slab.c 116.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
L
Linus Torvalds 已提交
118 119 120 121 122 123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
124
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
145
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
146 147 148 149 150 151 152

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 154 155
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
156
 */
157
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
177
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
178
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179
			 SLAB_CACHE_DMA | \
180
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
181
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
183
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
184
#else
185
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
186
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
187
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
189
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

211
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
212 213
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
214 215
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223 224

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
225 226 227 228 229 230
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
250
	struct rcu_head head;
251
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
252
	void *addr;
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
272
	spinlock_t lock;
273
	void *entry[];	/*
A
Andrew Morton 已提交
274 275 276 277
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
278 279
};

A
Andrew Morton 已提交
280 281 282
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
283 284 285 286
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
287
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
288 289 290
};

/*
291
 * The slab lists for all objects.
L
Linus Torvalds 已提交
292 293
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
294 295 296 297 298
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
299
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
300 301 302
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
303 304
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
305 306
};

307 308 309
/*
 * Need this for bootstrapping a per node allocator.
 */
310
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 312
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
313 314
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
315

316 317 318 319
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
320
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321
static void cache_reap(struct work_struct *unused);
322

323
/*
A
Andrew Morton 已提交
324 325
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
326
 */
327
static __always_inline int index_of(const size_t size)
328
{
329 330
	extern void __bad_size(void);

331 332 333 334 335 336 337 338
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
339
#include <linux/kmalloc_sizes.h>
340
#undef CACHE
341
		__bad_size();
342
	} else
343
		__bad_size();
344 345 346
	return 0;
}

347 348
static int slab_early_init = 1;

349 350
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
351

P
Pekka Enberg 已提交
352
static void kmem_list3_init(struct kmem_list3 *parent)
353 354 355 356 357 358
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
359
	parent->colour_next = 0;
360 361 362 363 364
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
365 366 367 368
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
369 370
	} while (0)

A
Andrew Morton 已提交
371 372
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
373 374 375 376
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
377 378 379 380 381

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
382 383 384
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
385
 *
A
Adrian Bunk 已提交
386
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394 395 396
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
397
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
398 399 400 401 402
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
403 404
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
405
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
406
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
407 408 409 410 411
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
421
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
422 423 424
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
425
#define	STATS_INC_NODEFREES(x)	do { } while (0)
426
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
427
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
436 437
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
438
 * 0		: objp
439
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
440 441
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
442
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
443
 * 		redzone word.
444 445
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
446 447
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
448
 */
449
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
450
{
451
	return cachep->obj_offset;
L
Linus Torvalds 已提交
452 453
}

454
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
455
{
456
	return cachep->obj_size;
L
Linus Torvalds 已提交
457 458
}

459
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
460 461
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 463
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
464 465
}

466
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
467 468 469
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
470 471
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
472
					      REDZONE_ALIGN);
473 474
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
475 476
}

477
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
478 479
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
481 482 483 484
}

#else

485 486
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
487 488
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
489 490 491 492
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

493
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
494 495 496 497 498 499 500
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
508 509 510 511
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
512
 */
513 514 515 516 517 518 519
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
520
	page = compound_head(page);
521
	BUG_ON(!PageSlab(page));
522 523 524 525 526 527 528 529 530 531
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
532
	BUG_ON(!PageSlab(page));
533 534
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
535

536 537
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
538
	struct page *page = virt_to_head_page(obj);
539 540 541 542 543
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
544
	struct page *page = virt_to_head_page(obj);
545 546 547
	return page_get_slab(page);
}

548 549 550 551 552 553
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

554 555 556 557 558 559 560 561
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
562
{
563 564
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
565 566
}

A
Andrew Morton 已提交
567 568 569
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
587
	{NULL,}
L
Linus Torvalds 已提交
588 589 590 591
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
592
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
593
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
594
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
595 596

/* internal cache of cache description objs */
597
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
598 599 600
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
601
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
602
	.name = "kmem_cache",
L
Linus Torvalds 已提交
603 604
};

605 606
#define BAD_ALIEN_MAGIC 0x01020304ul

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

627 628 629 630 631 632 633 634
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
635 636 637 638
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
639
 */
640 641 642
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

643
static void init_node_lock_keys(int q)
644
{
645 646
	struct cache_sizes *s = malloc_sizes;

647 648 649 650 651 652 653 654 655 656
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
657
			continue;
658 659 660 661 662 663 664 665 666 667
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
668
			continue;
669 670 671 672
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
673
		}
674 675
	}
}
676 677 678 679 680 681 682 683

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
684
#else
685 686 687 688
static void init_node_lock_keys(int q)
{
}

689
static inline void init_lock_keys(void)
690 691 692 693
{
}
#endif

694
/*
695
 * Guard access to the cache-chain.
696
 */
I
Ingo Molnar 已提交
697
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
698 699
static struct list_head cache_chain;

700
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
701

702
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
703 704 705 706
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
707 708
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
709 710 711 712 713
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
714 715 716
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
717
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
718
#endif
719 720 721
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
722 723 724 725
	while (size > csizep->cs_size)
		csizep++;

	/*
726
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
727 728 729
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
730
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
731 732
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
733
#endif
L
Linus Torvalds 已提交
734 735 736
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
737
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
738 739 740 741
{
	return __find_general_cachep(size, gfpflags);
}

742
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
743
{
744 745
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
746

A
Andrew Morton 已提交
747 748 749
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
750 751 752 753 754 755 756
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
806 807
}

808
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
809

A
Andrew Morton 已提交
810 811
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
812 813
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
814
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
815 816 817
	dump_stack();
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

834 835 836 837 838 839 840
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
841
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
842 843 844 845 846 847 848

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
849
		node = first_node(node_online_map);
850

851
	per_cpu(slab_reap_node, cpu) = node;
852 853 854 855
}

static void next_reap_node(void)
{
856
	int node = __get_cpu_var(slab_reap_node);
857 858 859 860

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
861
	__get_cpu_var(slab_reap_node) = node;
862 863 864 865 866 867 868
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
869 870 871 872 873 874 875
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
876
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
877
{
878
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
879 880 881 882 883 884

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
885
	if (keventd_up() && reap_work->work.func == NULL) {
886
		init_reap_node(cpu);
887
		INIT_DELAYED_WORK(reap_work, cache_reap);
888 889
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
890 891 892
	}
}

