slab.c 118.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
L
Linus Torvalds 已提交
119 120 121 122 123 124

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
125
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
146
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
147 148 149 150 151 152 153

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
154
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
155
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156
			 SLAB_CACHE_DMA | \
157
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
158
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
160
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
161
#else
162
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
163
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
164
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
166
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

188
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
189 190
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
191 192
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
202 203 204 205 206 207
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
227
	struct rcu_head head;
228
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
229
	void *addr;
L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
A
Andrew Morton 已提交
251 252 253 254
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
255 256
};

A
Andrew Morton 已提交
257 258 259
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
260 261 262 263
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
264
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
265 266 267
};

/*
268
 * The slab lists for all objects.
L
Linus Torvalds 已提交
269 270
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
271 272 273 274 275
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
276
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
277 278 279
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
280 281
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
282 283
};

284 285 286
/*
 * Need this for bootstrapping a per node allocator.
 */
287
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
288 289
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
290 291
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
292

293 294 295 296
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
297
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
298
static void cache_reap(struct work_struct *unused);
299

300
/*
A
Andrew Morton 已提交
301 302
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
303
 */
304
static __always_inline int index_of(const size_t size)
305
{
306 307
	extern void __bad_size(void);

308 309 310 311 312 313 314 315
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
316
#include <linux/kmalloc_sizes.h>
317
#undef CACHE
318
		__bad_size();
319
	} else
320
		__bad_size();
321 322 323
	return 0;
}

324 325
static int slab_early_init = 1;

326 327
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
328

P
Pekka Enberg 已提交
329
static void kmem_list3_init(struct kmem_list3 *parent)
330 331 332 333 334 335
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
336
	parent->colour_next = 0;
337 338 339 340 341
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
342 343 344 345
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
346 347
	} while (0)

A
Andrew Morton 已提交
348 349
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
350 351 352 353
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
354 355 356 357 358

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
359 360 361
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
362
 *
A
Adrian Bunk 已提交
363
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
364 365 366 367 368 369 370 371 372 373
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
374
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
375 376 377 378 379
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
380 381
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
382
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
383
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
384 385 386 387 388
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
398
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
399 400 401
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
402
#define	STATS_INC_NODEFREES(x)	do { } while (0)
403
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
404
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
405 406 407 408 409 410 411 412
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
413 414
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
415
 * 0		: objp
416
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
417 418
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
419
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
420
 * 		redzone word.
421 422
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
423 424
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
425
 */
426
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
427
{
428
	return cachep->obj_offset;
L
Linus Torvalds 已提交
429 430
}

431
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
432
{
433
	return cachep->obj_size;
L
Linus Torvalds 已提交
434 435
}

436
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
437 438
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
439 440
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
441 442
}

443
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
444 445 446
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
447 448
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
449
					      REDZONE_ALIGN);
450 451
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
452 453
}

454
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
455 456
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
457
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
458 459 460 461
}

#else

462 463
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
464 465
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
466 467 468 469
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

470
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
471 472 473 474 475 476 477
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
478 479 480 481 482 483 484
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
485 486 487 488
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
489
 */
490 491 492 493 494 495 496
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
497
	page = compound_head(page);
498
	BUG_ON(!PageSlab(page));
499 500 501 502 503 504 505 506 507 508
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
509
	BUG_ON(!PageSlab(page));
510 511
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
512

513 514
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
515
	struct page *page = virt_to_head_page(obj);
516 517 518 519 520
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
521
	struct page *page = virt_to_head_page(obj);
522 523 524
	return page_get_slab(page);
}

525 526 527 528 529 530
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

531 532 533 534 535 536 537 538
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
539
{
540 541
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
542 543
}

A
Andrew Morton 已提交
544 545 546
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
564
	{NULL,}
L
Linus Torvalds 已提交
565 566 567 568
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
569
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
570
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
571
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
572 573

/* internal cache of cache description objs */
574
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
575 576 577
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
578
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
579
	.name = "kmem_cache",
L
Linus Torvalds 已提交
580 581
};

582 583
#define BAD_ALIEN_MAGIC 0x01020304ul

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

604 605 606 607 608 609 610 611
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
612 613 614 615
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
616
 */
617 618 619
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

620
static void init_node_lock_keys(int q)
621
{
622 623
	struct cache_sizes *s = malloc_sizes;

624 625 626 627 628 629 630 631 632 633
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
634
			continue;
635 636 637 638 639 640 641 642 643 644
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
645
			continue;
646 647 648 649
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
650
		}
651 652
	}
}
653 654 655 656 657 658 659 660

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
661
#else
662 663 664 665
static void init_node_lock_keys(int q)
{
}

666
static inline void init_lock_keys(void)
667 668 669 670
{
}
#endif

671
/*
672
 * Guard access to the cache-chain.
673
 */
I
Ingo Molnar 已提交
674
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
675 676
static struct list_head cache_chain;

677
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
678

679
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
680 681 682 683
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
684 685
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
686 687 688 689 690
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
691 692 693
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
694
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
695
#endif
696 697 698
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
699 700 701 702
	while (size > csizep->cs_size)
		csizep++;

	/*
703
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
704 705 706
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
707
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
708 709
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
710
#endif
L
Linus Torvalds 已提交
711 712 713
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
714
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
715 716 717 718
{
	return __find_general_cachep(size, gfpflags);
}

719
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
720
{
721 722
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
723

A
Andrew Morton 已提交
724 725 726
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
727 728 729 730 731 732 733
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
783 784
}

785
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
786

A
Andrew Morton 已提交
787 788
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
789 790
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
791
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
792 793 794
	dump_stack();
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

811 812 813 814 815 816 817
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
818
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
819 820 821 822 823 824 825

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
826
		node = first_node(node_online_map);
827

828
	per_cpu(slab_reap_node, cpu) = node;
829 830 831 832
}

static void next_reap_node(void)
{
833
	int node = __get_cpu_var(slab_reap_node);
834 835 836 837

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
838
	__get_cpu_var(slab_reap_node) = node;
839 840 841 842 843 844 845
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
846 847 848 849 850 851 852
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
853
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
854
{
855
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
856 857 858 859 860 861

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
862
	if (keventd_up() && reap_work->work.func == NULL) {
863
		init_reap_node(cpu);
864
		INIT_DELAYED_WORK(reap_work, cache_reap);
865 866
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
867 868 869
	}
}

