intel_pm.c 187.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
}
63

64
static void skl_init_clock_gating(struct drm_device *dev)
65
{
66
	struct drm_i915_private *dev_priv = dev->dev_private;
67

68 69
	gen9_init_clock_gating(dev);

70 71 72
	if (INTEL_REVID(dev) == SKL_REVID_A0) {
		/*
		 * WaDisableSDEUnitClockGating:skl
73
		 * WaSetGAPSunitClckGateDisable:skl
74 75
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 78
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
	}
79

80
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 82 83 84
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

85 86 87 88 89
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   I915_READ(FF_SLICE_CS_CHICKEN2) |
			   GEN9_TSG_BARRIER_ACK_DISABLE);
	}
90

91 92 93 94
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
95 96
}

97 98
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
99
	struct drm_i915_private *dev_priv = dev->dev_private;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
138
	struct drm_i915_private *dev_priv = dev->dev_private;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

164
	dev_priv->ips.r_t = dev_priv->mem_freq;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
196
		dev_priv->ips.c_m = 0;
197
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198
		dev_priv->ips.c_m = 1;
199
	} else {
200
		dev_priv->ips.c_m = 2;
201 202 203
	}
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

242
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

266
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
267
{
268 269
	struct drm_device *dev = dev_priv->dev;
	u32 val;
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
290

291 292
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
309
static const int pessimal_latency_ns = 5000;
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

366
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

382
static int i830_get_fifo_size(struct drm_device *dev, int plane)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

399
static int i845_get_fifo_size(struct drm_device *dev, int plane)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
417 418 419 420 421
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
422 423
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
424 425 426 427 428
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
429 430
};
static const struct intel_watermark_params pineview_cursor_wm = {
431 432 433 434 435
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
436 437
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
438 439 440 441 442
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
443 444
};
static const struct intel_watermark_params g4x_wm_info = {
445 446 447 448 449
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
450 451
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
452 453 454 455 456
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
457 458
};
static const struct intel_watermark_params valleyview_wm_info = {
459 460 461 462 463
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
464 465
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
466 467 468 469 470
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
471 472
};
static const struct intel_watermark_params i965_cursor_wm_info = {
473 474 475 476 477
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
478 479
};
static const struct intel_watermark_params i945_wm_info = {
480 481 482 483 484
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
485 486
};
static const struct intel_watermark_params i915_wm_info = {
487 488 489 490 491
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
492
};
493
static const struct intel_watermark_params i830_a_wm_info = {
494 495 496 497 498
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
499
};
500 501 502 503 504 505 506
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
507
static const struct intel_watermark_params i845_wm_info = {
508 509 510 511 512
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
562 563 564 565 566 567 568 569 570 571 572

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

573 574 575 576 577 578 579
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

580
	for_each_crtc(dev, crtc) {
581
		if (intel_crtc_active(crtc)) {
582 583 584 585 586 587 588 589 590
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

591
static void pineview_update_wm(struct drm_crtc *unused_crtc)
592
{
593
	struct drm_device *dev = unused_crtc->dev;
594 595 596 597 598 599 600 601 602 603
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
604
		intel_set_memory_cxsr(dev_priv, false);
605 606 607 608 609
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
610
		const struct drm_display_mode *adjusted_mode;
611
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
612 613
		int clock;

614
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
615
		clock = adjusted_mode->crtc_clock;
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

655
		intel_set_memory_cxsr(dev_priv, true);
656
	} else {
657
		intel_set_memory_cxsr(dev_priv, false);
658 659 660 661 662 663 664 665 666 667 668 669 670
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
671
	const struct drm_display_mode *adjusted_mode;
672 673 674 675 676
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
677
	if (!intel_crtc_active(crtc)) {
678 679 680 681 682
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

683
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
684
	clock = adjusted_mode->crtc_clock;
685
	htotal = adjusted_mode->crtc_htotal;
686
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
687
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
688 689 690 691 692 693 694 695 696 697 698 699

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
700
	line_time_us = max(htotal * 1000 / clock, 1);
701
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
702
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
757
	const struct drm_display_mode *adjusted_mode;
758 759 760 761 762 763 764 765 766 767 768 769
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
770
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
771
	clock = adjusted_mode->crtc_clock;
772
	htotal = adjusted_mode->crtc_htotal;
773
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
774
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
775

776
	line_time_us = max(htotal * 1000 / clock, 1);
777 778 779 780 781 782 783 784 785 786 787
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
788
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
789 790 791 792 793 794 795 796
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

797 798 799 800 801 802 803 804 805 806 807 808
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	I915_WRITE(DSPFW1,
		   ((wm->sr.plane << DSPFW_SR_SHIFT) & DSPFW_SR_MASK) |
		   ((wm->pipe[PIPE_B].cursor << DSPFW_CURSORB_SHIFT) & DSPFW_CURSORB_MASK) |
		   ((wm->pipe[PIPE_B].primary << DSPFW_PLANEB_SHIFT) & DSPFW_PLANEB_MASK_VLV) |
		   ((wm->pipe[PIPE_A].primary << DSPFW_PLANEA_SHIFT) & DSPFW_PLANEA_MASK_VLV));
	I915_WRITE(DSPFW2,
		   ((wm->pipe[PIPE_A].sprite[1] << DSPFW_SPRITEB_SHIFT) & DSPFW_SPRITEB_MASK_VLV) |
		   ((wm->pipe[PIPE_A].cursor << DSPFW_CURSORA_SHIFT) & DSPFW_CURSORA_MASK) |
		   ((wm->pipe[PIPE_A].sprite[0] << DSPFW_SPRITEA_SHIFT) & DSPFW_SPRITEA_MASK_VLV));
	I915_WRITE(DSPFW3,
		   ((wm->sr.cursor << DSPFW_CURSOR_SR_SHIFT) & DSPFW_CURSOR_SR_MASK));

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
			   ((wm->pipe[PIPE_B].sprite[1] << DSPFW_SPRITED_SHIFT) & DSPFW_SPRITED_MASK) |
			   ((wm->pipe[PIPE_B].sprite[0] << DSPFW_SPRITEC_SHIFT) & DSPFW_SPRITEC_MASK));
		I915_WRITE(DSPFW8_CHV,
			   ((wm->pipe[PIPE_C].sprite[1] << DSPFW_SPRITEF_SHIFT) & DSPFW_SPRITEF_MASK) |
			   ((wm->pipe[PIPE_C].sprite[0] << DSPFW_SPRITEE_SHIFT) & DSPFW_SPRITEE_MASK));
		I915_WRITE(DSPFW9_CHV,
			   ((wm->pipe[PIPE_C].primary << DSPFW_PLANEC_SHIFT) & DSPFW_PLANEC_MASK) |
			   ((wm->pipe[PIPE_C].cursor << DSPFW_CURSORC_SHIFT) & DSPFW_CURSORC_MASK));
		I915_WRITE(DSPHOWM,
			   (((wm->sr.plane >> 9) << DSPFW_SR_HI_SHIFT) & DSPFW_SR_HI_MASK) |
			   (((wm->pipe[PIPE_C].sprite[1] >> 8) << DSPFW_SPRITEF_HI_SHIFT) & DSPFW_SPRITEF_HI_MASK) |
			   (((wm->pipe[PIPE_C].sprite[0] >> 8) << DSPFW_SPRITEE_HI_SHIFT) & DSPFW_SPRITEE_HI_MASK) |
			   (((wm->pipe[PIPE_C].primary >> 8) << DSPFW_PLANEC_HI_SHIFT) & DSPFW_PLANEC_HI_MASK) |
			   (((wm->pipe[PIPE_B].sprite[1] >> 8) << DSPFW_SPRITED_HI_SHIFT) & DSPFW_SPRITED_HI_MASK) |
			   (((wm->pipe[PIPE_B].sprite[0] >> 8) << DSPFW_SPRITEC_HI_SHIFT) & DSPFW_SPRITEC_HI_MASK) |
			   (((wm->pipe[PIPE_B].primary >> 8) << DSPFW_PLANEB_HI_SHIFT) & DSPFW_PLANEB_HI_MASK) |
			   (((wm->pipe[PIPE_A].sprite[1] >> 8) << DSPFW_SPRITEB_HI_SHIFT) & DSPFW_SPRITEB_HI_MASK) |
			   (((wm->pipe[PIPE_A].sprite[0] >> 8) << DSPFW_SPRITEA_HI_SHIFT) & DSPFW_SPRITEA_HI_MASK) |
			   (((wm->pipe[PIPE_A].primary >> 8) << DSPFW_PLANEA_HI_SHIFT) & DSPFW_PLANEA_HI_MASK));
	} else {
		I915_WRITE(DSPFW7,
			   ((wm->pipe[PIPE_B].sprite[1] << DSPFW_SPRITED_SHIFT) & DSPFW_SPRITED_MASK) |
			   ((wm->pipe[PIPE_B].sprite[0] << DSPFW_SPRITEC_SHIFT) & DSPFW_SPRITEC_MASK));
		I915_WRITE(DSPHOWM,
			   (((wm->sr.plane >> 9) << DSPFW_SR_HI_SHIFT) & DSPFW_SR_HI_MASK) |
			   (((wm->pipe[PIPE_B].sprite[1] >> 8) << DSPFW_SPRITED_HI_SHIFT) & DSPFW_SPRITED_HI_MASK) |
			   (((wm->pipe[PIPE_B].sprite[0] >> 8) << DSPFW_SPRITEC_HI_SHIFT) & DSPFW_SPRITEC_HI_MASK) |
			   (((wm->pipe[PIPE_B].primary >> 8) << DSPFW_PLANEB_HI_SHIFT) & DSPFW_PLANEB_HI_MASK) |
			   (((wm->pipe[PIPE_A].sprite[1] >> 8) << DSPFW_SPRITEB_HI_SHIFT) & DSPFW_SPRITEB_HI_MASK) |
			   (((wm->pipe[PIPE_A].sprite[0] >> 8) << DSPFW_SPRITEA_HI_SHIFT) & DSPFW_SPRITEA_HI_MASK) |
			   (((wm->pipe[PIPE_A].primary >> 8) << DSPFW_PLANEA_HI_SHIFT) & DSPFW_PLANEA_HI_MASK));
	}

