intel_lrc.c 65.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233
static int intel_lr_context_pin(struct i915_gem_context *ctx,
234
				struct intel_engine_cs *engine);
235 236 237 238
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
239

240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242
 * @dev_priv: i915 device private
243 244 245
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
246
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 248 249
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
250
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251
{
252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 257
		return 1;

258
	if (INTEL_GEN(dev_priv) >= 9)
259 260
		return 1;

261 262 263
	if (enable_execlists == 0)
		return 0;

264 265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_i915_private *dev_priv = engine->i915;
276

277
	engine->disable_lite_restore_wa =
278
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279
		(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	if (IS_GEN8(dev_priv))
283 284
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 286 287 288 289 290 291

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 293
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 295
}

296
/**
297 298 299
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
300
 * @engine: Engine the descriptor will be used with
301
 *
302 303 304 305 306
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
307 308 309 310 311 312 313
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
314
 */
315
static void
316
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	struct intel_context *ce = &ctx->engine[engine->id];
320
	u64 desc;
321

322
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323

324 325
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327
								/* bits 12-31 */
328
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ce->lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340 341
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
342
{
343 344 345 346 347 348
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
349

350
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 352
}

353 354 355 356 357 358 359 360 361
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

362
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366
	u32 *reg_state = ce->lrc_reg_state;
367

368
	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
369

370 371 372 373 374 375 376
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
377 378

	return ce->lrc_desc;
379 380
}

381
static void execlists_submit_ports(struct intel_engine_cs *engine)
382
{
383 384
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
385 386 387 388
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

389 390 391 392 393 394 395 396 397 398 399 400
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
401 402 403
	} else {
		desc[1] = 0;
	}
404
	GEM_BUG_ON(desc[0] == desc[1]);
405 406 407 408 409 410 411 412 413 414

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417 418 419
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433
static void execlists_dequeue(struct intel_engine_cs *engine)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447
	struct drm_i915_gem_request *cursor, *last;
	struct execlist_port *port = engine->execlist_port;
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
		 * as we resubmit the request. See gen8_emit_request()
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
448

449
	GEM_BUG_ON(port[1].request);
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
470
	 */
471

472 473 474 475 476
	spin_lock(&engine->execlist_lock);
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
477
		 *
478 479 480 481
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
482
		 */
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
		last = cursor;
		submit = true;
	}
	if (submit) {
		/* Decouple all the requests submitted from the queue */
		engine->execlist_queue.next = &cursor->execlist_link;
		cursor->execlist_link.prev = &engine->execlist_queue;

		i915_gem_request_assign(&port->request, last);
513
	}
514
	spin_unlock(&engine->execlist_lock);
515

516 517
	if (submit)
		execlists_submit_ports(engine);
518 519
}

520
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
521
{
522
	return !engine->execlist_port[0].request;
523 524
}

525
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
526
{
527
	int port;
B
Ben Widawsky 已提交
528

529 530 531
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
532

533
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
534 535
}

536
/*
537 538 539
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
540
static void intel_lrc_irq_handler(unsigned long data)
541
{
542
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
543
	struct execlist_port *port = engine->execlist_port;
544
	struct drm_i915_private *dev_priv = engine->i915;
545

546
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
579

580 581
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
582 583
		}

584 585 586
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
587 588
	}

589 590
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
591

592
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
593 594
}

595
static void execlists_submit_request(struct drm_i915_gem_request *request)
596
{
597
	struct intel_engine_cs *engine = request->engine;
598
	unsigned long flags;
599

600
	spin_lock_irqsave(&engine->execlist_lock, flags);
601

602
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
603 604
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
605

606
	spin_unlock_irqrestore(&engine->execlist_lock, flags);
607 608
}

609
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	struct intel_context *ce = &request->ctx->engine[engine->id];
613
	int ret;
614

615 616 617 618
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
619
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
620

621
	if (!ce->state) {
622 623 624 625 626
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

627
	request->ring = ce->ring;
628

629 630 631 632 633 634
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
635
		ret = i915_guc_wq_reserve(request);
636 637 638 639
		if (ret)
			return ret;
	}