870
static struct array_cache *alloc_arraycache(int node, int entries,
871
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
872
{
P
Pekka Enberg 已提交
873
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
874 875
	struct array_cache *nc = NULL;

876
	nc = kmalloc_node(memsize, gfp, node);
877 878 879 880 881 882 883 884
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
885 886 887 888 889
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
890
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
891 892 893 894
	}
	return nc;
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

918 919 920 921 922
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

923
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

943
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
944 945 946 947 948 949 950
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

951
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
952
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
953

954
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
955 956
{
	struct array_cache **ac_ptr;
957
	int memsize = sizeof(void *) * nr_node_ids;
958 959 960 961
	int i;

	if (limit > 1)
		limit = 12;
962
	ac_ptr = kzalloc_node(memsize, gfp, node);
963 964
	if (ac_ptr) {
		for_each_node(i) {
965
			if (i == node || !node_online(i))
966
				continue;
967
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
968
			if (!ac_ptr[i]) {
969
				for (i--; i >= 0; i--)
970 971 972 973 974 975 976 977 978
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
979
static void free_alien_cache(struct array_cache **ac_ptr)
980 981 982 983 984 985
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
986
	    kfree(ac_ptr[i]);
987 988 989
	kfree(ac_ptr);
}

990
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
991
				struct array_cache *ac, int node)
992 993 994 995 996
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
997 998 999 1000 1001
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1002 1003
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1004

1005
		free_block(cachep, ac->entry, ac->avail, node);
1006 1007 1008 1009 1010
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1011 1012 1013 1014 1015
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1016
	int node = __get_cpu_var(slab_reap_node);
1017 1018 1019

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1020 1021

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1022 1023 1024 1025 1026 1027
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1028 1029
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1030
{
P
Pekka Enberg 已提交
1031
	int i = 0;
1032 1033 1034 1035
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1036
		ac = alien[i];
1037 1038 1039 1040 1041 1042 1043
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1044

1045
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1046 1047 1048 1049 1050
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1051 1052 1053
	int node;

	node = numa_node_id();
1054 1055 1056 1057 1058

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1059
	if (likely(slabp->nodeid == node))
1060 1061
		return 0;

P
Pekka Enberg 已提交
1062
	l3 = cachep->nodelists[node];
1063 1064 1065
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1066
		spin_lock(&alien->lock);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1080 1081
#endif

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
 * Must hold cache_chain_mutex.
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

	list_for_each_entry(cachep, &cache_chain, next) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1128 1129 1130 1131 1132
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1133
	const struct cpumask *mask = cpumask_of_node(node);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1155
		if (!cpumask_empty(mask)) {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1194
{
1195
	struct kmem_cache *cachep;
1196 1197
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1198
	int err;
L
Linus Torvalds 已提交
1199

1200 1201 1202 1203 1204 1205
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1206 1207 1208
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1220
					cachep->batchcount, GFP_KERNEL);
1221 1222 1223 1224 1225
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1226
				0xbaadf00d, GFP_KERNEL);
1227 1228
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1229
				goto bad;
1230
			}
1231 1232
		}
		if (use_alien_caches) {
1233
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1234 1235 1236
			if (!alien) {
				kfree(shared);
				kfree(nc);
1237
				goto bad;
1238
			}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1253
#ifdef CONFIG_NUMA
1254 1255 1256
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1257
		}
1258 1259 1260 1261 1262
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1263 1264
	init_node_lock_keys(node);

1265 1266
	return 0;
bad:
1267
	cpuup_canceled(cpu);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1280
		mutex_lock(&cache_chain_mutex);
1281
		err = cpuup_prepare(cpu);
1282
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1283 1284
		break;
	case CPU_ONLINE:
1285
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1286 1287 1288
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1289
  	case CPU_DOWN_PREPARE:
1290
  	case CPU_DOWN_PREPARE_FROZEN:
1291 1292 1293 1294 1295 1296
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1297
		cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1298
		/* Now the cache_reaper is guaranteed to be not running. */
1299
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1300 1301
  		break;
  	case CPU_DOWN_FAILED:
1302
  	case CPU_DOWN_FAILED_FROZEN:
1303 1304
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1305
	case CPU_DEAD:
1306
	case CPU_DEAD_FROZEN:
1307 1308 1309 1310 1311 1312 1313 1314
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1315
		/* fall through */
1316
#endif
L
Linus Torvalds 已提交
1317
	case CPU_UP_CANCELED:
1318
	case CPU_UP_CANCELED_FROZEN:
1319
		mutex_lock(&cache_chain_mutex);
1320
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1321
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1322 1323
		break;
	}
1324
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1325 1326
}

1327 1328 1329
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
 * Must hold cache_chain_mutex.
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

	list_for_each_entry(cachep, &cache_chain, next) {
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
		mutex_lock(&cache_chain_mutex);
		ret = init_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_GOING_OFFLINE:
		mutex_lock(&cache_chain_mutex);
		ret = drain_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
	return ret ? notifier_from_errno(ret) : NOTIFY_OK;
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1395 1396 1397
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1398 1399
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1400 1401 1402
{
	struct kmem_list3 *ptr;

1403
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1404 1405 1406
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1407 1408 1409 1410 1411
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1412 1413 1414 1415
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1432 1433 1434
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1441
	int i;
1442
	int order;
P
Pekka Enberg 已提交
1443
	int node;
1444

1445
	if (num_possible_nodes() == 1)
1446 1447
		use_alien_caches = 0;

1448 1449 1450 1451 1452
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1453
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1459
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1460 1461 1462 1463
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1464 1465 1466
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1467 1468 1469
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1470
	 * 2) Create the first kmalloc cache.
1471
	 *    The struct kmem_cache for the new cache is allocated normally.
1472 1473 1474
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1475 1476
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1477 1478 1479
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1480 1481
	 */

P
Pekka Enberg 已提交
1482 1483
	node = numa_node_id();

L
Linus Torvalds 已提交
1484 1485 1486 1487 1488
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1489
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1490

E
Eric Dumazet 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1500 1501
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1502 1503
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1504

1505 1506 1507 1508 1509 1510
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1511
	BUG_ON(!cache_cache.num);
1512
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1513 1514 1515
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1521 1522 1523 1524
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1525 1526 1527
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1528 1529 1530
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1531
					NULL);
1532