	POSTING_READ(DSPFW1);

858 859 860
	dev_priv->wm.vlv = *wm;
}

861
static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
862
					 struct drm_plane *plane)
863
{
864
	struct drm_device *dev = crtc->dev;
865 866 867
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int entries, prec_mult, drain_latency, pixel_size;
	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
868
	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
869

870 871 872 873 874 875 876
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!intel_crtc->active || !plane->state->fb)
		return 0;

877
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
878
		return 0;
879

880 881
	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);

882
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
883
		return 0;
884

885
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
886

887 888
	prec_mult = high_precision;
	drain_latency = 64 * prec_mult * 4 / entries;
889

890 891 892
	if (drain_latency > DRAIN_LATENCY_MASK) {
		prec_mult /= 2;
		drain_latency = 64 * prec_mult * 4 / entries;
893 894
	}

895 896
	if (drain_latency > DRAIN_LATENCY_MASK)
		drain_latency = DRAIN_LATENCY_MASK;
897

898 899
	return drain_latency | (prec_mult == high_precision ?
				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
900 901
}

902 903 904
static int vlv_compute_wm(struct intel_crtc *crtc,
			  struct intel_plane *plane,
			  int fifo_size)
905
{
906
	int clock, entries, pixel_size;
907

908 909 910 911 912 913
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!crtc->active || !plane->base.state->fb)
		return 0;
914

915 916
	pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
917

918
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933
	/*
	 * Set up the watermark such that we don't start issuing memory
	 * requests until we are within PND's max deadline value (256us).
	 * Idea being to be idle as long as possible while still taking
	 * advatange of PND's deadline scheduling. The limit of 8
	 * cachelines (used when the FIFO will anyway drain in less time
	 * than 256us) should match what we would be done if trickle
	 * feed were enabled.
	 */
	return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
}

static bool vlv_compute_sr_wm(struct drm_device *dev,
			      struct vlv_wm_values *wm)
934
{
935 936 937 938 939 940
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct drm_crtc *crtc;
	enum pipe pipe = INVALID_PIPE;
	int num_planes = 0;
	int fifo_size = 0;
	struct intel_plane *plane;
941

942
	wm->sr.cursor = wm->sr.plane = 0;
943

944 945 946 947 948 949 950 951 952
	crtc = single_enabled_crtc(dev);
	/* maxfifo not supported on pipe C */
	if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
		pipe = to_intel_crtc(crtc)->pipe;
		num_planes = !!wm->pipe[pipe].primary +
			!!wm->pipe[pipe].sprite[0] +
			!!wm->pipe[pipe].sprite[1];
		fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
	}
953

954 955
	if (fifo_size == 0 || num_planes > 1)
		return false;
956

957 958
	wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
				       to_intel_plane(crtc->cursor), 0x3f);
959

960 961 962
	list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;
963

964 965
		if (plane->pipe != pipe)
			continue;
966

967 968 969 970 971 972 973
		wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
					      plane, fifo_size);
		if (wm->sr.plane != 0)
			break;
	}

	return true;
974 975
}

976
static void valleyview_update_wm(struct drm_crtc *crtc)
977 978 979
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
980 981
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
982
	bool cxsr_enabled;
983
	struct vlv_wm_values wm = dev_priv->wm.vlv;
984

985 986 987 988
	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
	wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
					       to_intel_plane(crtc->primary),
					       vlv_get_fifo_size(dev, pipe, 0));
989

990 991 992 993
	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
	wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
					      to_intel_plane(crtc->cursor),
					      0x3f);
994

995
	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
996

997 998
	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;
999

1000 1001 1002 1003
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.sr.plane, wm.sr.cursor);
1004

1005 1006
	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1007

1008
	vlv_write_wm_values(intel_crtc, &wm);
1009 1010 1011 1012 1013

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1014 1015 1016 1017 1018 1019 1020 1021 1022
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1023 1024
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1025
	int sprite = to_intel_plane(plane)->plane;
1026
	bool cxsr_enabled;
1027
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1028

1029
	if (enabled) {
1030
		wm.ddl[pipe].sprite[sprite] =
1031
			vlv_compute_drain_latency(crtc, plane);
1032 1033 1034 1035 1036 1037

		wm.pipe[pipe].sprite[sprite] =
			vlv_compute_wm(intel_crtc,
				       to_intel_plane(plane),
				       vlv_get_fifo_size(dev, pipe, sprite+1));
	} else {
1038
		wm.ddl[pipe].sprite[sprite] = 0;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		wm.pipe[pipe].sprite[sprite] = 0;
	}

	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);

	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      sprite_name(pipe, sprite),
		      wm.pipe[pipe].sprite[sprite],
		      wm.sr.plane, wm.sr.cursor);

	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1055

1056
	vlv_write_wm_values(intel_crtc, &wm);
1057 1058 1059

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1060 1061
}

1062 1063
#define single_plane_enabled(mask) is_power_of_2(mask)

1064
static void g4x_update_wm(struct drm_crtc *crtc)
1065
{
1066
	struct drm_device *dev = crtc->dev;
1067 1068 1069 1070 1071
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1072
	bool cxsr_enabled;
1073

1074
	if (g4x_compute_wm0(dev, PIPE_A,
1075 1076
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1077
			    &planea_wm, &cursora_wm))
1078
		enabled |= 1 << PIPE_A;
1079

1080
	if (g4x_compute_wm0(dev, PIPE_B,
1081 1082
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1083
			    &planeb_wm, &cursorb_wm))
1084
		enabled |= 1 << PIPE_B;
1085 1086 1087 1088 1089 1090

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1091
			     &plane_sr, &cursor_sr)) {
1092
		cxsr_enabled = true;
1093
	} else {
1094
		cxsr_enabled = false;
1095
		intel_set_memory_cxsr(dev_priv, false);
1096 1097
		plane_sr = cursor_sr = 0;
	}
1098

1099 1100
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1101 1102 1103 1104 1105 1106 1107 1108
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1109
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1110
	I915_WRITE(DSPFW2,
1111
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1112 1113 1114
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1115
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1116
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1117 1118 1119

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1120 1121
}

1122
static void i965_update_wm(struct drm_crtc *unused_crtc)
1123
{
1124
	struct drm_device *dev = unused_crtc->dev;
1125 1126 1127 1128
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1129
	bool cxsr_enabled;
1130 1131 1132 1133 1134 1135

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1136
		const struct drm_display_mode *adjusted_mode =
1137
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1138
		int clock = adjusted_mode->crtc_clock;
1139
		int htotal = adjusted_mode->crtc_htotal;
1140
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1141
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1142 1143 1144
		unsigned long line_time_us;
		int entries;

1145
		line_time_us = max(htotal * 1000 / clock, 1);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1159
			pixel_size * crtc->cursor->state->crtc_w;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1171
		cxsr_enabled = true;
1172
	} else {
1173
		cxsr_enabled = false;
1174
		/* Turn off self refresh if both pipes are enabled */
1175
		intel_set_memory_cxsr(dev_priv, false);
1176 1177 1178 1179 1180 1181 1182
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1183 1184 1185 1186 1187
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1188 1189
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1190 1191 1192

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1193 1194
}

1195
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1196
{
1197
	struct drm_device *dev = unused_crtc->dev;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1212
		wm_info = &i830_a_wm_info;
1213 1214 1215

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1216
	if (intel_crtc_active(crtc)) {
1217
		const struct drm_display_mode *adjusted_mode;
1218
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1219 1220 1221
		if (IS_GEN2(dev))
			cpp = 4;

