1045

1046
void __init sanity_check_meminfo(void)
1047
{
1048
	phys_addr_t memblock_limit = 0;
R
Russell King 已提交
1049
	int i, j, highmem = 0;
1050
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1051

1052
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1053
		struct membank *bank = &meminfo.bank[j];
1054
		phys_addr_t size_limit;
1055

1056
		*bank = meminfo.bank[i];
1057
		size_limit = bank->size;
1058

1059
		if (bank->start >= vmalloc_limit)
R
Russell King 已提交
1060
			highmem = 1;
1061 1062
		else
			size_limit = vmalloc_limit - bank->start;
R
Russell King 已提交
1063 1064 1065

		bank->highmem = highmem;

1066
#ifdef CONFIG_HIGHMEM
1067 1068 1069 1070
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
1071
		if (!highmem && bank->size > size_limit) {
1072 1073 1074 1075 1076 1077 1078 1079
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
1080
				bank[1].size -= size_limit;
1081
				bank[1].start = vmalloc_limit;
R
Russell King 已提交
1082
				bank[1].highmem = highmem = 1;
1083 1084
				j++;
			}
1085
			bank->size = size_limit;
1086 1087
		}
#else
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

1099 1100 1101 1102
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
1103
		if (bank->size > size_limit) {
1104 1105 1106 1107
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
1108 1109
			       (unsigned long long)bank->start + size_limit - 1);
			bank->size = size_limit;
1110 1111
		}
#endif
1112 1113
		if (!bank->highmem) {
			phys_addr_t bank_end = bank->start + bank->size;
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
			if (bank_end > arm_lowmem_limit)
				arm_lowmem_limit = bank_end;

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
					memblock_limit = bank->start;
				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
					memblock_limit = bank_end;
			}
		}
1138
		j++;
1139
	}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1160
	meminfo.nr_banks = j;
1161
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1174 1175
}

1176
static inline void prepare_page_table(void)
1177 1178
{
	unsigned long addr;
1179
	phys_addr_t end;
1180 1181 1182 1183

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1184
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1185 1186 1187 1188
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1189
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1190
#endif
1191
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1192 1193
		pmd_clear(pmd_off_k(addr));

1194 1195 1196 1197
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1198 1199
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1200

1201 1202
	/*
	 * Clear out all the kernel space mappings, except for the first
1203
	 * memory bank, up to the vmalloc region.
1204
	 */
1205
	for (addr = __phys_to_virt(end);
1206
	     addr < VMALLOC_START; addr += PMD_SIZE)
1207 1208 1209
		pmd_clear(pmd_off_k(addr));
}

1210 1211 1212 1213 1214
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1215
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1216
#endif
1217

1218
/*
R
Russell King 已提交
1219
 * Reserve the special regions of memory
1220
 */
R
Russell King 已提交
1221
void __init arm_mm_memblock_reserve(void)
1222 1223 1224 1225 1226
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1227
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1228 1229 1230 1231 1232 1233

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1234
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1235 1236 1237 1238
#endif
}

/*
1239 1240
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1241 1242 1243 1244
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1245
static void __init devicemaps_init(const struct machine_desc *mdesc)
1246 1247 1248
{
	struct map_desc map;
	unsigned long addr;
1249
	void *vectors;
1250 1251 1252 1253

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1254
	vectors = early_alloc(PAGE_SIZE * 2);
1255 1256

	early_trap_init(vectors);
1257

1258
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1259 1260 1261 1262 1263 1264 1265 1266
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1267
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1268
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1296
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1297 1298
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1299
#ifdef CONFIG_KUSER_HELPERS
1300
	map.type = MT_HIGH_VECTORS;
1301 1302 1303
#else
	map.type = MT_LOW_VECTORS;
#endif
1304 1305 1306 1307
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1308
		map.length = PAGE_SIZE * 2;
1309 1310 1311 1312
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1313 1314 1315 1316 1317 1318 1319
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1320 1321 1322 1323 1324
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1325 1326
	else
		debug_ll_io_init();
1327
	fill_pmd_gaps();
1328

R
Rob Herring 已提交
1329 1330 1331
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1342 1343 1344
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1345 1346
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1347 1348 1349
#endif
}

1350 1351
static void __init map_lowmem(void)
{
1352
	struct memblock_region *reg;
1353 1354
	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1355 1356

	/* Map all the lowmem memory banks. */
1357 1358 1359 1360 1361
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1362 1363
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1364 1365 1366
		if (start >= end)
			break;

1367 1368 1369 1370 1371
		if (end < kernel_x_start || start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1401 1402 1403
	}
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
	map_start = init_mm.start_code;
	map_end   = init_mm.brk;

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
	dsb();
	isb();

	/* remap level 1 table */
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

	/* remap pmds for kernel mapping */
	phys = __pa(map_start) & PMD_MASK;
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

	flush_cache_all();
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1484 1485 1486 1487
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1488
void __init paging_init(const struct machine_desc *mdesc)
1489 1490 1491 1492
{
	void *zero_page;

	build_mem_type_table();
1493
	prepare_page_table();
1494
	map_lowmem();
1495
	dma_contiguous_remap();
1496
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1497
	kmap_init();
1498
	tcm_init();
1499 1500 1501

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1502 1503
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1504

1505
	bootmem_init();
R
Russell King 已提交
1506

1507
	empty_zero_page = virt_to_page(zero_page);
1508
	__flush_dcache_page(NULL, empty_zero_page);
1509
}