640 641 642
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
643

644 645 646 647
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

648
	if (!ce->initialised) {
649 650 651 652
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

653
		ce->initialised = true;
654 655 656 657 658 659 660 661 662
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

663
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
664 665 666
	return 0;

err_unpin:
667
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
668
	return ret;
669 670 671
}

/*
672
 * intel_logical_ring_advance() - advance the tail and prepare for submission
673
 * @request: Request to advance the logical ringbuffer of.
674 675 676 677 678 679
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
680
static int
681
intel_logical_ring_advance(struct drm_i915_gem_request *request)
682
{
683
	struct intel_ring *ring = request->ring;
684
	struct intel_engine_cs *engine = request->engine;
685

686 687
	intel_ring_advance(ring);
	request->tail = ring->tail;
688

689 690 691 692 693 694
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
695 696 697
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
698
	request->wa_tail = ring->tail;
699

700 701 702 703 704 705 706 707
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
708
	return 0;
709 710
}

711
static int intel_lr_context_pin(struct i915_gem_context *ctx,
712
				struct intel_engine_cs *engine)
713
{
714
	struct intel_context *ce = &ctx->engine[engine->id];
715
	void *vaddr;
716
	int ret;
717

718
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
719

720
	if (ce->pin_count++)
721 722
		return 0;

723 724
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
725
	if (ret)
726
		goto err;
727

728
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
729 730
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
731
		goto unpin_vma;
732 733
	}

734
	ret = intel_ring_pin(ce->ring);
735
	if (ret)
736
		goto unpin_map;
737

738
	intel_lr_context_descriptor_update(ctx, engine);
739

740 741
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
742
		i915_ggtt_offset(ce->ring->vma);
743

744
	ce->state->obj->dirty = true;
745

746
	/* Invalidate GuC TLB. */
747 748
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
749
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
750
	}
751

752
	i915_gem_context_get(ctx);
753
	return 0;
754

755
unpin_map:
756 757 758
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
759
err:
760
	ce->pin_count = 0;
761 762 763
	return ret;
}

764
void intel_lr_context_unpin(struct i915_gem_context *ctx,
765
			    struct intel_engine_cs *engine)
766
{
767
	struct intel_context *ce = &ctx->engine[engine->id];
768

769
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
770
	GEM_BUG_ON(ce->pin_count == 0);
771

772
	if (--ce->pin_count)
773
		return;
774

775
	intel_ring_unpin(ce->ring);
776

777 778
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
779

780
	i915_gem_context_put(ctx);
781 782
}

783
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
784 785
{
	int ret, i;
786
	struct intel_ring *ring = req->ring;
787
	struct i915_workarounds *w = &req->i915->workarounds;
788

789
	if (w->count == 0)
790 791
		return 0;

792
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
793 794 795
	if (ret)
		return ret;

796
	ret = intel_ring_begin(req, w->count * 2 + 2);
797 798 799
	if (ret)
		return ret;

800
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
801
	for (i = 0; i < w->count; i++) {
802 803
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
804
	}
805
	intel_ring_emit(ring, MI_NOOP);
806

807
	intel_ring_advance(ring);
808

809
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
810 811 812 813 814 815
	if (ret)
		return ret;

	return 0;
}

816
#define wa_ctx_emit(batch, index, cmd)					\
817
	do {								\
818 819
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
820 821
			return -ENOSPC;					\
		}							\
822
		batch[__index] = (cmd);					\
823 824
	} while (0)

V
Ville Syrjälä 已提交
825
#define wa_ctx_emit_reg(batch, index, reg) \
826
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
844
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
845
						uint32_t *batch,
846 847
						uint32_t index)
{
D
Dave Airlie 已提交
848
	struct drm_i915_private *dev_priv = engine->i915;
849 850
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

851
	/*
852
	 * WaDisableLSQCROPERFforOCL:kbl
853 854 855 856
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
857
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
858 859
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

860
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
861
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
862
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
863
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
864 865 866
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
867
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
868 869 870 871 872 873 874 875 876 877
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