893
static struct array_cache *alloc_arraycache(int node, int entries,
894
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
895
{
P
Pekka Enberg 已提交
896
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
897 898
	struct array_cache *nc = NULL;

899
	nc = kmalloc_node(memsize, gfp, node);
900 901 902 903 904 905 906 907
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
908 909 910 911 912
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
913
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
914 915 916 917
	}
	return nc;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

941 942 943 944 945
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

946
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

966
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
967 968 969 970 971 972 973
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

974
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
975
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
976

977
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
978 979
{
	struct array_cache **ac_ptr;
980
	int memsize = sizeof(void *) * nr_node_ids;
981 982 983 984
	int i;

	if (limit > 1)
		limit = 12;
985
	ac_ptr = kzalloc_node(memsize, gfp, node);
986 987
	if (ac_ptr) {
		for_each_node(i) {
988
			if (i == node || !node_online(i))
989
				continue;
990
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
991
			if (!ac_ptr[i]) {
992
				for (i--; i >= 0; i--)
993 994 995 996 997 998 999 1000 1001
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1002
static void free_alien_cache(struct array_cache **ac_ptr)
1003 1004 1005 1006 1007 1008
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1009
	    kfree(ac_ptr[i]);
1010 1011 1012
	kfree(ac_ptr);
}

1013
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1014
				struct array_cache *ac, int node)
1015 1016 1017 1018 1019
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1020 1021 1022 1023 1024
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1025 1026
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1027

1028
		free_block(cachep, ac->entry, ac->avail, node);
1029 1030 1031 1032 1033
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1034 1035 1036 1037 1038
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1039
	int node = __get_cpu_var(slab_reap_node);
1040 1041 1042

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1043 1044

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1045 1046 1047 1048 1049 1050
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1051 1052
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1053
{
P
Pekka Enberg 已提交
1054
	int i = 0;
1055 1056 1057 1058
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1059
		ac = alien[i];
1060 1061 1062 1063 1064 1065 1066
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1067

1068
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1069 1070 1071 1072 1073
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1074 1075 1076
	int node;

	node = numa_node_id();
1077 1078 1079 1080 1081

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1082
	if (likely(slabp->nodeid == node))
1083 1084
		return 0;

P
Pekka Enberg 已提交
1085
	l3 = cachep->nodelists[node];
1086 1087 1088
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1089
		spin_lock(&alien->lock);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1103 1104
#endif

1105 1106 1107 1108 1109
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1110
	const struct cpumask *mask = cpumask_of_node(node);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1132
		if (!cpumask_empty(mask)) {
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1171
{
1172
	struct kmem_cache *cachep;
1173 1174
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1175
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1185
		/*
1186 1187 1188
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1189
		 */
1190 1191 1192 1193 1194 1195 1196
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1197

A
Andrew Morton 已提交
1198
			/*
1199 1200 1201
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1202
			 */
1203
			cachep->nodelists[node] = l3;
1204 1205
		}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1223
					cachep->batchcount, GFP_KERNEL);
1224 1225 1226 1227 1228
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1229
				0xbaadf00d, GFP_KERNEL);
1230 1231
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1232
				goto bad;
1233
			}
1234 1235
		}
		if (use_alien_caches) {
1236
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1237 1238 1239
			if (!alien) {
				kfree(shared);
				kfree(nc);
1240
				goto bad;
1241
			}
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1256
#ifdef CONFIG_NUMA
1257 1258 1259
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1260
		}
1261 1262 1263 1264 1265
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1266 1267
	init_node_lock_keys(node);

1268 1269
	return 0;
bad:
1270
	cpuup_canceled(cpu);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1283
		mutex_lock(&cache_chain_mutex);
1284
		err = cpuup_prepare(cpu);
1285
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1286 1287
		break;
	case CPU_ONLINE:
1288
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1289 1290 1291
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1292
  	case CPU_DOWN_PREPARE:
1293
  	case CPU_DOWN_PREPARE_FROZEN:
1294 1295 1296 1297 1298 1299
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1300
		cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1301
		/* Now the cache_reaper is guaranteed to be not running. */
1302
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1303 1304
  		break;
  	case CPU_DOWN_FAILED:
1305
  	case CPU_DOWN_FAILED_FROZEN:
1306 1307
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1308
	case CPU_DEAD:
1309
	case CPU_DEAD_FROZEN:
1310 1311 1312 1313 1314 1315 1316 1317
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1318
		/* fall through */
1319
#endif
L
Linus Torvalds 已提交
1320
	case CPU_UP_CANCELED:
1321
	case CPU_UP_CANCELED_FROZEN:
1322
		mutex_lock(&cache_chain_mutex);
1323
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1324
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1325 1326
		break;
	}
1327
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1328 1329
}

1330 1331 1332
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1333

1334 1335 1336
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1337 1338
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1339 1340 1341
{
	struct kmem_list3 *ptr;

1342
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1343 1344 1345
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1346 1347 1348 1349 1350
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1351 1352 1353 1354
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1371 1372 1373
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1374 1375 1376 1377 1378 1379
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1380
	int i;
1381
	int order;
P
Pekka Enberg 已提交
1382
	int node;
1383

1384
	if (num_possible_nodes() == 1)
1385 1386
		use_alien_caches = 0;

1387 1388 1389 1390 1391
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1392
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1393 1394 1395 1396 1397

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1398
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1399 1400 1401 1402
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1403 1404 1405
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1406 1407 1408
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1409
	 * 2) Create the first kmalloc cache.
1410
	 *    The struct kmem_cache for the new cache is allocated normally.
1411 1412 1413
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1414 1415
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1416 1417 1418
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1419 1420
	 */

P
Pekka Enberg 已提交
1421 1422
	node = numa_node_id();

L
Linus Torvalds 已提交
1423 1424 1425 1426 1427
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1428
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1429

E
Eric Dumazet 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1439 1440
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1441 1442
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1443

1444 1445 1446 1447 1448 1449
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1450
	BUG_ON(!cache_cache.num);
1451
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1452 1453 1454
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1460 1461 1462 1463
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1464 1465 1466
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1467 1468 1469
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1470
					NULL);
1471

A
Andrew Morton 已提交
1472
	if (INDEX_AC != INDEX_L3) {
1473
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1474 1475 1476 1477
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1478
				NULL);
A
Andrew Morton 已提交
1479
	}
1480