A
Andrew Morton 已提交
1533
	if (INDEX_AC != INDEX_L3) {
1534
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1535 1536 1537 1538
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1539
				NULL);
A
Andrew Morton 已提交
1540
	}
1541

1542 1543
	slab_early_init = 0;

L
Linus Torvalds 已提交
1544
	while (sizes->cs_size != ULONG_MAX) {
1545 1546
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1547 1548 1549
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1550 1551
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1552
		if (!sizes->cs_cachep) {
1553
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1554 1555 1556
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1557
					NULL);
A
Andrew Morton 已提交
1558
		}
1559 1560 1561
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1562 1563 1564 1565
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1566
					NULL);
1567
#endif
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1573
		struct array_cache *ptr;
1574

1575
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1576

1577 1578
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1579
		       sizeof(struct arraycache_init));
1580 1581 1582 1583 1584
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1585
		cache_cache.array[smp_processor_id()] = ptr;
1586

1587
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1588

1589
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1590
		       != &initarray_generic.cache);
1591
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1592
		       sizeof(struct arraycache_init));
1593 1594 1595 1596 1597
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1598
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1599
		    ptr;
L
Linus Torvalds 已提交
1600
	}
1601 1602
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1603 1604
		int nid;

1605
		for_each_online_node(nid) {
1606
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1607

1608
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1609
				  &initkmem_list3[SIZE_AC + nid], nid);
1610 1611 1612

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1613
					  &initkmem_list3[SIZE_L3 + nid], nid);
1614 1615 1616
			}
		}
	}
L
Linus Torvalds 已提交
1617

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1631

L
Linus Torvalds 已提交
1632 1633 1634
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1635 1636 1637
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1638 1639 1640
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1641 1642 1643
	 */
	register_cpu_notifier(&cpucache_notifier);

1644 1645 1646 1647 1648 1649 1650 1651
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1652 1653 1654
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659 1660 1661
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1662 1663
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1664
	 */
1665
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1666
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1678
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1679 1680
{
	struct page *page;
1681
	int nr_pages;
L
Linus Torvalds 已提交
1682 1683
	int i;

1684
#ifndef CONFIG_MMU
1685 1686 1687
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1688
	 */
1689
	flags |= __GFP_COMP;
1690
#endif
1691

1692
	flags |= cachep->gfpflags;
1693 1694
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1695

L
Linus Torvalds 已提交
1696
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1697 1698 1699
	if (!page)
		return NULL;

1700
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1701
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1702 1703 1704 1705 1706
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1707 1708
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1709

1710 1711 1712 1713 1714 1715 1716 1717
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1718

1719
	return page_address(page);
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724
}

/*
 * Interface to system's page release.
 */
1725
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1726
{
P
Pekka Enberg 已提交
1727
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1728 1729 1730
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1731
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1732

1733 1734 1735 1736 1737 1738
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1739
	while (i--) {
N
Nick Piggin 已提交
1740 1741
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1751
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1752
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1762
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1763
			    unsigned long caller)
L
Linus Torvalds 已提交
1764
{
1765
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1766

1767
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1768

P
Pekka Enberg 已提交
1769
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1770 1771
		return;

P
Pekka Enberg 已提交
1772 1773 1774 1775
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780 1781 1782
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1783
				*addr++ = svalue;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1791
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1792 1793 1794
}
#endif

1795
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1796
{
1797 1798
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1799 1800

	memset(addr, val, size);
P
Pekka Enberg 已提交
1801
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1807 1808 1809
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1810
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1811 1812 1813 1814 1815
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1816
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1817
	}
L
Linus Torvalds 已提交
1818
	printk("\n");
D
Dave Jones 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837
}
#endif

#if DEBUG

1838
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1844
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1845 1846
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1847 1848 1849 1850
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1851
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1852
		print_symbol("(%s)",
A
Andrew Morton 已提交
1853
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1854 1855
		printk("\n");
	}
1856 1857
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1858
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1859 1860
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1861 1862
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1863 1864 1865 1866
		dump_line(realobj, i, limit);
	}
}

1867
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872
{
	char *realobj;
	int size, i;
	int lines = 0;

1873 1874
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1875

P
Pekka Enberg 已提交
1876
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1877
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1878
		if (i == size - 1)
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1885
				printk(KERN_ERR
1886 1887
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1888 1889 1890
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1891
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1892
			limit = 16;
P
Pekka Enberg 已提交
1893 1894
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1907
		struct slab *slabp = virt_to_slab(objp);
1908
		unsigned int objnr;
L
Linus Torvalds 已提交
1909

1910
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1911
		if (objnr) {
1912
			objp = index_to_obj(cachep, slabp, objnr - 1);
1913
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1914
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1915
			       realobj, size);
L
Linus Torvalds 已提交
1916 1917
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1918
		if (objnr + 1 < cachep->num) {
1919
			objp = index_to_obj(cachep, slabp, objnr + 1);
1920
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1921
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1922
			       realobj, size);
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1929
#if DEBUG
R
Rabin Vincent 已提交
1930
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1931 1932 1933
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1934
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1935 1936 1937

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1938 1939
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1940
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1941
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1951
					   "was overwritten");
L
Linus Torvalds 已提交
1952 1953
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1954
					   "was overwritten");
L
Linus Torvalds 已提交
1955 1956
		}
	}
1957
}
L
Linus Torvalds 已提交
1958
#else
R
Rabin Vincent 已提交
1959
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1960 1961
{
}
L
Linus Torvalds 已提交
1962 1963
#endif

1964 1965 1966 1967 1968
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1969
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1970 1971
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1972
 */
1973
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1974 1975 1976
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1977
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1978 1979 1980
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1981
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1987 1988
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1989 1990 1991
	}
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2013
/**
2014 2015 2016 2017 2018 2019 2020
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2021 2022 2023 2024 2025
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2026
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2027
			size_t size, size_t align, unsigned long flags)
2028
{
2029
	unsigned long offslab_limit;
2030
	size_t left_over = 0;
2031
	int gfporder;
2032

2033
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2034 2035 2036
		unsigned int num;
		size_t remainder;

2037
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2038 2039
		if (!num)
			continue;
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2053

2054
		/* Found something acceptable - save it away */
2055
		cachep->num = num;
2056
		cachep->gfporder = gfporder;
2057 2058
		left_over = remainder;

2059 2060 2061 2062 2063 2064 2065 2066
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2067 2068 2069 2070
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2071
		if (gfporder >= slab_break_gfp_order)
2072 2073
			break;