878
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
879
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
880
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
881
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
882
	wa_ctx_emit(batch, index, 0);
883 884 885 886

	return index;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

906 907 908 909 910 911
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
912
 *
913 914
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
915
 *
916 917 918 919
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
920
 */
921
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
922
				    struct i915_wa_ctx_bb *wa_ctx,
923
				    uint32_t *batch,
924 925
				    uint32_t *offset)
{
926
	uint32_t scratch_addr;
927 928
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

929
	/* WaDisableCtxRestoreArbitration:bdw,chv */
930
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
931

932
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
933
	if (IS_BROADWELL(engine->i915)) {
934
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
935 936 937
		if (rc < 0)
			return rc;
		index = rc;
938 939
	}

940 941
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
942
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
943

944 945 946 947 948 949 950 951 952
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
953

954 955
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
956
		wa_ctx_emit(batch, index, MI_NOOP);
957 958 959 960 961 962 963 964 965 966

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

967 968 969
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
970
 *
971
 *  The number of DWORDS written are returned using this field.
972 973 974 975
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
976
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
977
			       struct i915_wa_ctx_bb *wa_ctx,
978
			       uint32_t *batch,
979 980 981 982
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

983
	/* WaDisableCtxRestoreArbitration:bdw,chv */
984
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
985

986
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
987 988 989 990

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

991
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
992
				    struct i915_wa_ctx_bb *wa_ctx,
993
				    uint32_t *batch,
994 995
				    uint32_t *offset)
{
996
	int ret;
D
Dave Airlie 已提交
997
	struct drm_i915_private *dev_priv = engine->i915;
998 999
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1000 1001
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1002
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1003

1004
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1005
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1006 1007 1008 1009
	if (ret < 0)
		return ret;
	index = ret;

1010 1011 1012 1013 1014 1015 1016
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1017 1018
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1019
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1020
		u32 scratch_addr =
1021
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1058 1059 1060 1061 1062 1063 1064
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1065
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1066
			       struct i915_wa_ctx_bb *wa_ctx,
1067
			       uint32_t *batch,
1068 1069 1070 1071
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1072 1073
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1074
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1075
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1076 1077 1078 1079 1080
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1081
	/* WaClearTdlStateAckDirtyBits:bxt */
1082
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1100 1101
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1102 1103
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1104 1105 1106 1107 1108
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1109
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1110
{
1111 1112 1113
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1114

1115 1116 1117
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1118

1119 1120 1121 1122
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1123 1124
	}

1125 1126 1127 1128 1129
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1130
	return 0;
1131 1132 1133 1134

err:
	i915_gem_object_put(obj);
	return err;
1135 1136
}

1137
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1138
{
1139
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1140 1141
}

1142
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1143
{
1144
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1145 1146 1147
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1148
	int ret;
1149

1150
	WARN_ON(engine->id != RCS);
1151

1152
	/* update this when WA for higher Gen are added */
1153
	if (INTEL_GEN(engine->i915) > 9) {
1154
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1155
			  INTEL_GEN(engine->i915));
1156
		return 0;
1157
	}
1158

1159
	/* some WA perform writes to scratch page, ensure it is valid */
1160
	if (!engine->scratch) {
1161
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1162 1163 1164
		return -EINVAL;
	}

1165
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1166 1167 1168 1169 1170
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1171
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1172 1173 1174
	batch = kmap_atomic(page);
	offset = 0;

1175
	if (IS_GEN8(engine->i915)) {
1176
		ret = gen8_init_indirectctx_bb(engine,
1177 1178 1179 1180 1181 1182
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1183
		ret = gen8_init_perctx_bb(engine,
1184 1185 1186 1187 1188
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1189
	} else if (IS_GEN9(engine->i915)) {
1190
		ret = gen9_init_indirectctx_bb(engine,
1191 1192 1193 1194 1195 1196
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1197
		ret = gen9_init_perctx_bb(engine,
1198 1199 1200 1201 1202
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1203 1204 1205 1206 1207
	}

out:
	kunmap_atomic(batch);
	if (ret)
1208
		lrc_destroy_wa_ctx_obj(engine);
1209 1210 1211 1212

	return ret;
}

1213 1214
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1215
	struct drm_i915_private *dev_priv = engine->i915;
1216 1217