1481 1482
	slab_early_init = 0;

L
Linus Torvalds 已提交
1483
	while (sizes->cs_size != ULONG_MAX) {
1484 1485
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1486 1487 1488
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1489 1490
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1491
		if (!sizes->cs_cachep) {
1492
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1493 1494 1495
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1496
					NULL);
A
Andrew Morton 已提交
1497
		}
1498 1499 1500
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1501 1502 1503 1504
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1505
					NULL);
1506
#endif
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1512
		struct array_cache *ptr;
1513

1514
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1515

1516 1517
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1518
		       sizeof(struct arraycache_init));
1519 1520 1521 1522 1523
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1524
		cache_cache.array[smp_processor_id()] = ptr;
1525

1526
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1527

1528
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1529
		       != &initarray_generic.cache);
1530
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1531
		       sizeof(struct arraycache_init));
1532 1533 1534 1535 1536
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1537
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1538
		    ptr;
L
Linus Torvalds 已提交
1539
	}
1540 1541
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1542 1543
		int nid;

1544
		for_each_online_node(nid) {
1545
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1546

1547
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1548
				  &initkmem_list3[SIZE_AC + nid], nid);
1549 1550 1551

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1552
					  &initkmem_list3[SIZE_L3 + nid], nid);
1553 1554 1555
			}
		}
	}
L
Linus Torvalds 已提交
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1570

L
Linus Torvalds 已提交
1571 1572 1573
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1574 1575 1576
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1577 1578 1579
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1580 1581 1582
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1583 1584 1585
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1593 1594
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1595
	 */
1596
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1597
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1609
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1610 1611
{
	struct page *page;
1612
	int nr_pages;
L
Linus Torvalds 已提交
1613 1614
	int i;

1615
#ifndef CONFIG_MMU
1616 1617 1618
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1619
	 */
1620
	flags |= __GFP_COMP;
1621
#endif
1622

1623
	flags |= cachep->gfpflags;
1624 1625
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1626

L
Linus Torvalds 已提交
1627
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1628 1629 1630
	if (!page)
		return NULL;

1631
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1632
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1633 1634 1635 1636 1637
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1638 1639
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1640

1641 1642 1643 1644 1645 1646 1647 1648
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1649

1650
	return page_address(page);
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655
}

/*
 * Interface to system's page release.
 */
1656
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1657
{
P
Pekka Enberg 已提交
1658
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1659 1660 1661
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1662
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1663

1664 1665 1666 1667 1668 1669
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1670
	while (i--) {
N
Nick Piggin 已提交
1671 1672
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1682
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1683
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1693
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1694
			    unsigned long caller)
L
Linus Torvalds 已提交
1695
{
1696
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1697

1698
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1699

P
Pekka Enberg 已提交
1700
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1701 1702
		return;

P
Pekka Enberg 已提交
1703 1704 1705 1706
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712 1713
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1714
				*addr++ = svalue;
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720 1721
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1722
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1723 1724 1725
}
#endif

1726
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1727
{
1728 1729
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1730 1731

	memset(addr, val, size);
P
Pekka Enberg 已提交
1732
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1733 1734 1735 1736 1737
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1738 1739 1740
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1741
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1742 1743 1744 1745 1746
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1747
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1748
	}
L
Linus Torvalds 已提交
1749
	printk("\n");
D
Dave Jones 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768
}
#endif

#if DEBUG

1769
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1770 1771 1772 1773 1774
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1775
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1776 1777
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1778 1779 1780 1781
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1782
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1783
		print_symbol("(%s)",
A
Andrew Morton 已提交
1784
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1785 1786
		printk("\n");
	}
1787 1788
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1789
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1790 1791
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1792 1793
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1794 1795 1796 1797
		dump_line(realobj, i, limit);
	}
}

1798
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803
{
	char *realobj;
	int size, i;
	int lines = 0;

1804 1805
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1806

P
Pekka Enberg 已提交
1807
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1808
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1809
		if (i == size - 1)
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1816
				printk(KERN_ERR
1817 1818
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1819 1820 1821
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1822
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1823
			limit = 16;
P
Pekka Enberg 已提交
1824 1825
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1838
		struct slab *slabp = virt_to_slab(objp);
1839
		unsigned int objnr;
L
Linus Torvalds 已提交
1840

1841
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1842
		if (objnr) {
1843
			objp = index_to_obj(cachep, slabp, objnr - 1);
1844
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1845
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1846
			       realobj, size);
L
Linus Torvalds 已提交
1847 1848
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1849
		if (objnr + 1 < cachep->num) {
1850
			objp = index_to_obj(cachep, slabp, objnr + 1);
1851
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1852
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1853
			       realobj, size);
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1860
#if DEBUG
R
Rabin Vincent 已提交
1861
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1862 1863 1864
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1865
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1866 1867 1868

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1869 1870
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1871
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1872
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1882
					   "was overwritten");
L
Linus Torvalds 已提交
1883 1884
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1885
					   "was overwritten");
L
Linus Torvalds 已提交
1886 1887
		}
	}
1888
}
L
Linus Torvalds 已提交
1889
#else
R
Rabin Vincent 已提交
1890
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1891 1892
{
}
L
Linus Torvalds 已提交
1893 1894
#endif

1895 1896 1897 1898 1899
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1900
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1901 1902
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1903
 */
1904
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1905 1906 1907
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1908
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1909 1910 1911
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1912
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1918 1919
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1920 1921 1922
	}
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1944
/**
1945 1946 1947 1948 1949 1950 1951
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1952 1953 1954 1955 1956
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1957
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1958
			size_t size, size_t align, unsigned long flags)
1959
{
1960
	unsigned long offslab_limit;
1961
	size_t left_over = 0;
1962
	int gfporder;
1963

1964
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1965 1966 1967
		unsigned int num;
		size_t remainder;

1968
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1969 1970
		if (!num)
			continue;
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1984

1985
		/* Found something acceptable - save it away */
1986
		cachep->num = num;
1987
		cachep->gfporder = gfporder;
1988 1989
		left_over = remainder;

1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1998 1999 2000 2001
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2002
		if (gfporder >= slab_break_gfp_order)
2003 2004
			break;