2074 2075 2076
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2077
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2078 2079 2080 2081 2082
			break;
	}
	return left_over;
}

2083
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2084
{
2085
	if (g_cpucache_up == FULL)
2086
		return enable_cpucache(cachep, gfp);
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2108
			kmalloc(sizeof(struct arraycache_init), gfp);
2109 2110 2111 2112 2113 2114

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2115
			for_each_online_node(node) {
2116 2117
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2118
						gfp, node);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2134
	return 0;
2135 2136
}

L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2147
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2148 2149
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2150
 * the module calling this has to destroy the cache before getting unloaded.
2151 2152
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2153
 *
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2166
struct kmem_cache *
L
Linus Torvalds 已提交
2167
kmem_cache_create (const char *name, size_t size, size_t align,
2168
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2169 2170
{
	size_t left_over, slab_size, ralign;
2171
	struct kmem_cache *cachep = NULL, *pc;
2172
	gfp_t gfp;
L
Linus Torvalds 已提交
2173 2174 2175 2176

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2177
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2178
	    size > KMALLOC_MAX_SIZE) {
2179
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2180
				name);
P
Pekka Enberg 已提交
2181 2182
		BUG();
	}
L
Linus Torvalds 已提交
2183

2184
	/*
2185
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2186
	 * cpu_online_mask as well.  Please see cpuup_callback
2187
	 */
2188 2189 2190 2191
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2192

2193
	list_for_each_entry(pc, &cache_chain, next) {
2194 2195 2196 2197 2198 2199 2200 2201
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2202
		res = probe_kernel_address(pc->name, tmp);
2203
		if (res) {
2204 2205
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2206
			       pc->buffer_size);
2207 2208 2209
			continue;
		}

P
Pekka Enberg 已提交
2210
		if (!strcmp(pc->name, name)) {
2211 2212
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2213 2214 2215 2216 2217
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2227 2228
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2229
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2230 2231 2232 2233 2234 2235 2236
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2237 2238
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2239
	 */
2240
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2241

A
Andrew Morton 已提交
2242 2243
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2244 2245 2246
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2247 2248 2249
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2250 2251
	}

A
Andrew Morton 已提交
2252 2253
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2254 2255
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2256 2257 2258 2259
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2260 2261
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2262
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2263 2264 2265 2266
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2267 2268

	/*
D
David Woodhouse 已提交
2269 2270 2271
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2272
	 */
D
David Woodhouse 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2283

2284
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2285 2286 2287
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2288
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2289 2290 2291
	if (ralign < align) {
		ralign = align;
	}
2292 2293
	/* disable debug if not aligning with REDZONE_ALIGN */
	if (ralign & (__alignof__(unsigned long long) - 1))
2294
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2295
	/*
2296
	 * 4) Store it.
L
Linus Torvalds 已提交
2297 2298 2299
	 */
	align = ralign;

2300 2301 2302 2303 2304
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2305
	/* Get cache's description obj. */
2306
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2307
	if (!cachep)
2308
		goto oops;
L
Linus Torvalds 已提交
2309 2310

#if DEBUG
2311
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2312

2313 2314 2315 2316
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2317 2318
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2319 2320
		cachep->obj_offset += align;
		size += align + sizeof(unsigned long long);
L
Linus Torvalds 已提交
2321 2322
	}
	if (flags & SLAB_STORE_USER) {
2323
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2324 2325
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2326
		 */
D
David Woodhouse 已提交
2327 2328 2329 2330
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2331 2332
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2333
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2334 2335
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340
		size = PAGE_SIZE;
	}
#endif
#endif

2341 2342 2343
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2344 2345
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2346
	 */
2347 2348
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2357
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2358 2359

	if (!cachep->num) {
2360 2361
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2362 2363
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2364
		goto oops;
L
Linus Torvalds 已提交
2365
	}
P
Pekka Enberg 已提交
2366 2367
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2380 2381
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2382 2383 2384 2385 2386 2387 2388 2389 2390

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2397
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2398 2399 2400
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2401
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2402
		cachep->gfpflags |= GFP_DMA;
2403
	cachep->buffer_size = size;
2404
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2405

2406
	if (flags & CFLGS_OFF_SLAB) {
2407
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2408 2409 2410 2411 2412 2413 2414
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2415
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2416
	}
L
Linus Torvalds 已提交
2417 2418 2419
	cachep->ctor = ctor;
	cachep->name = name;

2420
	if (setup_cpu_cache(cachep, gfp)) {
2421 2422 2423 2424
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2425 2426 2427

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2428
oops:
L
Linus Torvalds 已提交
2429 2430
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2431
		      name);
2432 2433 2434 2435
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2451
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2452 2453 2454
{
#ifdef CONFIG_SMP
	check_irq_off();
2455
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2456 2457
#endif
}
2458

2459
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2460 2461 2462 2463 2464 2465 2466
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2467 2468 2469 2470
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2471
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2472 2473
#endif

2474 2475 2476 2477
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2478 2479
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2480
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2481
	struct array_cache *ac;
2482
	int node = numa_node_id();
L
Linus Torvalds 已提交
2483 2484

	check_irq_off();
2485
	ac = cpu_cache_get(cachep);
2486 2487 2488
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2489 2490 2491
	ac->avail = 0;
}

2492
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2493
{
2494 2495 2496
	struct kmem_list3 *l3;
	int node;

2497
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2498
	check_irq_on();
P
Pekka Enberg 已提交
2499
	for_each_online_node(node) {
2500
		l3 = cachep->nodelists[node];
2501 2502 2503 2504 2505 2506 2507
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2508
			drain_array(cachep, l3, l3->shared, 1, node);
2509
	}
L
Linus Torvalds 已提交
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2520
{
2521 2522
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2523 2524
	struct slab *slabp;

2525 2526
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2527

2528
		spin_lock_irq(&l3->list_lock);
2529
		p = l3->slabs_free.prev;
2530 2531 2532 2533
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2534

2535
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2536
#if DEBUG
2537
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2538 2539
#endif
		list_del(&slabp->list);
2540 2541 2542 2543 2544
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2545
		spin_unlock_irq(&l3->list_lock);
2546 2547
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2548
	}
2549 2550
out:
	return nr_freed;
L
Linus Torvalds 已提交
2551 2552
}