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1218
		   engine->status_page.ggtt_offset);
1219 1220 1221
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1222
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1223
{
1224
	struct drm_i915_private *dev_priv = engine->i915;
1225 1226 1227 1228 1229
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1230

1231
	lrc_init_hws(engine);
1232

1233
	intel_engine_reset_breadcrumbs(engine);
1234

1235
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1236

1237
	I915_WRITE(RING_MODE_GEN7(engine),
1238 1239
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1240

1241
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1242

1243
	intel_engine_init_hangcheck(engine);
1244

1245 1246 1247 1248
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1249
		execlists_submit_ports(engine);
1250
	}
1251 1252

	return 0;
1253 1254
}

1255
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1256
{
1257
	struct drm_i915_private *dev_priv = engine->i915;
1258 1259
	int ret;

1260
	ret = gen8_init_common_ring(engine);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1274
	return init_workarounds_ring(engine);
1275 1276
}

1277
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1278 1279 1280
{
	int ret;

1281
	ret = gen8_init_common_ring(engine);
1282 1283 1284
	if (ret)
		return ret;

1285
	return init_workarounds_ring(engine);
1286 1287
}

1288 1289 1290 1291 1292 1293 1294
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1305
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1306 1307
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1308
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1326 1327 1328

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1329 1330
}

1331 1332 1333
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1334
	struct intel_ring *ring = req->ring;
1335
	struct intel_engine_cs *engine = req->engine;
1336 1337 1338
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1339
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1340 1341 1342
	if (ret)
		return ret;

1343
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1344 1345 1346
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1347 1348 1349 1350
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1351 1352
	}

1353 1354
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1355 1356 1357 1358

	return 0;
}

1359
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1360 1361
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1362
{
1363
	struct intel_ring *ring = req->ring;
1364
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1365 1366
	int ret;

1367 1368 1369 1370
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1371 1372
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1373
	if (req->ctx->ppgtt &&
1374
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1375
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1376
		    !intel_vgpu_active(req->i915)) {
1377 1378 1379 1380
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1381

1382
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1383 1384
	}

1385
	ret = intel_ring_begin(req, 4);
1386 1387 1388 1389
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1390 1391 1392 1393 1394 1395 1396 1397
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1398 1399 1400 1401

	return 0;
}

1402
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1403
{
1404
	struct drm_i915_private *dev_priv = engine->i915;
1405 1406 1407
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1408 1409
}

1410
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1411
{
1412
	struct drm_i915_private *dev_priv = engine->i915;
1413
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1414 1415
}

1416
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1417
{
1418 1419
	struct intel_ring *ring = request->ring;
	u32 cmd;
1420 1421
	int ret;

1422
	ret = intel_ring_begin(request, 4);
1423 1424 1425 1426 1427
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1428 1429 1430 1431 1432 1433 1434
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1435
	if (mode & EMIT_INVALIDATE) {
1436
		cmd |= MI_INVALIDATE_TLB;
1437
		if (request->engine->id == VCS)
1438
			cmd |= MI_INVALIDATE_BSD;
1439 1440
	}

1441 1442 1443 1444 1445 1446 1447
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1448 1449 1450 1451

	return 0;
}

1452
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1453
				  u32 mode)
1454
{
1455
	struct intel_ring *ring = request->ring;
1456
	struct intel_engine_cs *engine = request->engine;
1457 1458
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1459
	bool vf_flush_wa = false, dc_flush_wa = false;
1460 1461
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1462
	int len;
1463 1464 1465

	flags |= PIPE_CONTROL_CS_STALL;

1466
	if (mode & EMIT_FLUSH) {
1467 1468
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1469
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1470
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1471 1472
	}

1473
	if (mode & EMIT_INVALIDATE) {
1474 1475 1476 1477 1478 1479 1480 1481 1482
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1483 1484 1485 1486
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1487
		if (IS_GEN9(request->i915))
1488
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1489 1490 1491 1492

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1493
	}
1494

M
Mika Kuoppala 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1504 1505 1506
	if (ret)
		return ret;