2005 2006 2007
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2008
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2009 2010 2011 2012 2013
			break;
	}
	return left_over;
}

2014
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2015
{
2016
	if (g_cpucache_up == FULL)
2017
		return enable_cpucache(cachep, gfp);
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2039
			kmalloc(sizeof(struct arraycache_init), gfp);
2040 2041 2042 2043 2044 2045

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2046
			for_each_online_node(node) {
2047 2048
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2049
						gfp, node);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2065
	return 0;
2066 2067
}

L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2078
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2079 2080
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2081
 * the module calling this has to destroy the cache before getting unloaded.
2082 2083
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2084
 *
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2097
struct kmem_cache *
L
Linus Torvalds 已提交
2098
kmem_cache_create (const char *name, size_t size, size_t align,
2099
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2100 2101
{
	size_t left_over, slab_size, ralign;
2102
	struct kmem_cache *cachep = NULL, *pc;
2103
	gfp_t gfp;
L
Linus Torvalds 已提交
2104 2105 2106 2107

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2108
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2109
	    size > KMALLOC_MAX_SIZE) {
2110
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2111
				name);
P
Pekka Enberg 已提交
2112 2113
		BUG();
	}
L
Linus Torvalds 已提交
2114

2115
	/*
2116
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2117
	 * cpu_online_mask as well.  Please see cpuup_callback
2118
	 */
2119 2120 2121 2122
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2123

2124
	list_for_each_entry(pc, &cache_chain, next) {
2125 2126 2127 2128 2129 2130 2131 2132
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2133
		res = probe_kernel_address(pc->name, tmp);
2134
		if (res) {
2135 2136
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2137
			       pc->buffer_size);
2138 2139 2140
			continue;
		}

P
Pekka Enberg 已提交
2141
		if (!strcmp(pc->name, name)) {
2142 2143
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2144 2145 2146 2147 2148
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2158 2159
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2160
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165 2166 2167
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2168 2169
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2170
	 */
2171
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2172

A
Andrew Morton 已提交
2173 2174
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2175 2176 2177
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2178 2179 2180
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2181 2182
	}

A
Andrew Morton 已提交
2183 2184
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2185 2186
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2187 2188 2189 2190
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2191 2192
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2193
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2194 2195 2196 2197
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2198 2199

	/*
D
David Woodhouse 已提交
2200 2201 2202
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2203
	 */
D
David Woodhouse 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2214

2215
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2216 2217 2218
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2219
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2220 2221 2222
	if (ralign < align) {
		ralign = align;
	}
2223
	/* disable debug if necessary */
2224
	if (ralign > __alignof__(unsigned long long))
2225
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2226
	/*
2227
	 * 4) Store it.
L
Linus Torvalds 已提交
2228 2229 2230
	 */
	align = ralign;

2231 2232 2233 2234 2235
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2236
	/* Get cache's description obj. */
2237
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2238
	if (!cachep)
2239
		goto oops;
L
Linus Torvalds 已提交
2240 2241

#if DEBUG
2242
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2243

2244 2245 2246 2247
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2248 2249
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2250 2251
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2252 2253
	}
	if (flags & SLAB_STORE_USER) {
2254
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2255 2256
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2257
		 */
D
David Woodhouse 已提交
2258 2259 2260 2261
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2262 2263
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2264
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2265 2266
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271
		size = PAGE_SIZE;
	}
#endif
#endif

2272 2273 2274
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2275 2276
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2277
	 */
2278 2279
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2280 2281 2282 2283 2284 2285 2286 2287
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2288
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2289 2290

	if (!cachep->num) {
2291 2292
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2293 2294
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2295
		goto oops;
L
Linus Torvalds 已提交
2296
	}
P
Pekka Enberg 已提交
2297 2298
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2311 2312
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2313 2314 2315 2316 2317 2318 2319 2320 2321

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2328
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2329 2330 2331
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2332
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2333
		cachep->gfpflags |= GFP_DMA;
2334
	cachep->buffer_size = size;
2335
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2336

2337
	if (flags & CFLGS_OFF_SLAB) {
2338
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2339 2340 2341 2342 2343 2344 2345
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2346
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2347
	}
L
Linus Torvalds 已提交
2348 2349 2350
	cachep->ctor = ctor;
	cachep->name = name;

2351
	if (setup_cpu_cache(cachep, gfp)) {
2352 2353 2354 2355
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2356 2357 2358

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2359
oops:
L
Linus Torvalds 已提交
2360 2361
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2362
		      name);
2363 2364 2365 2366
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2382
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2383 2384 2385
{
#ifdef CONFIG_SMP
	check_irq_off();
2386
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2387 2388
#endif
}
2389

2390
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2391 2392 2393 2394 2395 2396 2397
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2398 2399 2400 2401
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2402
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2403 2404
#endif

2405 2406 2407 2408
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2409 2410
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2411
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2412
	struct array_cache *ac;
2413
	int node = numa_node_id();
L
Linus Torvalds 已提交
2414 2415

	check_irq_off();
2416
	ac = cpu_cache_get(cachep);
2417 2418 2419
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2420 2421 2422
	ac->avail = 0;
}

2423
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2424
{
2425 2426 2427
	struct kmem_list3 *l3;
	int node;

2428
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2429
	check_irq_on();
P
Pekka Enberg 已提交
2430
	for_each_online_node(node) {
2431
		l3 = cachep->nodelists[node];
2432 2433 2434 2435 2436 2437 2438
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2439
			drain_array(cachep, l3, l3->shared, 1, node);
2440
	}
L
Linus Torvalds 已提交
2441 2442
}

2443 2444 2445 2446 2447 2448 2449 2450
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2451
{
2452 2453
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2454 2455
	struct slab *slabp;

2456 2457
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2458

2459
		spin_lock_irq(&l3->list_lock);
2460
		p = l3->slabs_free.prev;
2461 2462 2463 2464
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2465

2466
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2467
#if DEBUG
2468
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2469 2470
#endif
		list_del(&slabp->list);
2471 2472 2473 2474 2475
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2476
		spin_unlock_irq(&l3->list_lock);
2477 2478
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2479
	}
2480 2481
out:
	return nr_freed;
L
Linus Torvalds 已提交
2482 2483
}