2553
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2554
static int __cache_shrink(struct kmem_cache *cachep)
2555 2556 2557 2558 2559 2560 2561 2562 2563
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2564 2565 2566 2567 2568 2569 2570
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2571 2572 2573 2574
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580 2581
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2582
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2583
{
2584
	int ret;
2585
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2586

2587
	get_online_cpus();
2588 2589 2590
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2591
	put_online_cpus();
2592
	return ret;
L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598 2599
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2600
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2612
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2613
{
2614
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2615 2616

	/* Find the cache in the chain of caches. */
2617
	get_online_cpus();
I
Ingo Molnar 已提交
2618
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2625
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2626
		mutex_unlock(&cache_chain_mutex);
2627
		put_online_cpus();
2628
		return;
L
Linus Torvalds 已提交
2629 2630 2631
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2632
		rcu_barrier();
L
Linus Torvalds 已提交
2633

2634
	__kmem_cache_destroy(cachep);
2635
	mutex_unlock(&cache_chain_mutex);
2636
	put_online_cpus();
L
Linus Torvalds 已提交
2637 2638 2639
}
EXPORT_SYMBOL(kmem_cache_destroy);

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2651
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2652 2653
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2654 2655
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2656

L
Linus Torvalds 已提交
2657 2658
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2659
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2660
					      local_flags, nodeid);
2661 2662 2663 2664 2665 2666
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2667 2668
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2669 2670 2671
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2672
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2673 2674 2675 2676
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2677
	slabp->s_mem = objp + colour_off;
2678
	slabp->nodeid = nodeid;
2679
	slabp->free = 0;
L
Linus Torvalds 已提交
2680 2681 2682 2683 2684
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2685
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2686 2687
}

2688
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2689
			    struct slab *slabp)
L
Linus Torvalds 已提交
2690 2691 2692 2693
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2694
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2707 2708 2709
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2710 2711
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2712
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2713 2714 2715 2716

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2717
					   " end of an object");
L
Linus Torvalds 已提交
2718 2719
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2720
					   " start of an object");
L
Linus Torvalds 已提交
2721
		}
A
Andrew Morton 已提交
2722 2723
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2724
			kernel_map_pages(virt_to_page(objp),
2725
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2726 2727
#else
		if (cachep->ctor)
2728
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2729
#endif
P
Pekka Enberg 已提交
2730
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2731
	}
P
Pekka Enberg 已提交
2732
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2733 2734
}

2735
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2736
{
2737 2738 2739 2740 2741 2742
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2743 2744
}

A
Andrew Morton 已提交
2745 2746
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2747
{
2748
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2762 2763
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2764
{
2765
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2766 2767 2768 2769 2770

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2771
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2772
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2773
				"'%s', objp %p\n", cachep->name, objp);
2774 2775 2776 2777 2778 2779 2780 2781
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2782 2783 2784 2785 2786 2787 2788
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2789
{
2790
	int nr_pages;
L
Linus Torvalds 已提交
2791 2792
	struct page *page;

2793
	page = virt_to_page(addr);
2794

2795
	nr_pages = 1;
2796
	if (likely(!PageCompound(page)))
2797 2798
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2799
	do {
2800 2801
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2802
		page++;
2803
	} while (--nr_pages);
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808 2809
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2810 2811
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2812
{
P
Pekka Enberg 已提交
2813 2814 2815
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2816
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2817

A
Andrew Morton 已提交
2818 2819 2820
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2821
	 */
C
Christoph Lameter 已提交
2822 2823
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2824

2825
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2826
	check_irq_off();
2827 2828
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2829 2830

	/* Get colour for the slab, and cal the next value. */
2831 2832 2833 2834 2835
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2836

2837
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2850 2851 2852
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2853
	 */
2854
	if (!objp)
2855
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2856
	if (!objp)
L
Linus Torvalds 已提交
2857 2858 2859
		goto failed;

	/* Get slab management. */
2860
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2861
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2862
	if (!slabp)
L
Linus Torvalds 已提交
2863 2864
		goto opps1;

2865
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2866

C
Christoph Lameter 已提交
2867
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2868 2869 2870 2871

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2872
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2873 2874

	/* Make slab active. */
2875
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2876
	STATS_INC_GROWN(cachep);
2877 2878
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2879
	return 1;
A
Andrew Morton 已提交
2880
opps1:
L
Linus Torvalds 已提交
2881
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2882
failed:
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2899 2900
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2901 2902 2903
	}
}

2904 2905
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2906
	unsigned long long redzone1, redzone2;
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2922
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923 2924 2925
			obj, redzone1, redzone2);
}

2926
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2927
				   void *caller)
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2933 2934
	BUG_ON(virt_to_cache(objp) != cachep);

2935
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2936
	kfree_debugcheck(objp);
2937
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2938

2939
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2940 2941

	if (cachep->flags & SLAB_RED_ZONE) {
2942
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2943 2944 2945 2946 2947 2948
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2949
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2950 2951

	BUG_ON(objnr >= cachep->num);
2952
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2953

2954 2955 2956
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2957 2958
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2959
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2960
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2961
			kernel_map_pages(virt_to_page(objp),
2962
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2973
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2974 2975 2976
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2977

L
Linus Torvalds 已提交
2978 2979 2980 2981 2982 2983 2984
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2985 2986 2987 2988
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2989
		for (i = 0;
2990
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2991
		     i++) {
A
Andrew Morton 已提交
2992
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2993
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2994
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3006
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3007 3008 3009 3010
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3011 3012
	int node;

3013
retry:
L
Linus Torvalds 已提交
3014
	check_irq_off();
3015
	node = numa_node_id();
3016
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3017 3018
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3019 3020 3021 3022
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3023 3024 3025
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3026
	l3 = cachep->nodelists[node];
3027 3028 3029

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3030

3031
	/* See if we can refill from the shared array */
3032 3033
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3034
		goto alloc_done;
3035
	}
3036

L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3052 3053 3054 3055 3056 3057

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3058
		BUG_ON(slabp->inuse >= cachep->num);
3059

L
Linus Torvalds 已提交
3060 3061 3062 3063 3064
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3065
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3066
							    node);
L
Linus Torvalds 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3078
must_grow:
L
Linus Torvalds 已提交
3079
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3080
alloc_done:
3081
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3082 3083 3084

	if (unlikely(!ac->avail)) {
		int x;
3085
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3086

A
Andrew Morton 已提交
3087
		/* cache_grow can reenable interrupts, then ac could change. */
3088
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3089
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3090 3091
			return NULL;