1507
	if (vf_flush_wa) {
1508 1509 1510 1511 1512 1513
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1514 1515
	}

M
Mika Kuoppala 已提交
1516
	if (dc_flush_wa) {
1517 1518 1519 1520 1521 1522
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1523 1524
	}

1525 1526 1527 1528 1529 1530
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1531 1532

	if (dc_flush_wa) {
1533 1534 1535 1536 1537 1538
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1539 1540
	}

1541
	intel_ring_advance(ring);
1542 1543 1544 1545

	return 0;
}

1546
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1558
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1559 1560
}

1561 1562 1563 1564 1565 1566
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */

1567
static int gen8_emit_request(struct drm_i915_gem_request *request)
1568
{
1569
	struct intel_ring *ring = request->ring;
1570 1571
	int ret;

1572
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1573 1574 1575
	if (ret)
		return ret;

1576 1577
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1578

1579 1580 1581 1582 1583 1584 1585 1586
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1587
	return intel_logical_ring_advance(request);
1588
}
1589

1590 1591
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1592
	struct intel_ring *ring = request->ring;
1593
	int ret;
1594

1595
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1596 1597 1598
	if (ret)
		return ret;

1599 1600 1601
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1602 1603 1604 1605
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1606 1607 1608 1609 1610 1611 1612 1613
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1614
	/* We're thrashing one dword of HWS. */
1615 1616 1617
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1618
	return intel_logical_ring_advance(request);
1619 1620
}

1621
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1622 1623 1624
{
	int ret;

1625
	ret = intel_logical_ring_workarounds_emit(req);
1626 1627 1628
	if (ret)
		return ret;

1629 1630 1631 1632 1633 1634 1635 1636
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1637
	return i915_gem_render_state_init(req);
1638 1639
}

1640 1641
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1642
 * @engine: Engine Command Streamer.
1643
 */
1644
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1645
{
1646
	struct drm_i915_private *dev_priv;
1647

1648
	if (!intel_engine_initialized(engine))
1649 1650
		return;

1651 1652 1653 1654 1655 1656 1657
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1658
	dev_priv = engine->i915;
1659

1660 1661
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1662
	}
1663

1664 1665
	if (engine->cleanup)
		engine->cleanup(engine);
1666

1667
	intel_engine_cleanup_common(engine);
1668

1669 1670 1671
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1672
	}
1673
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1674

1675
	lrc_destroy_wa_ctx_obj(engine);
1676
	engine->i915 = NULL;
1677 1678
}

1679 1680 1681 1682 1683
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv)
1684
		engine->submit_request = execlists_submit_request;
1685 1686
}

1687
static void
1688
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1689 1690
{
	/* Default vfuncs which can be overriden by each engine. */
1691
	engine->init_hw = gen8_init_common_ring;
1692
	engine->reset_hw = reset_common_ring;
1693
	engine->emit_flush = gen8_emit_flush;
1694
	engine->emit_request = gen8_emit_request;
1695
	engine->submit_request = execlists_submit_request;
1696

1697 1698
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1699
	engine->emit_bb_start = gen8_emit_bb_start;
1700
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1701
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1702 1703
}

1704
static inline void
1705
logical_ring_default_irqs(struct intel_engine_cs *engine)
1706
{
1707
	unsigned shift = engine->irq_shift;
1708 1709
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1710 1711
}

1712
static int
1713
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1714
{
1715
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1716
	void *hws;
1717 1718

	/* The HWSP is part of the default context object in LRC mode. */
1719
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1720 1721
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1722 1723

	engine->status_page.page_addr = hws + hws_offset;
1724
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1725
	engine->status_page.vma = vma;
1726 1727

	return 0;
1728 1729
}

1730 1731 1732 1733 1734 1735
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1736 1737
	intel_engine_setup_common(engine);

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1763 1764 1765 1766 1767 1768
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1769
	ret = intel_engine_init_common(engine);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1799
int logical_render_ring_init(struct intel_engine_cs *engine)
1800 1801 1802 1803
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1804 1805
	logical_ring_setup(engine);