2484
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2485
static int __cache_shrink(struct kmem_cache *cachep)
2486 2487 2488 2489 2490 2491 2492 2493 2494
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2495 2496 2497 2498 2499 2500 2501
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2502 2503 2504 2505
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2506 2507 2508 2509 2510 2511 2512
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2513
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2514
{
2515
	int ret;
2516
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2517

2518
	get_online_cpus();
2519 2520 2521
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2522
	put_online_cpus();
2523
	return ret;
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2531
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2543
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2544
{
2545
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2546 2547

	/* Find the cache in the chain of caches. */
2548
	get_online_cpus();
I
Ingo Molnar 已提交
2549
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2556
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2557
		mutex_unlock(&cache_chain_mutex);
2558
		put_online_cpus();
2559
		return;
L
Linus Torvalds 已提交
2560 2561 2562
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2563
		rcu_barrier();
L
Linus Torvalds 已提交
2564

2565
	__kmem_cache_destroy(cachep);
2566
	mutex_unlock(&cache_chain_mutex);
2567
	put_online_cpus();
L
Linus Torvalds 已提交
2568 2569 2570
}
EXPORT_SYMBOL(kmem_cache_destroy);

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2582
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2583 2584
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2585 2586
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2587

L
Linus Torvalds 已提交
2588 2589
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2590
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2591
					      local_flags, nodeid);
2592 2593 2594 2595 2596 2597
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2598 2599
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2600 2601 2602
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2603
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2604 2605 2606 2607
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2608
	slabp->s_mem = objp + colour_off;
2609
	slabp->nodeid = nodeid;
2610
	slabp->free = 0;
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2616
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2617 2618
}

2619
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2620
			    struct slab *slabp)
L
Linus Torvalds 已提交
2621 2622 2623 2624
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2625
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2638 2639 2640
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2641 2642
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2643
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2644 2645 2646 2647

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2648
					   " end of an object");
L
Linus Torvalds 已提交
2649 2650
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2651
					   " start of an object");
L
Linus Torvalds 已提交
2652
		}
A
Andrew Morton 已提交
2653 2654
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2655
			kernel_map_pages(virt_to_page(objp),
2656
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2657 2658
#else
		if (cachep->ctor)
2659
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2660
#endif
P
Pekka Enberg 已提交
2661
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2662
	}
P
Pekka Enberg 已提交
2663
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2664 2665
}

2666
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2667
{
2668 2669 2670 2671 2672 2673
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2674 2675
}

A
Andrew Morton 已提交
2676 2677
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2678
{
2679
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2693 2694
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2695
{
2696
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2697 2698 2699 2700 2701

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2702
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2703
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2704
				"'%s', objp %p\n", cachep->name, objp);
2705 2706 2707 2708 2709 2710 2711 2712
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2713 2714 2715 2716 2717 2718 2719
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2720
{
2721
	int nr_pages;
L
Linus Torvalds 已提交
2722 2723
	struct page *page;

2724
	page = virt_to_page(addr);
2725

2726
	nr_pages = 1;
2727
	if (likely(!PageCompound(page)))
2728 2729
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2730
	do {
2731 2732
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2733
		page++;
2734
	} while (--nr_pages);
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2741 2742
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2743
{
P
Pekka Enberg 已提交
2744 2745 2746
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2747
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2748

A
Andrew Morton 已提交
2749 2750 2751
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2752
	 */
C
Christoph Lameter 已提交
2753 2754
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2755

2756
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2757
	check_irq_off();
2758 2759
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2760 2761

	/* Get colour for the slab, and cal the next value. */
2762 2763 2764 2765 2766
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2767

2768
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2781 2782 2783
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2784
	 */
2785
	if (!objp)
2786
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2787
	if (!objp)
L
Linus Torvalds 已提交
2788 2789 2790
		goto failed;

	/* Get slab management. */
2791
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2792
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2793
	if (!slabp)
L
Linus Torvalds 已提交
2794 2795
		goto opps1;

2796
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2797

C
Christoph Lameter 已提交
2798
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2799 2800 2801 2802

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2803
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2804 2805

	/* Make slab active. */
2806
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2807
	STATS_INC_GROWN(cachep);
2808 2809
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2810
	return 1;
A
Andrew Morton 已提交
2811
opps1:
L
Linus Torvalds 已提交
2812
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2813
failed:
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2830 2831
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2832 2833 2834
	}
}

2835 2836
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2837
	unsigned long long redzone1, redzone2;
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2853
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2854 2855 2856
			obj, redzone1, redzone2);
}

2857
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2858
				   void *caller)
L
Linus Torvalds 已提交
2859 2860 2861 2862 2863
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2864 2865
	BUG_ON(virt_to_cache(objp) != cachep);

2866
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2867
	kfree_debugcheck(objp);
2868
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2869

2870
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2871 2872

	if (cachep->flags & SLAB_RED_ZONE) {
2873
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2880
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2881 2882

	BUG_ON(objnr >= cachep->num);
2883
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2884

2885 2886 2887
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2888 2889
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2890
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2891
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2892
			kernel_map_pages(virt_to_page(objp),
2893
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2904
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2905 2906 2907
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2908

L
Linus Torvalds 已提交
2909 2910 2911 2912 2913 2914 2915
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2916 2917 2918 2919
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2920
		for (i = 0;
2921
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2922
		     i++) {
A
Andrew Morton 已提交
2923
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2924
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2925
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2937
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2938 2939 2940 2941
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2942 2943
	int node;

2944
retry:
L
Linus Torvalds 已提交
2945
	check_irq_off();
2946
	node = numa_node_id();
2947
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2948 2949
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2950 2951 2952 2953
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2954 2955 2956
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2957
	l3 = cachep->nodelists[node];
2958 2959 2960

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2961

2962
	/* See if we can refill from the shared array */
2963 2964
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
2965
		goto alloc_done;
2966
	}
2967

L
Linus Torvalds 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2983 2984 2985 2986 2987 2988

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2989
		BUG_ON(slabp->inuse >= cachep->num);
2990

L
Linus Torvalds 已提交
2991 2992 2993 2994 2995
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2996
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2997
							    node);
L
Linus Torvalds 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3009
must_grow:
L
Linus Torvalds 已提交
3010
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3011
alloc_done:
3012
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3013 3014 3015

	if (unlikely(!ac->avail)) {
		int x;
3016
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3017