A
Andrew Morton 已提交
3092
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3093 3094 3095
			goto retry;
	}
	ac->touched = 1;
3096
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3097 3098
}

A
Andrew Morton 已提交
3099 3100
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3101 3102 3103 3104 3105 3106 3107 3108
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3109 3110
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3111
{
P
Pekka Enberg 已提交
3112
	if (!objp)
L
Linus Torvalds 已提交
3113
		return objp;
P
Pekka Enberg 已提交
3114
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3115
#ifdef CONFIG_DEBUG_PAGEALLOC
3116
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3117
			kernel_map_pages(virt_to_page(objp),
3118
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3130 3131 3132 3133
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3134
			printk(KERN_ERR
3135
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3136 3137
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3138 3139 3140 3141
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3142 3143 3144 3145 3146
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3147
		slabp = page_get_slab(virt_to_head_page(objp));
3148 3149 3150 3151
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3152
	objp += obj_offset(cachep);
3153
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3154
		cachep->ctor(objp);
3155 3156 3157 3158 3159 3160
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3167
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3168 3169
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3170
		return false;
3171

3172
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3173 3174
}

3175
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3176
{
P
Pekka Enberg 已提交
3177
	void *objp;
L
Linus Torvalds 已提交
3178 3179
	struct array_cache *ac;

3180
	check_irq_off();
3181

3182
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3183 3184 3185
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3186
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3187 3188 3189
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3190 3191 3192 3193 3194
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3195
	}
3196 3197 3198 3199 3200
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3201 3202
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3203 3204 3205
	return objp;
}

3206
#ifdef CONFIG_NUMA
3207
/*
3208
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 3210 3211 3212 3213 3214 3215 3216
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3217
	if (in_interrupt() || (flags & __GFP_THISNODE))
3218 3219
		return NULL;
	nid_alloc = nid_here = numa_node_id();
3220
	get_mems_allowed();
3221 3222 3223 3224
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
3225
	put_mems_allowed();
3226
	if (nid_alloc != nid_here)
3227
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3228 3229 3230
	return NULL;
}

3231 3232
/*
 * Fallback function if there was no memory available and no objects on a
3233 3234 3235 3236 3237
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3238
 */
3239
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3240
{
3241 3242
	struct zonelist *zonelist;
	gfp_t local_flags;
3243
	struct zoneref *z;
3244 3245
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3246
	void *obj = NULL;
3247
	int nid;
3248 3249 3250 3251

	if (flags & __GFP_THISNODE)
		return NULL;

3252
	get_mems_allowed();
3253
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3254
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3255

3256 3257 3258 3259 3260
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3261 3262
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3263

3264
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3265
			cache->nodelists[nid] &&
3266
			cache->nodelists[nid]->free_objects) {
3267 3268
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3269 3270 3271
				if (obj)
					break;
		}
3272 3273
	}

3274
	if (!obj) {
3275 3276 3277 3278 3279 3280
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3281 3282 3283
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3284
		obj = kmem_getpages(cache, local_flags, numa_node_id());
3285 3286
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3303
				/* cache_grow already freed obj */
3304 3305 3306
				obj = NULL;
			}
		}
3307
	}
3308
	put_mems_allowed();
3309 3310 3311
	return obj;
}

3312 3313
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3314
 */
3315
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3316
				int nodeid)
3317 3318
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3319 3320 3321 3322 3323 3324 3325 3326
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3327
retry:
3328
	check_irq_off();
P
Pekka Enberg 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3348
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3349 3350 3351 3352 3353
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3354
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3355
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3356
	else
P
Pekka Enberg 已提交
3357
		list_add(&slabp->list, &l3->slabs_partial);
3358

P
Pekka Enberg 已提交
3359 3360
	spin_unlock(&l3->list_lock);
	goto done;
3361

A
Andrew Morton 已提交
3362
must_grow:
P
Pekka Enberg 已提交
3363
	spin_unlock(&l3->list_lock);
3364
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3365 3366
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3367

3368
	return fallback_alloc(cachep, flags);
3369

A
Andrew Morton 已提交
3370
done:
P
Pekka Enberg 已提交
3371
	return obj;
3372
}
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3393
	flags &= gfp_allowed_mask;
3394

3395 3396
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3397
	if (slab_should_failslab(cachep, flags))
3398 3399
		return NULL;

3400 3401 3402
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

3403
	if (nodeid == -1)
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3428 3429
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3430

P
Pekka Enberg 已提交
3431 3432 3433
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3434 3435 3436
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3478
	flags &= gfp_allowed_mask;
3479

3480 3481
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3482
	if (slab_should_failslab(cachep, flags))
3483 3484
		return NULL;

3485 3486 3487 3488 3489
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3490 3491
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3492 3493
	prefetchw(objp);

P
Pekka Enberg 已提交
3494 3495 3496
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3497 3498 3499
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3500 3501
	return objp;
}
3502 3503 3504 3505

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3506
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3507
		       int node)
L
Linus Torvalds 已提交
3508 3509
{
	int i;
3510
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3511 3512 3513 3514 3515

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3516
		slabp = virt_to_slab(objp);
3517
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3518
		list_del(&slabp->list);
3519
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3520
		check_slabp(cachep, slabp);
3521
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3522
		STATS_DEC_ACTIVE(cachep);
3523
		l3->free_objects++;
L
Linus Torvalds 已提交
3524 3525 3526 3527
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3528 3529
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3530 3531 3532 3533 3534 3535
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3536 3537
				slab_destroy(cachep, slabp);
			} else {
3538
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3545
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3546 3547 3548 3549
		}
	}
}

3550
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3551 3552
{
	int batchcount;
3553
	struct kmem_list3 *l3;
3554
	int node = numa_node_id();
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3561
	l3 = cachep->nodelists[node];
3562
	spin_lock(&l3->list_lock);
3563 3564
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3565
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3566 3567 3568
		if (max) {
			if (batchcount > max)
				batchcount = max;
3569
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3570
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3571 3572 3573 3574 3575
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3576
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3577
free_done:
L
Linus Torvalds 已提交
3578 3579 3580 3581 3582
#if STATS
	{
		int i = 0;
		struct list_head *p;

3583 3584
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3596
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3597
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3598
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3599 3600 3601
}