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

1818
	ret = intel_engine_create_scratch(engine, 4096);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1841
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1842 1843 1844 1845
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1846 1847
}

1848
static u32
1849
make_rpcs(struct drm_i915_private *dev_priv)
1850 1851 1852 1853 1854 1855 1856
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1857
	if (INTEL_GEN(dev_priv) < 9)
1858 1859 1860 1861 1862 1863 1864 1865
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1866
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1867
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1868
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1869 1870 1871 1872
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1873
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1874
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1875
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1876 1877 1878 1879
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1880 1881
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1882
			GEN8_RPCS_EU_MIN_SHIFT;
1883
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1884 1885 1886 1887 1888 1889 1890
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1891
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1892 1893 1894
{
	u32 indirect_ctx_offset;

1895
	switch (INTEL_GEN(engine->i915)) {
1896
	default:
1897
		MISSING_CASE(INTEL_GEN(engine->i915));
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1912 1913 1914 1915
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1916
{
1917 1918
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1919 1920 1921 1922 1923 1924

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1925
	reg_state[CTX_LRI_HEADER_0] =
1926 1927 1928
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1929 1930
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1931
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1932
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1933 1934 1935 1936 1937 1938 1939 1940
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1941
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1942 1943 1944 1945 1946 1947
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1948
		       RING_BB_PPGTT);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1962
		if (engine->wa_ctx.vma) {
1963
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1964
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1965 1966 1967 1968 1969 1970

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1971
				intel_lr_indirect_ctx_offset(engine) << 6;
1972 1973 1974 1975 1976

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1977
	}
1978
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1979 1980
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1981
	/* PDP values well be assigned later if needed */
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2011
		execlists_update_context_pdps(ppgtt, reg_state);
2012 2013
	}

2014
	if (engine->id == RCS) {
2015
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2016
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2017
			       make_rpcs(dev_priv));
2018
	}
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
	ctx_obj->dirty = true;

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2049

2050
	i915_gem_object_unpin_map(ctx_obj);
2051 2052 2053 2054

	return 0;
}

2055 2056
/**
 * intel_lr_context_size() - return the size of the context for an engine
2057
 * @engine: which engine to find the context size for
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2069
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2070 2071 2072
{
	int ret = 0;

2073
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2074

2075
	switch (engine->id) {
2076
	case RCS:
2077
		if (INTEL_GEN(engine->i915) >= 9)
2078 2079 2080
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2091 2092
}

2093
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2094
					    struct intel_engine_cs *engine)
2095
{
2096
	struct drm_i915_gem_object *ctx_obj;
2097
	struct intel_context *ce = &ctx->engine[engine->id];
2098
	struct i915_vma *vma;
2099
	uint32_t context_size;
2100
	struct intel_ring *ring;
2101 2102
	int ret;

2103
	WARN_ON(ce->state);
2104

2105
	context_size = round_up(intel_lr_context_size(engine), 4096);
2106

2107 2108 2109
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2110
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2111
	if (IS_ERR(ctx_obj)) {
2112
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2113
		return PTR_ERR(ctx_obj);
2114 2115
	}

2116 2117 2118 2119 2120 2121
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2122
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2123 2124
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2125
		goto error_deref_obj;
2126 2127
	}

2128
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2129 2130
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2131
		goto error_ring_free;
2132 2133
	}

2134
	ce->ring = ring;
2135
	ce->state = vma;
2136
	ce->initialised = engine->init_context == NULL;
2137 2138

	return 0;
2139

2140
error_ring_free:
2141
	intel_ring_free(ring);
2142
error_deref_obj:
2143
	i915_gem_object_put(ctx_obj);
2144
	return ret;
2145
}
2146

2147
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2148
{
2149
	struct intel_engine_cs *engine;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	struct i915_gem_context *ctx;

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
		for_each_engine(engine, dev_priv) {
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2166

2167 2168
			if (!ce->state)
				continue;
2169

2170 2171 2172 2173
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2174

2175 2176 2177
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2178

2179 2180
			ce->state->obj->dirty = true;
			i915_gem_object_unpin_map(ce->state->obj);
2181

2182 2183 2184 2185
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2186 2187
	}
}