mmu.c 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
25
#include <asm/sections.h>
26
#include <asm/setup.h>
27
#include <asm/smp_plat.h>
28
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
29
#include <asm/highmem.h>
30
#include <asm/system_info.h>
31
#include <asm/traps.h>
32 33
#include <asm/procinfo.h>
#include <asm/memory.h>
34 35 36

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
37
#include <asm/mach/pci.h>
38
#include <asm/fixmap.h>
39 40

#include "mm.h"
41
#include "tcm.h"
42 43 44 45 46 47

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
48
EXPORT_SYMBOL(empty_zero_page);
49 50 51 52 53 54

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

55 56 57 58 59 60 61 62
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
63
pgprot_t pgprot_user;
64
pgprot_t pgprot_kernel;
65 66 67
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
68

69
EXPORT_SYMBOL(pgprot_user);
70 71 72 73 74
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
75
	pmdval_t	pmd;
76
	pteval_t	pte;
77
	pteval_t	pte_s2;
78 79
};

80 81 82 83 84 85
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

86 87 88 89 90
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
91
		.pte		= L_PTE_MT_UNCACHED,
92
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
93 94 95 96
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
97
		.pte		= L_PTE_MT_BUFFERABLE,
98
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
99 100 101 102
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
103
		.pte		= L_PTE_MT_WRITETHROUGH,
104
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
105 106 107 108
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
109
		.pte		= L_PTE_MT_WRITEBACK,
110
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
111 112 113 114
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
115
		.pte		= L_PTE_MT_WRITEALLOC,
116
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
117 118 119
	}
};

120
#ifdef CONFIG_CPU_CP15
121
/*
S
Simon Arlott 已提交
122
 * These are useful for identifying cache coherency
123 124 125 126
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
127
static int __init early_cachepolicy(char *p)
128 129 130 131 132 133
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

134
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
135 136 137 138 139 140 141 142
			cachepolicy = i;
			cr_alignment &= ~cache_policies[i].cr_mask;
			cr_no_alignment &= ~cache_policies[i].cr_mask;
			break;
		}
	}
	if (i == ARRAY_SIZE(cache_policies))
		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
143 144 145 146 147 148 149
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
150 151 152 153
	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
		cachepolicy = CPOLICY_WRITEBACK;
	}
154 155
	flush_cache_all();
	set_cr(cr_alignment);
156
	return 0;
157
}
158
early_param("cachepolicy", early_cachepolicy);
159

160
static int __init early_nocache(char *__unused)
161 162 163
{
	char *p = "buffered";
	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
164 165
	early_cachepolicy(p);
	return 0;
166
}
167
early_param("nocache", early_nocache);
168

169
static int __init early_nowrite(char *__unused)
170 171 172
{
	char *p = "uncached";
	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
173 174
	early_cachepolicy(p);
	return 0;
175
}
176
early_param("nowb", early_nowrite);
177

178
#ifndef CONFIG_ARM_LPAE
179
static int __init early_ecc(char *p)
180
{
181
	if (memcmp(p, "on", 2) == 0)
182
		ecc_mask = PMD_PROTECTION;
183
	else if (memcmp(p, "off", 3) == 0)
184
		ecc_mask = 0;
185
	return 0;
186
}
187
early_param("ecc", early_ecc);
188
#endif
189 190 191 192 193 194 195 196 197 198

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~CR_A;
	cr_no_alignment &= ~CR_A;
	set_cr(cr_alignment);
	return 1;
}
__setup("noalign", noalign_setup);

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
	unsigned long flags;

	mask &= ~CR_A;

	set &= mask;

	local_irq_save(flags);

	cr_no_alignment = (cr_no_alignment & ~mask) | set;
	cr_alignment = (cr_alignment & ~mask) | set;

	set_cr((get_cr() & ~mask) | set);

	local_irq_restore(flags);
}
#endif

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
	pr_warning("noalign kernel parameter not supported without cp15\n");
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

235
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
236
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
237
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
238