A
Andrew Morton 已提交
3018
		/* cache_grow can reenable interrupts, then ac could change. */
3019
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3020
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3021 3022
			return NULL;

A
Andrew Morton 已提交
3023
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3024 3025 3026
			goto retry;
	}
	ac->touched = 1;
3027
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3028 3029
}

A
Andrew Morton 已提交
3030 3031
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037 3038 3039
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3040 3041
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3042
{
P
Pekka Enberg 已提交
3043
	if (!objp)
L
Linus Torvalds 已提交
3044
		return objp;
P
Pekka Enberg 已提交
3045
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3046
#ifdef CONFIG_DEBUG_PAGEALLOC
3047
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3048
			kernel_map_pages(virt_to_page(objp),
3049
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3061 3062 3063 3064
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3065
			printk(KERN_ERR
3066
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3067 3068
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3069 3070 3071 3072
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3073 3074 3075 3076 3077
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3078
		slabp = page_get_slab(virt_to_head_page(objp));
3079 3080 3081 3082
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3083
	objp += obj_offset(cachep);
3084
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3085
		cachep->ctor(objp);
3086 3087 3088 3089 3090 3091
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3092 3093 3094 3095 3096 3097
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3098
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3099 3100
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3101
		return false;
3102

3103
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3104 3105
}

3106
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3107
{
P
Pekka Enberg 已提交
3108
	void *objp;
L
Linus Torvalds 已提交
3109 3110
	struct array_cache *ac;

3111
	check_irq_off();
3112

3113
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3114 3115 3116
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3117
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3118 3119 3120
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3121 3122 3123 3124 3125
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3126
	}
3127 3128 3129 3130 3131
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3132 3133
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3134 3135 3136
	return objp;
}

3137
#ifdef CONFIG_NUMA
3138
/*
3139
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3140 3141 3142 3143 3144 3145 3146 3147
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3148
	if (in_interrupt() || (flags & __GFP_THISNODE))
3149 3150 3151 3152 3153 3154 3155
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3156
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3157 3158 3159
	return NULL;
}

3160 3161
/*
 * Fallback function if there was no memory available and no objects on a
3162 3163 3164 3165 3166
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3167
 */
3168
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3169
{
3170 3171
	struct zonelist *zonelist;
	gfp_t local_flags;
3172
	struct zoneref *z;
3173 3174
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3175
	void *obj = NULL;
3176
	int nid;
3177 3178 3179 3180

	if (flags & __GFP_THISNODE)
		return NULL;

3181
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3182
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3183

3184 3185 3186 3187 3188
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3189 3190
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3191

3192
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3193
			cache->nodelists[nid] &&
3194
			cache->nodelists[nid]->free_objects) {
3195 3196
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3197 3198 3199
				if (obj)
					break;
		}
3200 3201
	}

3202
	if (!obj) {
3203 3204 3205 3206 3207 3208
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3209 3210 3211
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3212
		obj = kmem_getpages(cache, local_flags, numa_node_id());
3213 3214
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3231
				/* cache_grow already freed obj */
3232 3233 3234
				obj = NULL;
			}
		}
3235
	}
3236 3237 3238
	return obj;
}

3239 3240
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3241
 */
3242
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3243
				int nodeid)
3244 3245
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3246 3247 3248 3249 3250 3251 3252 3253
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3254
retry:
3255
	check_irq_off();
P
Pekka Enberg 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3275
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3276 3277 3278 3279 3280
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3281
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3282
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3283
	else
P
Pekka Enberg 已提交
3284
		list_add(&slabp->list, &l3->slabs_partial);
3285

P
Pekka Enberg 已提交
3286 3287
	spin_unlock(&l3->list_lock);
	goto done;
3288

A
Andrew Morton 已提交
3289
must_grow:
P
Pekka Enberg 已提交
3290
	spin_unlock(&l3->list_lock);
3291
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3292 3293
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3294

3295
	return fallback_alloc(cachep, flags);
3296

A
Andrew Morton 已提交
3297
done:
P
Pekka Enberg 已提交
3298
	return obj;
3299
}
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3320
	flags &= gfp_allowed_mask;
3321

3322 3323
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3324
	if (slab_should_failslab(cachep, flags))
3325 3326
		return NULL;

3327 3328 3329
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

3330
	if (nodeid == -1)
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3355 3356
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3357

P
Pekka Enberg 已提交
3358 3359 3360
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3361 3362 3363
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3405
	flags &= gfp_allowed_mask;
3406

3407 3408
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3409
	if (slab_should_failslab(cachep, flags))
3410 3411
		return NULL;

3412 3413 3414 3415 3416
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3417 3418
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3419 3420
	prefetchw(objp);

P
Pekka Enberg 已提交
3421 3422 3423
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3424 3425 3426
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3427 3428
	return objp;
}
3429 3430 3431 3432

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3433
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3434
		       int node)
L
Linus Torvalds 已提交
3435 3436
{
	int i;
3437
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3438 3439 3440 3441 3442

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3443
		slabp = virt_to_slab(objp);
3444
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3445
		list_del(&slabp->list);
3446
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3447
		check_slabp(cachep, slabp);
3448
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3449
		STATS_DEC_ACTIVE(cachep);
3450
		l3->free_objects++;
L
Linus Torvalds 已提交
3451 3452 3453 3454
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3455 3456
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3457 3458 3459 3460 3461 3462
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3463 3464
				slab_destroy(cachep, slabp);
			} else {
3465
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3466 3467 3468 3469 3470 3471
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3472
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3473 3474 3475 3476
		}
	}
}

3477
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3478 3479
{
	int batchcount;
3480
	struct kmem_list3 *l3;
3481
	int node = numa_node_id();
L
Linus Torvalds 已提交
3482 3483 3484 3485 3486 3487

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3488
	l3 = cachep->nodelists[node];
3489
	spin_lock(&l3->list_lock);
3490 3491
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3492
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3493 3494 3495
		if (max) {
			if (batchcount > max)
				batchcount = max;
3496
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3497
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3503
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3504
free_done:
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509
#if STATS
	{
		int i = 0;
		struct list_head *p;

3510 3511
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3523
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3524
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3525
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3526 3527 3528
}

/*
A
Andrew Morton 已提交
3529 3530
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3531
 */
3532
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3533
{
3534
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3535 3536

	check_irq_off();
3537
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3538 3539
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3540 3541
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3542 3543 3544 3545 3546 3547 3548
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3549
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3550 3551
		return;