1222
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1223
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1224
					       wm_info, fifo_size, cpp,
1225
					       pessimal_latency_ns);
1226
		enabled = crtc;
1227
	} else {
1228
		planea_wm = fifo_size - wm_info->guard_size;
1229 1230 1231 1232 1233 1234
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1235 1236 1237

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1238
	if (intel_crtc_active(crtc)) {
1239
		const struct drm_display_mode *adjusted_mode;
1240
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1241 1242 1243
		if (IS_GEN2(dev))
			cpp = 4;

1244
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1245
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1246
					       wm_info, fifo_size, cpp,
1247
					       pessimal_latency_ns);
1248 1249 1250 1251
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1252
	} else {
1253
		planeb_wm = fifo_size - wm_info->guard_size;
1254 1255 1256
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1257 1258 1259

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1260
	if (IS_I915GM(dev) && enabled) {
1261
		struct drm_i915_gem_object *obj;
1262

1263
		obj = intel_fb_obj(enabled->primary->state->fb);
1264 1265

		/* self-refresh seems busted with untiled */
1266
		if (obj->tiling_mode == I915_TILING_NONE)
1267 1268 1269
			enabled = NULL;
	}

1270 1271 1272 1273 1274 1275
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1276
	intel_set_memory_cxsr(dev_priv, false);
1277 1278 1279 1280 1281

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1282
		const struct drm_display_mode *adjusted_mode =
1283
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1284
		int clock = adjusted_mode->crtc_clock;
1285
		int htotal = adjusted_mode->crtc_htotal;
1286
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1287
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1288 1289 1290
		unsigned long line_time_us;
		int entries;

1291
		line_time_us = max(htotal * 1000 / clock, 1);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1322 1323
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1324 1325
}

1326
static void i845_update_wm(struct drm_crtc *unused_crtc)
1327
{
1328
	struct drm_device *dev = unused_crtc->dev;
1329 1330
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1331
	const struct drm_display_mode *adjusted_mode;
1332 1333 1334 1335 1336 1337 1338
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1339
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1340
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1341
				       &i845_wm_info,
1342
				       dev_priv->display.get_fifo_size(dev, 0),
1343
				       4, pessimal_latency_ns);
1344 1345 1346 1347 1348 1349 1350 1351
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1352 1353
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1354 1355
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1356
	uint32_t pixel_rate;
1357

1358
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1359 1360 1361 1362

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1363
	if (intel_crtc->config->pch_pfit.enabled) {
1364
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1365
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1366

1367 1368
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1383
/* latency must be in 0.1us units. */
1384
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1385 1386 1387 1388
			       uint32_t latency)
{
	uint64_t ret;

1389 1390 1391
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1392 1393 1394 1395 1396 1397
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1398
/* latency must be in 0.1us units. */
1399
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1400 1401 1402 1403 1404
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1405 1406 1407
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1408 1409 1410 1411 1412 1413
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1414
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1415 1416 1417 1418 1419
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1420 1421 1422 1423 1424 1425 1426 1427
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1428
struct ilk_pipe_wm_parameters {
1429 1430 1431
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1432 1433 1434
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1435 1436
};

1437
struct ilk_wm_maximums {
1438 1439 1440 1441 1442 1443
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1444 1445 1446 1447 1448 1449 1450
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1451 1452 1453 1454
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1455
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1456 1457
				   uint32_t mem_value,
				   bool is_lp)
1458
{
1459 1460
	uint32_t method1, method2;

1461
	if (!params->active || !params->pri.enabled)
1462 1463
		return 0;

1464
	method1 = ilk_wm_method1(params->pixel_rate,
1465
				 params->pri.bytes_per_pixel,
1466 1467 1468 1469 1470
				 mem_value);

	if (!is_lp)
		return method1;

1471
	method2 = ilk_wm_method2(params->pixel_rate,
1472
				 params->pipe_htotal,
1473 1474
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1475 1476 1477
				 mem_value);

	return min(method1, method2);
1478 1479
}

1480 1481 1482 1483
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1484
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1485 1486 1487 1488
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1489
	if (!params->active || !params->spr.enabled)
1490 1491
		return 0;

1492
	method1 = ilk_wm_method1(params->pixel_rate,
1493
				 params->spr.bytes_per_pixel,
1494
				 mem_value);
1495
	method2 = ilk_wm_method2(params->pixel_rate,
1496
				 params->pipe_htotal,
1497 1498
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1499 1500 1501 1502
				 mem_value);
	return min(method1, method2);
}

1503 1504 1505 1506
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1507
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1508 1509
				   uint32_t mem_value)
{
1510
	if (!params->active || !params->cur.enabled)
1511 1512
		return 0;

1513
	return ilk_wm_method2(params->pixel_rate,
1514
			      params->pipe_htotal,
1515 1516
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1517 1518 1519
			      mem_value);
}

1520
/* Only for WM_LP. */
1521
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1522
				   uint32_t pri_val)
1523
{
1524
	if (!params->active || !params->pri.enabled)
1525 1526
		return 0;

1527
	return ilk_wm_fbc(pri_val,
1528 1529
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1530 1531
}

1532 1533
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1534 1535 1536
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1537 1538 1539 1540 1541
		return 768;
	else
		return 512;
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1576 1577 1578
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1579
				     const struct intel_wm_config *config,
1580 1581 1582 1583 1584 1585
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1586
	if (is_sprite && !config->sprites_enabled)
1587 1588 1589
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1590
	if (level == 0 || config->num_pipes_active > 1) {
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1602
	if (config->sprites_enabled) {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1614
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1615 1616 1617 1618
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1619 1620
				      int level,
				      const struct intel_wm_config *config)
1621 1622
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1623
	if (level > 0 && config->num_pipes_active > 1)
1624 1625 1626
		return 64;

	/* otherwise just report max that registers can hold */
1627
	return ilk_cursor_wm_reg_max(dev, level);
1628 1629
}

1630
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1631 1632 1633
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1634
				    struct ilk_wm_maximums *max)
1635
{
1636 1637 1638
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1639
	max->fbc = ilk_fbc_wm_reg_max(dev);
1640 1641
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1652
static bool ilk_validate_wm_level(int level,
1653
				  const struct ilk_wm_maximums *max,
1654
				  struct intel_wm_level *result)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1693
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1694
				 int level,
1695
				 const struct ilk_pipe_wm_parameters *p,
1696
				 struct intel_wm_level *result)
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1716 1717
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1718 1719
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1720
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1721
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1722
	u32 linetime, ips_linetime;
1723

1724
	if (!intel_crtc->active)
1725
		return 0;
1726

1727 1728 1729
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1730 1731 1732
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1733
					 intel_ddi_get_cdclk_freq(dev_priv));
1734

1735 1736
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1737 1738
}

1739
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1740 1741 1742
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1743 1744
	if (IS_GEN9(dev)) {
		uint32_t val;
1745
		int ret, i;
1746
		int level, max_level = ilk_wm_max_level(dev);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1789
		/*
1790 1791
		 * WaWmMemoryReadLatency:skl
		 *
1792 1793 1794 1795 1796 1797 1798 1799
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1800 1801 1802 1803 1804
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1805 1806 1807 1808 1809
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1810 1811 1812
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1813

1814 1815
				break;
			}
1816
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1817 1818 1819 1820 1821
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1822 1823 1824 1825
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1826 1827 1828 1829 1830 1831 1832
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1833 1834 1835 1836 1837 1838 1839
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1840 1841 1842
	}
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1861
int ilk_wm_max_level(const struct drm_device *dev)
1862 1863
{
	/* how many WM levels are we expecting */
1864 1865 1866
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1867
		return 4;
1868
	else if (INTEL_INFO(dev)->gen >= 6)
1869
		return 3;
1870
	else
1871 1872
		return 2;
}
1873

1874 1875
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1876
				   const uint16_t wm[8])
1877 1878
{
	int level, max_level = ilk_wm_max_level(dev);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1889 1890 1891 1892 1893 1894 1895
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1896 1897 1898 1899 1900 1901 1902 1903
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

1941
static void ilk_setup_wm_latency(struct drm_device *dev)
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1954 1955 1956 1957

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1958 1959 1960

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
1961 1962
}

1963 1964 1965 1966 1967 1968 1969 1970
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

1971
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1972
				      struct ilk_pipe_wm_parameters *p)
1973
{
1974 1975 1976 1977
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
1978

1979
	if (!intel_crtc->active)
1980
		return;
1981

1982
	p->active = true;
1983
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1984
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1985
	p->pri.bytes_per_pixel = crtc->primary->state->fb->bits_per_pixel / 8;
1986
	p->cur.bytes_per_pixel = 4;
1987
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1988
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
1989 1990 1991
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
1992

1993
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1994 1995
		struct intel_plane *intel_plane = to_intel_plane(plane);

1996
		if (intel_plane->pipe == pipe) {
1997
			p->spr = intel_plane->wm;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2009
	for_each_intel_crtc(dev, intel_crtc) {
2010
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2011