/*
A
Andrew Morton 已提交
3602 3603
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3604
 */
3605
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3606
{
3607
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3608 3609

	check_irq_off();
3610
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3611 3612
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3613 3614
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3615 3616 3617 3618 3619 3620 3621
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3622
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3623 3624
		return;

L
Linus Torvalds 已提交
3625 3626
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3627
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3628 3629 3630 3631
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3632
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3644
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3645
{
E
Eduard - Gabriel Munteanu 已提交
3646 3647
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3648 3649
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3650 3651

	return ret;
L
Linus Torvalds 已提交
3652 3653 3654
}
EXPORT_SYMBOL(kmem_cache_alloc);

3655
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3656 3657 3658 3659 3660 3661 3662
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3663
/**
3664
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3665 3666 3667
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3668
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674 3675
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3676
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3677
{
3678
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3679 3680
	struct page *page;

3681
	if (unlikely(!kern_ptr_validate(ptr, size)))
L
Linus Torvalds 已提交
3682 3683 3684 3685
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3686
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3687 3688
		goto out;
	return 1;
A
Andrew Morton 已提交
3689
out:
L
Linus Torvalds 已提交
3690 3691 3692 3693
	return 0;
}

#ifdef CONFIG_NUMA
3694 3695
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3696 3697 3698
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3699 3700 3701
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3702 3703

	return ret;
3704
}
L
Linus Torvalds 已提交
3705 3706
EXPORT_SYMBOL(kmem_cache_alloc_node);

3707
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3718 3719
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3720
{
3721
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3722
	void *ret;
3723 3724

	cachep = kmem_find_general_cachep(size, flags);
3725 3726
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3727 3728
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3729 3730
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3731 3732

	return ret;
3733
}
3734

3735
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3736 3737 3738 3739 3740
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3741
EXPORT_SYMBOL(__kmalloc_node);
3742 3743

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3744
		int node, unsigned long caller)
3745
{
3746
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3747 3748 3749 3750 3751 3752 3753 3754
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3755
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3756
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3757 3758

/**
3759
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3760
 * @size: how many bytes of memory are required.
3761
 * @flags: the type of memory to allocate (see kmalloc).
3762
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3763
 */
3764 3765
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3766
{
3767
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3768
	void *ret;
L
Linus Torvalds 已提交
3769

3770 3771 3772 3773 3774 3775
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3776 3777
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3778 3779
	ret = __cache_alloc(cachep, flags, caller);

3780 3781
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3782 3783

	return ret;
3784 3785 3786
}


3787
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3788 3789
void *__kmalloc(size_t size, gfp_t flags)
{
3790
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3791 3792 3793
}
EXPORT_SYMBOL(__kmalloc);

3794
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3795
{
3796
	return __do_kmalloc(size, flags, (void *)caller);
3797 3798
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3799 3800 3801 3802 3803 3804 3805

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3806 3807
#endif

L
Linus Torvalds 已提交
3808 3809 3810 3811 3812 3813 3814 3815
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3816
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3817 3818 3819 3820
{
	unsigned long flags;

	local_irq_save(flags);
3821
	debug_check_no_locks_freed(objp, obj_size(cachep));
3822 3823
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3824
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3825
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3826

3827
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3828 3829 3830 3831 3832 3833 3834
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3835 3836
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3837 3838 3839 3840 3841
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3842
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3843 3844
	unsigned long flags;

3845 3846
	trace_kfree(_RET_IP_, objp);

3847
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3848 3849 3850
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3851
	c = virt_to_cache(objp);
3852
	debug_check_no_locks_freed(objp, obj_size(c));
3853
	debug_check_no_obj_freed(objp, obj_size(c));
3854
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3855 3856 3857 3858
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3859
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3860
{
3861
	return obj_size(cachep);
L
Linus Torvalds 已提交
3862 3863 3864
}
EXPORT_SYMBOL(kmem_cache_size);

3865
const char *kmem_cache_name(struct kmem_cache *cachep)
3866 3867 3868 3869 3870
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3871
/*
S
Simon Arlott 已提交
3872
 * This initializes kmem_list3 or resizes various caches for all nodes.
3873
 */
3874
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3875 3876 3877
{
	int node;
	struct kmem_list3 *l3;
3878
	struct array_cache *new_shared;
3879
	struct array_cache **new_alien = NULL;
3880

3881
	for_each_online_node(node) {
3882

3883
                if (use_alien_caches) {
3884
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3885 3886 3887
                        if (!new_alien)
                                goto fail;
                }
3888

3889 3890 3891
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3892
				cachep->shared*cachep->batchcount,
3893
					0xbaadf00d, gfp);
3894 3895 3896 3897
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3898
		}
3899

A
Andrew Morton 已提交
3900 3901
		l3 = cachep->nodelists[node];
		if (l3) {
3902 3903
			struct array_cache *shared = l3->shared;

3904 3905
			spin_lock_irq(&l3->list_lock);

3906
			if (shared)
3907 3908
				free_block(cachep, shared->entry,
						shared->avail, node);
3909

3910 3911
			l3->shared = new_shared;
			if (!l3->alien) {
3912 3913 3914
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3915
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3916
					cachep->batchcount + cachep->num;
3917
			spin_unlock_irq(&l3->list_lock);
3918
			kfree(shared);
3919 3920 3921
			free_alien_cache(new_alien);
			continue;
		}
3922
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3923 3924 3925
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3926
			goto fail;
3927
		}
3928 3929 3930

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3931
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3932
		l3->shared = new_shared;
3933
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3934
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3935
					cachep->batchcount + cachep->num;
3936 3937
		cachep->nodelists[node] = l3;
	}
3938
	return 0;
3939

A
Andrew Morton 已提交
3940
fail:
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3956
	return -ENOMEM;
3957 3958
}

L
Linus Torvalds 已提交
3959
struct ccupdate_struct {
3960
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3966
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3967 3968 3969
	struct array_cache *old;

	check_irq_off();
3970
	old = cpu_cache_get(new->cachep);
3971

L
Linus Torvalds 已提交
3972 3973 3974 3975
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3976
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3977
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3978
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3979
{
3980
	struct ccupdate_struct *new;
3981
	int i;
L
Linus Torvalds 已提交
3982

3983
	new = kzalloc(sizeof(*new), gfp);
3984 3985 3986
	if (!new)
		return -ENOMEM;