L
Linus Torvalds 已提交
3552 3553
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3554
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3555 3556 3557 3558
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3559
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3571
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3572
{
E
Eduard - Gabriel Munteanu 已提交
3573 3574
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3575 3576
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3577 3578

	return ret;
L
Linus Torvalds 已提交
3579 3580 3581
}
EXPORT_SYMBOL(kmem_cache_alloc);

3582
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3583 3584 3585 3586 3587 3588 3589
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3590
/**
3591
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3592 3593 3594
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3595
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3596 3597 3598 3599 3600 3601 3602
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3603
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3604
{
3605
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3606 3607
	struct page *page;

3608
	if (unlikely(!kern_ptr_validate(ptr, size)))
L
Linus Torvalds 已提交
3609 3610 3611 3612
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3613
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3614 3615
		goto out;
	return 1;
A
Andrew Morton 已提交
3616
out:
L
Linus Torvalds 已提交
3617 3618 3619 3620
	return 0;
}

#ifdef CONFIG_NUMA
3621 3622
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3623 3624 3625
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3626 3627 3628
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3629 3630

	return ret;
3631
}
L
Linus Torvalds 已提交
3632 3633
EXPORT_SYMBOL(kmem_cache_alloc_node);

3634
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3645 3646
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3647
{
3648
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3649
	void *ret;
3650 3651

	cachep = kmem_find_general_cachep(size, flags);
3652 3653
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3654 3655
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3656 3657
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3658 3659

	return ret;
3660
}
3661

3662
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3663 3664 3665 3666 3667
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3668
EXPORT_SYMBOL(__kmalloc_node);
3669 3670

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3671
		int node, unsigned long caller)
3672
{
3673
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3674 3675 3676 3677 3678 3679 3680 3681
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3682
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3683
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3684 3685

/**
3686
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3687
 * @size: how many bytes of memory are required.
3688
 * @flags: the type of memory to allocate (see kmalloc).
3689
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3690
 */
3691 3692
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3693
{
3694
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3695
	void *ret;
L
Linus Torvalds 已提交
3696

3697 3698 3699 3700 3701 3702
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3703 3704
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3705 3706
	ret = __cache_alloc(cachep, flags, caller);

3707 3708
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3709 3710

	return ret;
3711 3712 3713
}


3714
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3715 3716
void *__kmalloc(size_t size, gfp_t flags)
{
3717
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3718 3719 3720
}
EXPORT_SYMBOL(__kmalloc);

3721
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3722
{
3723
	return __do_kmalloc(size, flags, (void *)caller);
3724 3725
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3726 3727 3728 3729 3730 3731 3732

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3733 3734
#endif

L
Linus Torvalds 已提交
3735 3736 3737 3738 3739 3740 3741 3742
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3743
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3744 3745 3746 3747
{
	unsigned long flags;

	local_irq_save(flags);
3748
	debug_check_no_locks_freed(objp, obj_size(cachep));
3749 3750
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3751
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3752
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3753

3754
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3755 3756 3757 3758 3759 3760 3761
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3762 3763
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3769
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3770 3771
	unsigned long flags;

3772 3773
	trace_kfree(_RET_IP_, objp);

3774
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3775 3776 3777
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3778
	c = virt_to_cache(objp);
3779
	debug_check_no_locks_freed(objp, obj_size(c));
3780
	debug_check_no_obj_freed(objp, obj_size(c));
3781
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3782 3783 3784 3785
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3786
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3787
{
3788
	return obj_size(cachep);
L
Linus Torvalds 已提交
3789 3790 3791
}
EXPORT_SYMBOL(kmem_cache_size);

3792
const char *kmem_cache_name(struct kmem_cache *cachep)
3793 3794 3795 3796 3797
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3798
/*
S
Simon Arlott 已提交
3799
 * This initializes kmem_list3 or resizes various caches for all nodes.
3800
 */
3801
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3802 3803 3804
{
	int node;
	struct kmem_list3 *l3;
3805
	struct array_cache *new_shared;
3806
	struct array_cache **new_alien = NULL;
3807

3808
	for_each_online_node(node) {
3809

3810
                if (use_alien_caches) {
3811
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3812 3813 3814
                        if (!new_alien)
                                goto fail;
                }
3815

3816 3817 3818
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3819
				cachep->shared*cachep->batchcount,
3820
					0xbaadf00d, gfp);
3821 3822 3823 3824
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3825
		}
3826

A
Andrew Morton 已提交
3827 3828
		l3 = cachep->nodelists[node];
		if (l3) {
3829 3830
			struct array_cache *shared = l3->shared;

3831 3832
			spin_lock_irq(&l3->list_lock);

3833
			if (shared)
3834 3835
				free_block(cachep, shared->entry,
						shared->avail, node);
3836

3837 3838
			l3->shared = new_shared;
			if (!l3->alien) {
3839 3840 3841
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3842
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3843
					cachep->batchcount + cachep->num;
3844
			spin_unlock_irq(&l3->list_lock);
3845
			kfree(shared);
3846 3847 3848
			free_alien_cache(new_alien);
			continue;
		}
3849
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3850 3851 3852
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3853
			goto fail;
3854
		}
3855 3856 3857

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3858
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3859
		l3->shared = new_shared;
3860
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3861
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3862
					cachep->batchcount + cachep->num;
3863 3864
		cachep->nodelists[node] = l3;
	}
3865
	return 0;
3866

A
Andrew Morton 已提交
3867
fail:
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3883
	return -ENOMEM;
3884 3885
}

L
Linus Torvalds 已提交
3886
struct ccupdate_struct {
3887
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3893
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3894 3895 3896
	struct array_cache *old;

	check_irq_off();
3897
	old = cpu_cache_get(new->cachep);
3898

L
Linus Torvalds 已提交
3899 3900 3901 3902
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3903
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3904
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3905
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3906
{
3907
	struct ccupdate_struct *new;
3908
	int i;
L
Linus Torvalds 已提交
3909

3910
	new = kzalloc(sizeof(*new), gfp);
3911 3912 3913
	if (!new)
		return -ENOMEM;