2012 2013
		if (!wm->pipe_enabled)
			continue;
2014

2015 2016 2017
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2018
	}
2019 2020
}

2021 2022
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2023
				  const struct ilk_pipe_wm_parameters *params,
2024 2025 2026
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2027
	const struct drm_i915_private *dev_priv = dev->dev_private;
2028 2029 2030 2031 2032 2033 2034
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2035
	struct ilk_wm_maximums max;
2036

2037 2038 2039 2040
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2041 2042 2043 2044 2045 2046 2047 2048
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2049
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2050

2051
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2052
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2053

2054 2055 2056
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2057
	/* At least LP0 must be valid */
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2091 2092
	ret_wm->enable = true;

2093
	for_each_intel_crtc(dev, intel_crtc) {
2094 2095 2096 2097 2098
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2099

2100 2101 2102 2103 2104
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2105
		if (!wm->enable)
2106
			ret_wm->enable = false;
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2119
			 const struct intel_wm_config *config,
2120
			 const struct ilk_wm_maximums *max,
2121 2122 2123
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2124
	int last_enabled_level = max_level;
2125

2126 2127 2128 2129 2130
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2131 2132
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2133 2134 2135 2136 2137 2138 2139

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2140 2141 2142 2143 2144
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2145 2146 2147 2148 2149 2150

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2151 2152
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2153 2154 2155
			wm->fbc_val = 0;
		}
	}
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2170 2171
}

2172 2173 2174 2175 2176 2177
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2178 2179 2180 2181 2182
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2183
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2184 2185 2186 2187 2188
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2189
static void ilk_compute_wm_results(struct drm_device *dev,
2190
				   const struct intel_pipe_wm *merged,
2191
				   enum intel_ddb_partitioning partitioning,
2192
				   struct ilk_wm_values *results)
2193
{
2194 2195
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2196

2197
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2198
	results->partitioning = partitioning;
2199

2200
	/* LP1+ register values */
2201
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2202
		const struct intel_wm_level *r;
2203

2204
		level = ilk_wm_lp_to_level(wm_lp, merged);
2205

2206
		r = &merged->wm[level];
2207

2208 2209 2210 2211 2212
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2213
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2214 2215 2216
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2217 2218 2219
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2220 2221 2222 2223 2224 2225 2226
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2227 2228 2229 2230
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2231 2232 2233 2234 2235
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2236
	}
2237

2238
	/* LP0 register values */
2239
	for_each_intel_crtc(dev, intel_crtc) {
2240 2241 2242 2243 2244 2245 2246 2247
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2248

2249 2250 2251 2252
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2253 2254 2255
	}
}

2256 2257
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2258
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2259 2260
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2261
{
2262 2263
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2264

2265 2266 2267 2268 2269
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2270 2271
	}

2272 2273
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2274 2275 2276
			return r2;
		else
			return r1;
2277
	} else if (level1 > level2) {
2278 2279 2280 2281 2282 2283
		return r1;
	} else {
		return r2;
	}
}

2284 2285 2286 2287 2288 2289 2290 2291
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2292
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2293 2294
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2295 2296 2297 2298 2299
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2300
	for_each_pipe(dev_priv, pipe) {
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2344 2345
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2346
{
2347
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2348
	bool changed = false;
2349

2350 2351 2352
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2353
		changed = true;
2354 2355 2356 2357
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2358
		changed = true;
2359 2360 2361 2362
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2363
		changed = true;
2364
	}
2365

2366 2367 2368 2369
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2370

2371 2372 2373 2374 2375 2376 2377
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2378 2379
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2380 2381
{
	struct drm_device *dev = dev_priv->dev;
2382
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2383 2384 2385
	unsigned int dirty;
	uint32_t val;

2386
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2387 2388 2389 2390 2391
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2392
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2393
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2394
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2395
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2396
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2397 2398
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2399
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2400
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2401
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2402
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2403
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2404 2405
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2406
	if (dirty & WM_DIRTY_DDB) {
2407
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2422 2423
	}

2424
	if (dirty & WM_DIRTY_FBC) {
2425 2426 2427 2428 2429 2430 2431 2432
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2433 2434 2435 2436 2437
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2438 2439 2440 2441 2442
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2443

2444
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2445
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2446
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2447
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2448
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2449
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2450 2451

	dev_priv->wm.hw = *results;
2452 2453
}

2454 2455 2456 2457 2458 2459 2460
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

	ddb_size = SKL_DDB_SIZE;

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2491
		if (!to_intel_crtc(crtc)->active)
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2502
	alloc->end = alloc->start + pipe_size;
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2513 2514 2515 2516
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2517 2518
	if (entry->end)
		entry->end += 1;
2519 2520
}

2521 2522
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2523 2524 2525 2526 2527 2528
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2529
		for_each_plane(dev_priv, pipe, plane) {
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2578
	struct drm_i915_private *dev_priv = dev->dev_private;
2579 2580
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2581
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2582
	uint16_t alloc_size, start, cursor_blocks;
2583
	uint16_t minimum[I915_MAX_PLANES];
2584 2585 2586
	unsigned int total_data_rate;
	int plane;

2587 2588
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2589 2590 2591 2592 2593 2594 2595
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2596 2597
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2598 2599

	alloc_size -= cursor_blocks;
2600
	alloc->end -= cursor_blocks;
2601

2602
	/* 1. Allocate the mininum required blocks for each active plane */
2603
	for_each_plane(dev_priv, pipe, plane) {
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
	}

2614
	/*
2615 2616
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2617 2618 2619 2620 2621
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2622
	start = alloc->start;
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2638 2639 2640
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2641 2642

		ddb->plane[pipe][plane].start = start;
2643
		ddb->plane[pipe][plane].end = start + plane_blocks;
2644 2645 2646 2647 2648 2649

		start += plane_blocks;
	}

}

2650
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2651 2652
{
	/* TODO: Take into account the scalers once we support them */
2653
	return config->base.adjusted_mode.crtc_clock;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

2670
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2671 2672 2673 2674 2675 2676 2677
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2678
			       uint64_t tiling, uint32_t latency)
2679
{
2680 2681 2682
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
2683 2684 2685 2686 2687

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

2698 2699
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2700
				plane_blocks_per_line;
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2731
		config->num_pipes_active += to_intel_crtc(crtc)->active;
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2749
	struct drm_framebuffer *fb;
2750 2751
	int i = 1; /* Index for sprite planes start */

2752
	p->active = intel_crtc->active;
2753
	if (p->active) {
2754 2755
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2756 2757 2758 2759 2760 2761

		/*
		 * For now, assume primary and cursor planes are always enabled.
		 */
		p->plane[0].enabled = true;
		p->plane[0].bytes_per_pixel =
2762
			crtc->primary->state->fb->bits_per_pixel / 8;
2763 2764
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2765 2766 2767 2768 2769 2770 2771 2772
		p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		fb = crtc->primary->state->fb;
		/*
		 * Framebuffer can be NULL on plane disable, but it does not
		 * matter for watermarks if we assume no tiling in that case.
		 */
		if (fb)
			p->plane[0].tiling = fb->modifier[0];
2773 2774 2775

		p->cursor.enabled = true;
		p->cursor.bytes_per_pixel = 4;
2776 2777
		p->cursor.horiz_pixels = intel_crtc->base.cursor->state->crtc_w ?
					 intel_crtc->base.cursor->state->crtc_w : 64;
2778 2779 2780 2781 2782
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2783 2784
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2785 2786 2787 2788
			p->plane[i++] = intel_plane->wm;
	}
}

2789 2790
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
2791 2792
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
2793
				 int level,
2794 2795
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2796
{
2797 2798 2799 2800 2801
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
2802

2803
	if (latency == 0 || !p->active || !p_params->enabled)
2804 2805 2806 2807
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
2808
				 latency);
2809 2810 2811 2812
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
2813
				 p_params->tiling,
2814
				 latency);
2815 2816 2817

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;
2818
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2819

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
		uint32_t y_tile_minimum = plane_blocks_per_line * 4;
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
2830

2831 2832
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2833

2834 2835 2836 2837 2838 2839 2840
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
2841

2842
	if (res_blocks >= ddb_allocation || res_lines > 31)
2843 2844 2845 2846
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

2865 2866
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
2867
						ddb_blocks,
2868
						level,
2869 2870 2871 2872 2873
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2874 2875 2876
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
2877 2878 2879
						 &result->cursor_res_l);
}

2880 2881 2882
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
2883
	if (!to_intel_crtc(crtc)->active)
2884 2885 2886 2887 2888 2889 2890 2891
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
2892
				      struct skl_wm_level *trans_wm /* out */)
2893
{
2894 2895 2896
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

2897 2898
	if (!params->active)
		return;
2899 2900 2901 2902 2903

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
2904 2905
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

2923
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
2934 2935
	uint32_t temp;
	int i;
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