3987
	for_each_online_cpu(i) {
3988
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3989
						batchcount, gfp);
3990
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3991
			for (i--; i >= 0; i--)
3992 3993
				kfree(new->new[i]);
			kfree(new);
3994
			return -ENOMEM;
L
Linus Torvalds 已提交
3995 3996
		}
	}
3997
	new->cachep = cachep;
L
Linus Torvalds 已提交
3998

3999
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4000

L
Linus Torvalds 已提交
4001 4002 4003
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4004
	cachep->shared = shared;
L
Linus Torvalds 已提交
4005

4006
	for_each_online_cpu(i) {
4007
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4008 4009
		if (!ccold)
			continue;
4010
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
4011
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
4012
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
4013 4014
		kfree(ccold);
	}
4015
	kfree(new);
4016
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4017 4018
}

4019
/* Called with cache_chain_mutex held always */
4020
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4021 4022 4023 4024
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4025 4026
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4027 4028
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4029
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4030 4031 4032 4033
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4034
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4035
		limit = 1;
4036
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4037
		limit = 8;
4038
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4039
		limit = 24;
4040
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4041 4042 4043 4044
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4045 4046
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4047 4048 4049 4050 4051 4052 4053 4054
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4055
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4056 4057 4058
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4059 4060 4061
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4062 4063 4064 4065
	 */
	if (limit > 32)
		limit = 32;
#endif
4066
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4067 4068
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4069
		       cachep->name, -err);
4070
	return err;
L
Linus Torvalds 已提交
4071 4072
}

4073 4074
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4075 4076
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4077 4078 4079
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4080 4081 4082
{
	int tofree;

4083 4084
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4085 4086
	if (ac->touched && !force) {
		ac->touched = 0;
4087
	} else {
4088
		spin_lock_irq(&l3->list_lock);
4089 4090 4091 4092 4093 4094 4095 4096 4097
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4098
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4104
 * @w: work descriptor
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109 4110
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4111 4112
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4113
 */
4114
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4115
{
4116
	struct kmem_cache *searchp;
4117
	struct kmem_list3 *l3;
4118
	int node = numa_node_id();
4119
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4120

4121
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4122
		/* Give up. Setup the next iteration. */
4123
		goto out;
L
Linus Torvalds 已提交
4124

4125
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4126 4127
		check_irq_on();

4128 4129 4130 4131 4132
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4133
		l3 = searchp->nodelists[node];
4134

4135
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4136

4137
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4138

4139 4140 4141 4142
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4143
		if (time_after(l3->next_reap, jiffies))
4144
			goto next;
L
Linus Torvalds 已提交
4145

4146
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4147

4148
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4149

4150
		if (l3->free_touched)
4151
			l3->free_touched = 0;
4152 4153
		else {
			int freed;
L
Linus Torvalds 已提交
4154

4155 4156 4157 4158
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4159
next:
L
Linus Torvalds 已提交
4160 4161 4162
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4163
	mutex_unlock(&cache_chain_mutex);
4164
	next_reap_node();
4165
out:
A
Andrew Morton 已提交
4166
	/* Set up the next iteration */
4167
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4168 4169
}

4170
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4171

4172
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4173
{
4174 4175 4176 4177
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4178
#if STATS
4179
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4180
#else
4181
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4182
#endif
4183 4184 4185 4186
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4187
#if STATS
4188
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4189
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4190
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4191
#endif
4192 4193 4194 4195 4196 4197 4198
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4199
	mutex_lock(&cache_chain_mutex);
4200 4201
	if (!n)
		print_slabinfo_header(m);
4202 4203

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4204 4205 4206 4207
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4208
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4209 4210 4211 4212
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4213
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4214 4215 4216 4217
}

static int s_show(struct seq_file *m, void *p)
{
4218
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4219 4220 4221 4222 4223
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4224
	const char *name;
L
Linus Torvalds 已提交
4225
	char *error = NULL;
4226 4227
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4228 4229 4230

	active_objs = 0;
	num_slabs = 0;
4231 4232 4233 4234 4235
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4236 4237
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4238

4239
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4240 4241 4242 4243 4244
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4245
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4246 4247 4248 4249 4250 4251 4252
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4253
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4254 4255 4256 4257 4258
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4259 4260
		if (l3->shared)
			shared_avail += l3->shared->avail;
4261

4262
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4263
	}
P
Pekka Enberg 已提交
4264 4265
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4266
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4267 4268
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4269
	name = cachep->name;
L
Linus Torvalds 已提交
4270 4271 4272 4273
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4274
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4275
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4276
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4277
		   cachep->limit, cachep->batchcount, cachep->shared);
4278
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4279
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4280
#if STATS
P
Pekka Enberg 已提交
4281
	{			/* list3 stats */
L
Linus Torvalds 已提交
4282 4283 4284 4285 4286 4287 4288
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4289
		unsigned long node_frees = cachep->node_frees;
4290
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4291

J
Joe Perches 已提交
4292 4293 4294 4295 4296
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4306
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4327
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4328 4329 4330 4331
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4342 4343
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4344
{
P
Pekka Enberg 已提交
4345
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4346
	int limit, batchcount, shared, res;
4347
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4348

L
Linus Torvalds 已提交
4349 4350 4351 4352
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4353
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4364
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4365
	res = -EINVAL;
4366
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4367
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4368 4369
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4370
				res = 0;
L
Linus Torvalds 已提交
4371
			} else {
4372
				res = do_tune_cpucache(cachep, limit,
4373 4374
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4375 4376 4377 4378
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4379
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4380 4381 4382 4383
	if (res >= 0)
		res = count;
	return res;
}
4384

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4398 4399 4400 4401 4402
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4403
	return seq_list_start(&cache_chain, *pos);
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4454
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4455

4456
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4457
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4458
		if (modname[0])
4459 4460 4461 4462 4463 4464 4465 4466 4467
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4468
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4493
		list_for_each_entry(slabp, &l3->slabs_full, list)
4494
			handle_slab(n, cachep, slabp);
4495
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4522

4523 4524 4525
	return 0;
}

4526
static const struct seq_operations slabstats_op = {
4527 4528 4529 4530 4531
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4560
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4561 4562
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4563
#endif
4564 4565 4566
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4567 4568
#endif

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4581
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4582
{
4583 4584
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4585
		return 0;
L
Linus Torvalds 已提交
4586

4587
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4588
}
K
Kirill A. Shutemov 已提交
4589
EXPORT_SYMBOL(ksize);