3914
	for_each_online_cpu(i) {
3915
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3916
						batchcount, gfp);
3917
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3918
			for (i--; i >= 0; i--)
3919 3920
				kfree(new->new[i]);
			kfree(new);
3921
			return -ENOMEM;
L
Linus Torvalds 已提交
3922 3923
		}
	}
3924
	new->cachep = cachep;
L
Linus Torvalds 已提交
3925

3926
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3927

L
Linus Torvalds 已提交
3928 3929 3930
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3931
	cachep->shared = shared;
L
Linus Torvalds 已提交
3932

3933
	for_each_online_cpu(i) {
3934
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3935 3936
		if (!ccold)
			continue;
3937
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3938
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3939
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3940 3941
		kfree(ccold);
	}
3942
	kfree(new);
3943
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3944 3945
}

3946
/* Called with cache_chain_mutex held always */
3947
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3948 3949 3950 3951
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3952 3953
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3954 3955
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3956
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3957 3958 3959 3960
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3961
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3962
		limit = 1;
3963
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3964
		limit = 8;
3965
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3966
		limit = 24;
3967
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3968 3969 3970 3971
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3972 3973
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3974 3975 3976 3977 3978 3979 3980 3981
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3982
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3983 3984 3985
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3986 3987 3988
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3989 3990 3991 3992
	 */
	if (limit > 32)
		limit = 32;
#endif
3993
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
3994 3995
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3996
		       cachep->name, -err);
3997
	return err;
L
Linus Torvalds 已提交
3998 3999
}

4000 4001
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4002 4003
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4004 4005 4006
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4007 4008 4009
{
	int tofree;

4010 4011
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4012 4013
	if (ac->touched && !force) {
		ac->touched = 0;
4014
	} else {
4015
		spin_lock_irq(&l3->list_lock);
4016 4017 4018 4019 4020 4021 4022 4023 4024
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4025
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4031
 * @w: work descriptor
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4038 4039
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4040
 */
4041
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4042
{
4043
	struct kmem_cache *searchp;
4044
	struct kmem_list3 *l3;
4045
	int node = numa_node_id();
4046
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4047

4048
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4049
		/* Give up. Setup the next iteration. */
4050
		goto out;
L
Linus Torvalds 已提交
4051

4052
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4053 4054
		check_irq_on();

4055 4056 4057 4058 4059
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4060
		l3 = searchp->nodelists[node];
4061

4062
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4063

4064
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4065

4066 4067 4068 4069
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4070
		if (time_after(l3->next_reap, jiffies))
4071
			goto next;
L
Linus Torvalds 已提交
4072

4073
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4074

4075
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4076

4077
		if (l3->free_touched)
4078
			l3->free_touched = 0;
4079 4080
		else {
			int freed;
L
Linus Torvalds 已提交
4081

4082 4083 4084 4085
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4086
next:
L
Linus Torvalds 已提交
4087 4088 4089
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4090
	mutex_unlock(&cache_chain_mutex);
4091
	next_reap_node();
4092
out:
A
Andrew Morton 已提交
4093
	/* Set up the next iteration */
4094
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4095 4096
}

4097
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4098

4099
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4100
{
4101 4102 4103 4104
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4105
#if STATS
4106
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4107
#else
4108
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4109
#endif
4110 4111 4112 4113
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4114
#if STATS
4115
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4116
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4117
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4118
#endif
4119 4120 4121 4122 4123 4124 4125
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4126
	mutex_lock(&cache_chain_mutex);
4127 4128
	if (!n)
		print_slabinfo_header(m);
4129 4130

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4131 4132 4133 4134
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4135
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4136 4137 4138 4139
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4140
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4141 4142 4143 4144
}

static int s_show(struct seq_file *m, void *p)
{
4145
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4146 4147 4148 4149 4150
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4151
	const char *name;
L
Linus Torvalds 已提交
4152
	char *error = NULL;
4153 4154
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4155 4156 4157

	active_objs = 0;
	num_slabs = 0;
4158 4159 4160 4161 4162
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4163 4164
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4165

4166
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4167 4168 4169 4170 4171
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4172
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4173 4174 4175 4176 4177 4178 4179
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4180
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4181 4182 4183 4184 4185
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4186 4187
		if (l3->shared)
			shared_avail += l3->shared->avail;
4188

4189
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4190
	}
P
Pekka Enberg 已提交
4191 4192
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4193
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4194 4195
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4196
	name = cachep->name;
L
Linus Torvalds 已提交
4197 4198 4199 4200
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4201
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4202
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4203
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4204
		   cachep->limit, cachep->batchcount, cachep->shared);
4205
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4206
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4207
#if STATS
P
Pekka Enberg 已提交
4208
	{			/* list3 stats */
L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214 4215
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4216
		unsigned long node_frees = cachep->node_frees;
4217
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4218

4219
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4220
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4221
				reaped, errors, max_freeable, node_allocs,
4222
				node_frees, overflows);
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4232
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4253
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4254 4255 4256 4257
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4268 4269
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4270
{
P
Pekka Enberg 已提交
4271
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4272
	int limit, batchcount, shared, res;
4273
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4274

L
Linus Torvalds 已提交
4275 4276 4277 4278
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4279
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4290
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4291
	res = -EINVAL;
4292
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4293
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4294 4295
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4296
				res = 0;
L
Linus Torvalds 已提交
4297
			} else {
4298
				res = do_tune_cpucache(cachep, limit,
4299 4300
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4301 4302 4303 4304
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4305
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4306 4307 4308 4309
	if (res >= 0)
		res = count;
	return res;
}
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4324 4325 4326 4327 4328
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4329
	return seq_list_start(&cache_chain, *pos);
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4380
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4381

4382
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4383
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4384
		if (modname[0])
4385 4386 4387 4388 4389 4390 4391 4392 4393
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4394
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4419
		list_for_each_entry(slabp, &l3->slabs_full, list)
4420
			handle_slab(n, cachep, slabp);
4421
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4448

4449 4450 4451
	return 0;
}

4452
static const struct seq_operations slabstats_op = {
4453 4454 4455 4456 4457
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4486
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4487 4488
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4489
#endif
4490 4491 4492
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4493 4494
#endif

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4507
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4508
{
4509 4510
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4511
		return 0;
L
Linus Torvalds 已提交
4512

4513
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4514
}
K
Kirill A. Shutemov 已提交
4515
EXPORT_SYMBOL(ksize);