2981 2982 2983
	r->wm_linetime[pipe] = p_wm->linetime;
}

2984 2985 2986 2987 2988 2989 2990 2991 2992
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3003 3004
		if (!new->dirty[pipe])
			continue;
3005

3006
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3007

3008 3009 3010 3011 3012 3013
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
3014
		}
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3027 3028 3029
	}
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3054 3055
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3056 3057 3058
{
	int plane;

3059 3060
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3061
	for_each_plane(dev_priv, pipe, plane) {
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
	bool reallocated[I915_MAX_PIPES] = {false, false, false};
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3111
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3136
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3137
			intel_wait_for_vblank(dev, pipe);
3138
			reallocated[pipe] = true;
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3161
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3162 3163 3164
	}
}

3165 3166 3167 3168 3169 3170 3171 3172 3173
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3174
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3256
	skl_flush_wm_values(dev_priv, results);
3257 3258 3259

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3260 3261 3262 3263 3264 3265 3266 3267
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3268
	struct drm_framebuffer *fb = plane->state->fb;
3269 3270 3271 3272 3273 3274

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;
3275 3276 3277 3278 3279 3280 3281
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3282 3283 3284 3285

	skl_update_wm(crtc);
}

3286
static void ilk_update_wm(struct drm_crtc *crtc)
3287
{
3288
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3289
	struct drm_device *dev = crtc->dev;
3290
	struct drm_i915_private *dev_priv = dev->dev_private;
3291 3292 3293
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3294
	enum intel_ddb_partitioning partitioning;
3295
	struct intel_pipe_wm pipe_wm = {};
3296
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3297
	struct intel_wm_config config = {};
3298

3299
	ilk_compute_wm_parameters(crtc, &params);
3300 3301 3302 3303 3304

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3305

3306
	intel_crtc->wm.active = pipe_wm;
3307

3308 3309
	ilk_compute_wm_config(dev, &config);

3310
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3311
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3312 3313

	/* 5/6 split only in single pipe config on IVB+ */
3314 3315
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3316
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3317
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3318

3319
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3320
	} else {
3321
		best_lp_wm = &lp_wm_1_2;
3322 3323
	}

3324
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3325
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3326

3327
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3328

3329
	ilk_write_wm_values(dev_priv, &results);
3330 3331
}

3332 3333 3334 3335 3336
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3337
{
3338
	struct drm_device *dev = plane->dev;
3339
	struct intel_plane *intel_plane = to_intel_plane(plane);
3340

3341 3342 3343
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3344
	intel_plane->wm.vert_pixels = sprite_width;
3345
	intel_plane->wm.bytes_per_pixel = pixel_size;
3346

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3357
	ilk_update_wm(crtc);
3358 3359
}

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3430
	if (!intel_crtc->active)
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3458 3459
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3460 3461
	struct drm_crtc *crtc;

3462
	skl_ddb_get_hw_state(dev_priv, ddb);
3463 3464 3465 3466
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3467 3468 3469 3470
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3471
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3482
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3483
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3484

3485
	active->pipe_enabled = intel_crtc->active;
3486 3487

	if (active->pipe_enabled) {
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3517
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3518 3519
	struct drm_crtc *crtc;

3520
	for_each_crtc(dev, crtc)
3521 3522 3523 3524 3525 3526 3527
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3528 3529 3530 3531
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3532

3533
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3534 3535 3536 3537 3538
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3539 3540 3541 3542 3543

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3576
void intel_update_watermarks(struct drm_crtc *crtc)
3577
{
3578
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3579 3580

	if (dev_priv->display.update_wm)
3581
		dev_priv->display.update_wm(crtc);
3582 3583
}

3584 3585
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3586 3587 3588
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3589
				    bool enabled, bool scaled)
3590
{
3591
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3592 3593

	if (dev_priv->display.update_sprite_wm)
3594 3595
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3596
						   pixel_size, enabled, scaled);
3597 3598
}

3599 3600 3601 3602 3603 3604 3605 3606 3607
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3608 3609 3610 3611 3612
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3613 3614
	assert_spin_locked(&mchdev_lock);

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3632
static void ironlake_enable_drps(struct drm_device *dev)
3633 3634 3635 3636 3637
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3638 3639
	spin_lock_irq(&mchdev_lock);

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3663 3664
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3665

3666 3667 3668
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3685
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3686
		DRM_ERROR("stuck trying to change perf mode\n");
3687
	mdelay(1);
3688 3689 3690

	ironlake_set_drps(dev, fstart);

3691
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3692
		I915_READ(0x112e0);
3693 3694
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3695
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3696 3697

	spin_unlock_irq(&mchdev_lock);
3698 3699
}

3700
static void ironlake_disable_drps(struct drm_device *dev)
3701 3702
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3703 3704 3705 3706 3707
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3708 3709 3710 3711 3712 3713 3714 3715 3716

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3717
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3718
	mdelay(1);
3719 3720
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3721
	mdelay(1);
3722

3723
	spin_unlock_irq(&mchdev_lock);
3724 3725
}

3726 3727 3728 3729 3730
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3731
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3732
{
3733
	u32 limits;
3734

3735 3736 3737 3738 3739 3740
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3741 3742 3743
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3744 3745 3746 3747

	return limits;
}

3748 3749 3750 3751 3752 3753 3754
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3755
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3756 3757 3758 3759
			new_power = BETWEEN;
		break;

	case BETWEEN:
3760
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3761
			new_power = LOW_POWER;
3762
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3763 3764 3765 3766
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3767
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3768 3769 3770 3771
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3772
	if (val == dev_priv->rps.min_freq_softlimit)
3773
		new_power = LOW_POWER;
3774
	if (val == dev_priv->rps.max_freq_softlimit)
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3840 3841 3842 3843 3844 3845 3846 3847 3848
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3849 3850 3851
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3852
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3853 3854
}

3855 3856 3857
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3858
static void gen6_set_rps(struct drm_device *dev, u8 val)
3859 3860
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3861

3862
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3863 3864
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3865

C
Chris Wilson 已提交
3866 3867 3868 3869 3870
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3871

3872
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3873 3874 3875 3876 3877 3878 3879
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3880
	}
3881 3882 3883 3884

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3885
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3886
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3887

3888 3889
	POSTING_READ(GEN6_RPNSWREQ);

3890
	dev_priv->rps.cur_freq = val;
3891
	trace_intel_gpu_freq_change(val * 50);
3892 3893
}

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3926 3927
	struct drm_device *dev = dev_priv->dev;

3928 3929
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3930 3931 3932 3933
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3934 3935 3936 3937
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3938
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3939 3940 3941
		return;

	/* Mask turbo interrupt so that they will not come in between */
3942 3943
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3944

3945
	vlv_force_gfx_clock(dev_priv, true);
3946

3947
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3948 3949

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3950
					dev_priv->rps.min_freq_softlimit);
3951 3952

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3953
				& GENFREQSTATUS) == 0, 100))
3954 3955
		DRM_ERROR("timed out waiting for Punit\n");

3956
	vlv_force_gfx_clock(dev_priv, false);
3957

3958 3959
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3960 3961
}

3962 3963
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3964 3965
	struct drm_device *dev = dev_priv->dev;

3966
	mutex_lock(&dev_priv->rps.hw_lock);
3967
	if (dev_priv->rps.enabled) {
3968
		if (IS_VALLEYVIEW(dev))
3969
			vlv_set_rps_idle(dev_priv);
3970
		else
3971
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3972 3973
		dev_priv->rps.last_adj = 0;
	}
3974 3975 3976 3977 3978 3979
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3980
	if (dev_priv->rps.enabled) {
3981
		intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3982 3983
		dev_priv->rps.last_adj = 0;
	}
3984 3985 3986
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3987
void intel_set_rps(struct drm_device *dev, u8 val)
3988
{
3989 3990 3991 3992
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
3993 3994
}

Z
Zhe Wang 已提交
3995 3996 3997 3998 3999
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4000
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4001 4002
}

4003
static void gen6_disable_rps(struct drm_device *dev)
4004 4005 4006 4007
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4008 4009 4010
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4011 4012 4013 4014 4015 4016 4017
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4018 4019 4020 4021
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4022 4023
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4024
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4025

4026
	I915_WRITE(GEN6_RC_CONTROL, 0);
4027

4028
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4029 4030
}

B
Ben Widawsky 已提交
4031 4032
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4033 4034 4035 4036 4037 4038
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4039 4040 4041 4042 4043 4044 4045 4046 4047
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4048 4049
}

I
Imre Deak 已提交
4050
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4051
{
4052 4053 4054 4055
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
4056 4057 4058 4059
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

4060
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4061 4062 4063
	if (enable_rc6 >= 0) {
		int mask;

4064
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4065 4066 4067 4068 4069 4070
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4071 4072
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4073 4074 4075

		return enable_rc6 & mask;
	}
4076

4077 4078 4079
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
4080

4081
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4082
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4083 4084

	return INTEL_RC6_ENABLE;
4085 4086
}

I
Imre Deak 已提交
4087 4088 4089 4090 4091
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4092
static void gen6_init_rps_frequencies(struct drm_device *dev)
4093
{
4094 4095 4096 4097 4098 4099
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4100 4101
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4102
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4103
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4104
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4105 4106 4107 4108
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4109 4110 4111 4112 4113 4114 4115
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4116 4117 4118 4119
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4120 4121
	}

4122 4123 4124 4125
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4126 4127 4128
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4129 4130
				/* max(RPe, 450 MHz) */
				max(dev_priv->rps.efficient_freq, (u8) 9);
4131 4132 4133 4134
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4135 4136
}

J
Jesse Barnes 已提交
4137
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4138
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4139 4140 4141 4142 4143
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4144 4145
	gen6_init_rps_frequencies(dev);

J
Jesse Barnes 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
	I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
	I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
	I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
	I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
	I915_WRITE(GEN6_PMINTRMSK, 0x6);
	I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	gen6_enable_rps_interrupts(dev);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4179
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4193 4194 4195 4196
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4206 4207 4208
	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);

4209
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4210 4211 4212

}

4213 4214 4215
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4216
	struct intel_engine_cs *ring;
4217
	uint32_t rc6_mask = 0;
4218 4219 4220 4221 4222 4223 4224
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4225
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4226 4227 4228 4229

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4230 4231
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4232 4233 4234 4235 4236 4237 4238 4239

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4240 4241 4242 4243
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4244 4245 4246 4247

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4248
	intel_print_rc6_info(dev, rc6_mask);
4249 4250 4251 4252 4253 4254 4255 4256
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4257 4258

	/* 4 Program defaults and thresholds for RPS*/
4259 4260 4261 4262
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4277 4278

	/* 5: Enable RPS */
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4289 4290
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4291

4292
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4293 4294
}

4295
static void gen6_enable_rps(struct drm_device *dev)
4296
{
4297
	struct drm_i915_private *dev_priv = dev->dev_private;
4298
	struct intel_engine_cs *ring;
4299
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4300 4301
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4302
	int i, ret;
4303

4304
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4305

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4320
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4321

4322 4323
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4324

4325 4326 4327 4328 4329 4330 4331 4332 4333
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4334 4335
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4336 4337 4338

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4339
	if (IS_IVYBRIDGE(dev))
4340 4341 4342
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4343
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4344 4345
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4346
	/* Check if we are enabling RC6 */
4347 4348 4349 4350
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4351 4352 4353 4354
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4355

4356 4357 4358
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4359

B
Ben Widawsky 已提交
4360
	intel_print_rc6_info(dev, rc6_mask);
4361 4362 4363 4364 4365 4366

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4367 4368
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4369 4370
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4371
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4372
	if (ret)
B
Ben Widawsky 已提交
4373
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4374 4375 4376 4377

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4378
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4379
				 (pcu_mbox & 0xff) * 50);
4380
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4381 4382
	}

4383
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4384
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4385

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4400
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4401 4402
}

4403
static void __gen6_update_ring_freq(struct drm_device *dev)
4404
{
4405
	struct drm_i915_private *dev_priv = dev->dev_private;
4406
	int min_freq = 15;
4407 4408
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4409
	int scaling_factor = 180;
4410
	struct cpufreq_policy *policy;
4411

4412
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4413

4414 4415 4416 4417 4418 4419 4420 4421 4422
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4423
		max_ia_freq = tsc_khz;
4424
	}
4425 4426 4427 4428

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4429
	min_ring_freq = I915_READ(DCLK) & 0xf;
4430 4431
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4432

4433 4434 4435 4436 4437
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4438
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4439
	     gpu_freq--) {
4440
		int diff = dev_priv->rps.max_freq - gpu_freq;
4441 4442
		unsigned int ia_freq = 0, ring_freq = 0;

4443 4444 4445 4446
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4447
			ring_freq = mult_frac(gpu_freq, 5, 4);
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4464

B
Ben Widawsky 已提交
4465 4466
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4467 4468 4469
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4470 4471 4472
	}
}

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4485
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4486
{
4487
	struct drm_device *dev = dev_priv->dev;
4488 4489
	u32 val, rp0;

4490 4491
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4492

4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4529 4530
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4531
	struct drm_device *dev = dev_priv->dev;
4532 4533
	u32 val, rp1;

4534 4535 4536 4537 4538 4539 4540 4541 4542
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4543 4544 4545
	return rp1;
}

4546
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4547
{
4548
	struct drm_device *dev = dev_priv->dev;
4549 4550
	u32 val, rpn;

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4561 4562 4563
	return rpn;
}

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4575
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4576 4577 4578
{
	u32 val, rp0;

4579
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4592
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4593
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4594
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4595 4596 4597 4598 4599
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4600
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4601
{
4602
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4603 4604
}

4605 4606 4607 4608 4609 4610 4611 4612 4613
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4635
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4636 4637 4638 4639 4640 4641
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4642 4643

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4644 4645
}

4646 4647 4648 4649 4650 4651 4652 4653
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4654 4655
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4656 4657 4658 4659 4660 4661 4662 4663
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4664
								      I915_GTT_OFFSET_NONE,
4665 4666 4667 4668
								      pctx_size);
		goto out;
	}

4669 4670
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4689
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4690 4691 4692
	dev_priv->vlv_pctx = pctx;
}

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4704 4705 4706
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4707
	u32 val;
4708 4709 4710 4711 4712

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4726
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4727

4728 4729 4730
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4731
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4732 4733 4734 4735
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4736
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4737 4738
			 dev_priv->rps.efficient_freq);

4739 4740
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4741
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4742 4743
			 dev_priv->rps.rp1_freq);

4744 4745
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4746
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4759 4760
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4761
	struct drm_i915_private *dev_priv = dev->dev_private;
4762
	u32 val;
4763

4764
	cherryview_setup_pctx(dev);
4765 4766 4767

	mutex_lock(&dev_priv->rps.hw_lock);

4768 4769 4770 4771
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4795
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4796

4797 4798 4799
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4800
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4801 4802 4803 4804
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4805
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4806 4807
			 dev_priv->rps.efficient_freq);

4808 4809
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4810
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4811 4812
			 dev_priv->rps.rp1_freq);

4813 4814
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4815
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4816 4817
			 dev_priv->rps.min_freq);

4818 4819 4820 4821 4822 4823
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4824 4825 4826 4827 4828 4829 4830 4831
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4832 4833
}

4834 4835 4836 4837 4838
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4839 4840 4841 4842
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4843
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4859
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4860

4861 4862 4863
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4864 4865 4866 4867 4868 4869 4870 4871 4872
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

4873 4874
	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
4888
		rc6_mode = GEN7_RC_CTL_TO_MODE;
4889 4890 4891

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4892
	/* 4 Program defaults and thresholds for RPS*/
4893
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4904
		   GEN6_RP_MEDIA_IS_GFX |
4905 4906 4907 4908 4909 4910
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

4911 4912 4913
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4914
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4915 4916 4917 4918
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4919
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4920 4921 4922
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4923
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4924 4925 4926 4927
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4928
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4929 4930
}

4931 4932 4933
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4934
	struct intel_engine_cs *ring;
4935
	u32 gtfifodbg, val, rc6_mode = 0;
4936 4937 4938 4939
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4940 4941
	valleyview_check_pctx(dev_priv);

4942
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943 4944
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4945 4946 4947
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4948
	/* If VLV, Forcewake all wells, else re-direct to regular path */
4949
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4950

4951 4952 4953
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4954
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4977
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4978 4979

	/* allows RC6 residency counter to work */
4980
	I915_WRITE(VLV_COUNTER_CONTROL,
4981 4982
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4983 4984
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4985

4986
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4987
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4988 4989 4990

	intel_print_rc6_info(dev, rc6_mode);

4991
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4992

4993
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4994

4995 4996 4997
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4998
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4999 5000
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5001
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5002
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5003
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5004
			 dev_priv->rps.cur_freq);
5005

5006
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5007
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5008
			 dev_priv->rps.efficient_freq);
5009

5010
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5011

5012
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5013 5014
}

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5044
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5045 5046 5047 5048 5049 5050
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5051 5052
	assert_spin_locked(&mchdev_lock);

5053
	diff1 = now - dev_priv->ips.last_time1;
5054 5055 5056 5057 5058 5059 5060

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5061
		return dev_priv->ips.chipset_power;
5062 5063 5064 5065 5066 5067 5068 5069

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5070 5071
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5072 5073
		diff += total_count;
	} else {
5074
		diff = total_count - dev_priv->ips.last_count1;
5075 5076 5077
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5078 5079
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5090 5091
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5092

5093
	dev_priv->ips.chipset_power = ret;
5094 5095 5096 5097

	return ret;
}

5098 5099
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5100
	struct drm_device *dev = dev_priv->dev;
5101 5102
	unsigned long val;

5103
	if (INTEL_INFO(dev)->gen != 5)
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5142
{
5143
	struct drm_device *dev = dev_priv->dev;
5144 5145 5146
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5147
	if (INTEL_INFO(dev)->is_mobile)
5148 5149 5150
		return vm > 0 ? vm : 0;

	return vd;
5151 5152
}

5153
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5154
{
5155
	u64 now, diff, diffms;
5156 5157
	u32 count;

5158
	assert_spin_locked(&mchdev_lock);
5159

5160 5161 5162
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5163 5164 5165 5166 5167 5168 5169

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5170 5171
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5172 5173
		diff += count;
	} else {
5174
		diff = count - dev_priv->ips.last_count2;
5175 5176
	}

5177 5178
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5179 5180 5181 5182

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5183
	dev_priv->ips.gfx_power = diff;
5184 5185
}

5186 5187
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5188 5189 5190
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5191 5192
		return;

5193
	spin_lock_irq(&mchdev_lock);
5194 5195 5196

	__i915_update_gfx_val(dev_priv);

5197
	spin_unlock_irq(&mchdev_lock);
5198 5199
}

5200
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5201 5202 5203 5204
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5205 5206
	assert_spin_locked(&mchdev_lock);

5207
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5227
	corr2 = (corr * dev_priv->ips.corr);
5228 5229 5230 5231

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5232
	__i915_update_gfx_val(dev_priv);
5233

5234
	return dev_priv->ips.gfx_power + state2;
5235 5236
}

5237 5238
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5239
	struct drm_device *dev = dev_priv->dev;
5240 5241
	unsigned long val;

5242
	if (INTEL_INFO(dev)->gen != 5)
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5265
	spin_lock_irq(&mchdev_lock);
5266 5267 5268 5269
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5270 5271
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5272 5273 5274 5275

	ret = chipset_val + graphics_val;

out_unlock:
5276
	spin_unlock_irq(&mchdev_lock);
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5292
	spin_lock_irq(&mchdev_lock);
5293 5294 5295 5296 5297 5298
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5299 5300
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5301 5302

out_unlock:
5303
	spin_unlock_irq(&mchdev_lock);
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5320
	spin_lock_irq(&mchdev_lock);
5321 5322 5323 5324 5325 5326
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5327 5328
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5329 5330

out_unlock:
5331
	spin_unlock_irq(&mchdev_lock);
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5345
	struct intel_engine_cs *ring;
5346
	bool ret = false;
5347
	int i;
5348

5349
	spin_lock_irq(&mchdev_lock);
5350 5351 5352 5353
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5354 5355
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5356 5357

out_unlock:
5358
	spin_unlock_irq(&mchdev_lock);
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5375
	spin_lock_irq(&mchdev_lock);
5376 5377 5378 5379 5380 5381
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5382
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5383

5384
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5385 5386 5387
		ret = false;

out_unlock:
5388
	spin_unlock_irq(&mchdev_lock);
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5416 5417
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5418
	spin_lock_irq(&mchdev_lock);
5419
	i915_mch_dev = dev_priv;
5420
	spin_unlock_irq(&mchdev_lock);
5421 5422 5423 5424 5425 5426

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5427
	spin_lock_irq(&mchdev_lock);
5428
	i915_mch_dev = NULL;
5429
	spin_unlock_irq(&mchdev_lock);
5430
}
5431

5432
static void intel_init_emon(struct drm_device *dev)
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5500
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5501 5502
}

5503 5504
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5505 5506
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5507 5508 5509
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5510
		valleyview_init_gt_powersave(dev);
5511 5512 5513 5514
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5515 5516 5517
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5518
		valleyview_cleanup_gt_powersave(dev);
5519 5520
}

5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	/*
	 * TODO: disable RPS interrupts on GEN9+ too once RPS support
	 * is added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_disable_rps_interrupts(dev);
}

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5547 5548 5549
	if (INTEL_INFO(dev)->gen < 6)
		return;

5550
	gen6_suspend_rps(dev);
5551 5552 5553

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5554 5555
}

5556 5557
void intel_disable_gt_powersave(struct drm_device *dev)
{
5558 5559
	struct drm_i915_private *dev_priv = dev->dev_private;

5560
	if (IS_IRONLAKE_M(dev)) {
5561
		ironlake_disable_drps(dev);
5562
	} else if (INTEL_INFO(dev)->gen >= 6) {
5563
		intel_suspend_gt_powersave(dev);
5564

5565
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5566 5567 5568
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5569 5570
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5571 5572 5573
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5574

5575
		dev_priv->rps.enabled = false;
5576
		mutex_unlock(&dev_priv->rps.hw_lock);
5577
	}
5578 5579
}

5580 5581 5582 5583 5584 5585 5586
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5587
	mutex_lock(&dev_priv->rps.hw_lock);
5588

I
Imre Deak 已提交
5589 5590 5591 5592 5593 5594 5595
	/*
	 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
	 * added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_reset_rps_interrupts(dev);

5596 5597 5598
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5599
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5600
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5601
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5602
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5603
		__gen6_update_ring_freq(dev);
5604 5605
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5606
		__gen6_update_ring_freq(dev);
5607 5608
	} else {
		gen6_enable_rps(dev);
5609
		__gen6_update_ring_freq(dev);
5610
	}
5611
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5612 5613 5614 5615

	if (INTEL_INFO(dev)->gen < 9)
		gen6_enable_rps_interrupts(dev);

5616
	mutex_unlock(&dev_priv->rps.hw_lock);
5617 5618

	intel_runtime_pm_put(dev_priv);
5619 5620
}

5621 5622
void intel_enable_gt_powersave(struct drm_device *dev)
{
5623 5624
	struct drm_i915_private *dev_priv = dev->dev_private;

5625 5626 5627 5628
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5629
	if (IS_IRONLAKE_M(dev)) {
5630
		mutex_lock(&dev->struct_mutex);
5631 5632
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
5633
		mutex_unlock(&dev->struct_mutex);
5634
	} else if (INTEL_INFO(dev)->gen >= 6) {
5635 5636 5637 5638
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5639 5640 5641 5642 5643 5644 5645
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5646
		 */
5647 5648 5649
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5650 5651 5652
	}
}

5653 5654 5655 5656
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5657 5658 5659 5660
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5661 5662 5663
	dev_priv->rps.enabled = false;
}

5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5676 5677 5678 5679 5680
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5681
	for_each_pipe(dev_priv, pipe) {
5682 5683 5684
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5685
		intel_flush_primary_plane(dev_priv, pipe);
5686 5687 5688
	}
}

5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5703
static void ironlake_init_clock_gating(struct drm_device *dev)
5704 5705
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5706
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5707

5708 5709 5710 5711
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5712 5713 5714
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5732
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5733 5734 5735
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5736 5737

	ilk_init_lp_watermarks(dev);
5738 5739 5740 5741 5742 5743 5744 5745 5746

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5747
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5748 5749 5750 5751 5752 5753 5754 5755
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5756 5757
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5758 5759 5760 5761 5762 5763
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5764

5765
	/* WaDisableRenderCachePipelinedFlush:ilk */
5766 5767
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5768

5769 5770 5771
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5772
	g4x_disable_trickle_feed(dev);
5773

5774 5775 5776 5777 5778 5779 5780
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5781
	uint32_t val;
5782 5783 5784 5785 5786 5787

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5788 5789 5790
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5791 5792
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5793 5794 5795
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5796
	for_each_pipe(dev_priv, pipe) {
5797 5798 5799
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5800
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5801
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5802 5803 5804
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5805 5806
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5807
	/* WADP0ClockGatingDisable */
5808
	for_each_pipe(dev_priv, pipe) {
5809 5810 5811
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5812 5813
}

5814 5815 5816 5817 5818 5819
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5820 5821 5822
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5823 5824
}

5825
static void gen6_init_clock_gating(struct drm_device *dev)
5826 5827
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5828
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5829

5830
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5831 5832 5833 5834 5835

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5836
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5837 5838 5839
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5840 5841 5842
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5843 5844 5845
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5846 5847 5848 5849
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5850 5851
	 */
	I915_WRITE(GEN6_GT_MODE,
5852
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5853

5854
	ilk_init_lp_watermarks(dev);
5855 5856

	I915_WRITE(CACHE_MODE_0,
5857
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5873
	 *
5874 5875
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5876 5877 5878 5879 5880
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5881
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5882 5883
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5884

5885 5886 5887 5888 5889 5890 5891 5892
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5893 5894 5895 5896 5897 5898 5899 5900
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5901 5902
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5903 5904 5905 5906 5907 5908 5909
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5910 5911 5912 5913
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5914

5915
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5916

5917
	cpt_init_clock_gating(dev);
5918 5919

	gen6_check_mch_setup(dev);
5920 5921 5922 5923 5924 5925
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5926
	/*
5927
	 * WaVSThreadDispatchOverride:ivb,vlv
5928 5929 5930 5931
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5932 5933 5934 5935 5936 5937 5938 5939
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5952 5953 5954 5955 5956

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5957 5958
}

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5971
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5972 5973
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5974
	enum pipe pipe;
B
Ben Widawsky 已提交
5975 5976 5977 5978

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5979

5980
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5981
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5982

5983
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5984 5985 5986
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5987
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5988
	for_each_pipe(dev_priv, pipe) {
5989
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5990
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5991
			   BDW_DPRS_MASK_VBLANK_SRD);
5992
	}
5993

5994 5995 5996 5997 5998
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5999

6000 6001
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6002 6003 6004 6005

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6006

6007
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6008 6009
}

6010 6011 6012 6013
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6014
	ilk_init_lp_watermarks(dev);
6015

6016 6017 6018 6019 6020
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6021
	/* This is required by WaCatErrorRejectionIssue:hsw */
6022 6023 6024 6025
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6026 6027 6028
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6029

6030 6031 6032
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6033 6034 6035 6036
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6037
	/* WaDisable4x2SubspanOptimization:hsw */
6038 6039
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6040

6041 6042 6043
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6044 6045 6046 6047
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6048 6049
	 */
	I915_WRITE(GEN7_GT_MODE,
6050
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6051

6052 6053 6054 6055
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6056
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6057 6058
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6059 6060 6061
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6062

6063
	lpt_init_clock_gating(dev);
6064 6065
}

6066
static void ivybridge_init_clock_gating(struct drm_device *dev)
6067 6068
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6069
	uint32_t snpcr;
6070

6071
	ilk_init_lp_watermarks(dev);
6072

6073
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6074

6075
	/* WaDisableEarlyCull:ivb */
6076 6077 6078
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6079
	/* WaDisableBackToBackFlipFix:ivb */
6080 6081 6082 6083
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6084
	/* WaDisablePSDDualDispatchEnable:ivb */
6085 6086 6087 6088
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6089 6090 6091
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6092
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6093 6094 6095
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6096
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6097 6098 6099
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6100 6101 6102 6103
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6104 6105 6106 6107
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6108 6109
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6110
	}
6111

6112
	/* WaForceL3Serialization:ivb */
6113 6114 6115
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6116
	/*
6117
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6118
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6119 6120
	 */
	I915_WRITE(GEN6_UCGCTL2,
6121
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6122

6123
	/* This is required by WaCatErrorRejectionIssue:ivb */
6124 6125 6126 6127
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6128
	g4x_disable_trickle_feed(dev);
6129 6130

	gen7_setup_fixed_func_scheduler(dev_priv);
6131

6132 6133 6134 6135 6136
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6137

6138
	/* WaDisable4x2SubspanOptimization:ivb */
6139 6140
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6141

6142 6143 6144
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6145 6146 6147 6148
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6149 6150
	 */
	I915_WRITE(GEN7_GT_MODE,
6151
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6152

6153 6154 6155 6156
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6157

6158 6159
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6160 6161

	gen6_check_mch_setup(dev);
6162 6163
}

6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6175
static void valleyview_init_clock_gating(struct drm_device *dev)
6176 6177 6178
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6179
	vlv_init_display_clock_gating(dev_priv);
6180

6181
	/* WaDisableEarlyCull:vlv */
6182 6183 6184
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6185
	/* WaDisableBackToBackFlipFix:vlv */
6186 6187 6188 6189
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6190
	/* WaPsdDispatchEnable:vlv */
6191
	/* WaDisablePSDDualDispatchEnable:vlv */
6192
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6193 6194
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6195

6196 6197 6198
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6199
	/* WaForceL3Serialization:vlv */
6200 6201 6202
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6203
	/* WaDisableDopClockGating:vlv */
6204 6205 6206
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6207
	/* This is required by WaCatErrorRejectionIssue:vlv */
6208 6209 6210 6211
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6212 6213
	gen7_setup_fixed_func_scheduler(dev_priv);

6214
	/*
6215
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6216
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6217 6218
	 */
	I915_WRITE(GEN6_UCGCTL2,
6219
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6220

6221 6222 6223 6224 6225
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6226

6227 6228 6229 6230
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6231 6232
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6233

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6245 6246 6247 6248 6249 6250
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6251
	/*
6252
	 * WaDisableVLVClockGating_VBIIssue:vlv
6253 6254 6255
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6256
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6257 6258
}

6259 6260 6261 6262
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6263
	vlv_init_display_clock_gating(dev_priv);
6264

6265 6266 6267 6268 6269
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6270 6271 6272 6273

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6274 6275 6276 6277

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6278 6279 6280 6281

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6282 6283
}

6284
static void g4x_init_clock_gating(struct drm_device *dev)
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6300 6301 6302 6303

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6304

6305 6306 6307
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6308
	g4x_disable_trickle_feed(dev);
6309 6310
}

6311
static void crestline_init_clock_gating(struct drm_device *dev)
6312 6313 6314 6315 6316 6317 6318 6319
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6320 6321
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6322 6323 6324

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6325 6326
}

6327
static void broadwater_init_clock_gating(struct drm_device *dev)
6328 6329 6330 6331 6332 6333 6334 6335 6336
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6337 6338
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6339 6340 6341

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6342 6343
}

6344
static void gen3_init_clock_gating(struct drm_device *dev)
6345 6346 6347 6348 6349 6350 6351
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6352 6353 6354

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6355 6356 6357

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6358 6359

	/* interrupts should cause a wake up from C3 */
6360
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6361 6362 6363

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6364 6365 6366

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6367 6368
}

6369
static void i85x_init_clock_gating(struct drm_device *dev)
6370 6371 6372 6373
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6374 6375 6376 6377

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6378 6379 6380

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6381 6382
}

6383
static void i830_init_clock_gating(struct drm_device *dev)
6384 6385 6386 6387
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6388 6389 6390 6391

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6392 6393 6394 6395 6396 6397
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6398 6399
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6400 6401
}

6402 6403 6404 6405 6406 6407
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6408 6409 6410 6411 6412
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6413
	intel_fbc_init(dev_priv);
6414

6415 6416 6417 6418 6419 6420
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6421
	/* For FIFO watermark updates */
6422
	if (INTEL_INFO(dev)->gen >= 9) {
6423 6424
		skl_setup_wm_latency(dev);

6425
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6426 6427
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6428
	} else if (HAS_PCH_SPLIT(dev)) {
6429
		ilk_setup_wm_latency(dev);
6430

6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6443
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6444
		else if (IS_GEN6(dev))
6445
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6446
		else if (IS_IVYBRIDGE(dev))
6447
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6448
		else if (IS_HASWELL(dev))
6449
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6450
		else if (INTEL_INFO(dev)->gen == 8)
6451
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6452
	} else if (IS_CHERRYVIEW(dev)) {
6453
		dev_priv->display.update_wm = valleyview_update_wm;
6454
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6455 6456
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6457 6458
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6459
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6473
			intel_set_memory_cxsr(dev_priv, false);
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6491 6492 6493
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6494
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6495 6496
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6497
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6498 6499 6500 6501 6502 6503 6504 6505
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6506 6507 6508
	}
}

6509
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6510
{
6511
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6512 6513 6514 6515 6516 6517 6518

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6519
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6534
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6535
{
6536
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6556

6557
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6558
{
6559 6560 6561 6562 6563 6564 6565 6566
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6567 6568
	case 400:
		return 20;
6569 6570 6571
	default:
		return -1;
	}
6572
}
6573

6574 6575 6576 6577 6578 6579 6580 6581 6582
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6583 6584
}

6585
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6586
{
6587
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6588

6589 6590 6591
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6592

6593
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6594 6595
}

6596
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6597
{
6598
	int div, czclk_freq = dev_priv->rps.cz_freq;
6599

6600 6601 6602
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6603

6604
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6605 6606
}

6607
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6608
{
6609
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6610

6611 6612 6613
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6614

6615
	/* CHV needs even values */
6616
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6617 6618
}

6619
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6620 6621
{
	if (IS_CHERRYVIEW(dev_priv->dev))
6622
		return chv_gpu_freq(dev_priv, val);
6623
	else if (IS_VALLEYVIEW(dev_priv->dev))
6624 6625 6626
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6627 6628
}

6629 6630
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6631
	if (IS_CHERRYVIEW(dev_priv->dev))
6632
		return chv_freq_opcode(dev_priv, val);
6633
	else if (IS_VALLEYVIEW(dev_priv->dev))
6634 6635 6636 6637
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6638

D
Daniel Vetter 已提交
6639
void intel_pm_setup(struct drm_device *dev)
6640 6641 6642
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6643 6644
	mutex_init(&dev_priv->rps.hw_lock);

6645 6646
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6647

6648
	dev_priv->pm.suspended = false;
6649
}