239
static struct mem_type mem_types[] = {
240
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
241 242
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
243 244 245
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
246
		.prot_l1	= PMD_TYPE_TABLE,
247
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
248 249 250
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
251
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
252
		.prot_l1	= PMD_TYPE_TABLE,
253
		.prot_sect	= PROT_SECT_DEVICE,
254 255 256
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
257
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
258 259 260
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
261
	},
262
	[MT_DEVICE_WC] = {	/* ioremap_wc */
263
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
264
		.prot_l1	= PMD_TYPE_TABLE,
265
		.prot_sect	= PROT_SECT_DEVICE,
266
		.domain		= DOMAIN_IO,
267
	},
268 269 270 271 272 273
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
274
	[MT_CACHECLEAN] = {
275
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 277
		.domain    = DOMAIN_KERNEL,
	},
278
#ifndef CONFIG_ARM_LPAE
279
	[MT_MINICLEAN] = {
280
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
281 282
		.domain    = DOMAIN_KERNEL,
	},
283
#endif
284 285
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286
				L_PTE_RDONLY,
287 288 289 290 291
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292
				L_PTE_USER | L_PTE_RDONLY,
293 294 295
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_USER,
	},
296
	[MT_MEMORY_RWX] = {
297
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
298
		.prot_l1   = PMD_TYPE_TABLE,
299
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
300 301
		.domain    = DOMAIN_KERNEL,
	},
302 303 304 305 306 307 308
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
309
	[MT_ROM] = {
310
		.prot_sect = PMD_TYPE_SECT,
311 312
		.domain    = DOMAIN_KERNEL,
	},
313
	[MT_MEMORY_RWX_NONCACHED] = {
314
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
315
				L_PTE_MT_BUFFERABLE,
316
		.prot_l1   = PMD_TYPE_TABLE,
317 318 319
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
320
	[MT_MEMORY_RW_DTCM] = {
321
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322
				L_PTE_XN,
323 324 325
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
326
	},
327
	[MT_MEMORY_RWX_ITCM] = {
328
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
329
		.prot_l1   = PMD_TYPE_TABLE,
330
		.domain    = DOMAIN_KERNEL,
331
	},
332
	[MT_MEMORY_RW_SO] = {
333
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
334
				L_PTE_MT_UNCACHED | L_PTE_XN,
335 336 337 338 339
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
340
	[MT_MEMORY_DMA_READY] = {
341 342
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
343 344 345
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
346 347
};

348 349 350 351
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
352
EXPORT_SYMBOL(get_mem_type);
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
#define PTE_SET_FN(_name, pteop) \
static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
			void *data) \
{ \
	pte_t pte = pteop(*ptep); \
\
	set_pte_ext(ptep, pte, 0); \
	return 0; \
} \

#define SET_MEMORY_FN(_name, callback) \
int set_memory_##_name(unsigned long addr, int numpages) \
{ \
	unsigned long start = addr; \
	unsigned long size = PAGE_SIZE*numpages; \
	unsigned end = start + size; \
\
	if (start < MODULES_VADDR || start >= MODULES_END) \
		return -EINVAL;\
\
	if (end < MODULES_VADDR || end >= MODULES_END) \
		return -EINVAL; \
\
	apply_to_page_range(&init_mm, start, size, callback, NULL); \
	flush_tlb_kernel_range(start, end); \
	return 0;\
}

PTE_SET_FN(ro, pte_wrprotect)
PTE_SET_FN(rw, pte_mkwrite)
PTE_SET_FN(x, pte_mkexec)
PTE_SET_FN(nx, pte_mknexec)

SET_MEMORY_FN(ro, pte_set_ro)
SET_MEMORY_FN(rw, pte_set_rw)
SET_MEMORY_FN(x, pte_set_x)
SET_MEMORY_FN(nx, pte_set_nx)

392 393 394 395 396 397 398
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
399
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
400
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
401 402 403
	int cpu_arch = cpu_architecture();
	int i;

404
	if (cpu_arch < CPU_ARCH_ARMv6) {
405
#if defined(CONFIG_CPU_DCACHE_DISABLE)
406 407
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
408
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
409 410
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
411
#endif
412
	}
413 414 415 416 417
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
418 419
	if (is_smp())
		cachepolicy = CPOLICY_WRITEALLOC;
420

421
	/*
422 423 424
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
425
	 */
426 427 428 429 430 431
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
432 433

	/*
434 435 436
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
437
	 */
438
	if (cpu_is_xscale() || cpu_is_xsc3()) {
439
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
440
			mem_types[i].prot_sect &= ~PMD_BIT4;
441 442 443 444
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
445 446
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
447 448 449 450
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
451

452 453 454 455 456 457 458 459 460 461 462 463 464
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
465 466 467

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
513
	cp = &cache_policies[cachepolicy];
514
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
515
	s2_pgprot = cp->pte_s2;
516 517
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
518

519 520 521 522 523 524 525 526 527
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
#ifndef CONFIG_ARM_LPAE
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
#endif
528

529 530 531 532
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
533
#ifndef CONFIG_ARM_LPAE
534 535 536 537 538 539 540
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
541
#endif
542

543 544 545 546 547 548 549 550
		if (is_smp()) {
			/*
			 * Mark memory with the "shared" attribute
			 * for SMP systems
			 */
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
551
			s2_pgprot |= L_PTE_SHARED;
552 553 554 555
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
556 557
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
558 559
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
560
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
561 562
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
563
		}
564 565
	}

566 567 568 569 570 571 572
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
573
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
574 575 576
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
577
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
578 579 580
				PMD_SECT_TEX(1);
		}
	} else {
581
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
582 583
	}

584 585 586 587 588 589
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
590 591
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
592 593 594 595 596
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
#endif

597
	for (i = 0; i < 16; i++) {
598
		pteval_t v = pgprot_val(protection_map[i]);
599
		protection_map[i] = __pgprot(v | user_pgprot);
600 601
	}

602 603
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
604

605
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
606
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
607
				 L_PTE_DIRTY | kern_pgprot);
608 609 610
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
611 612 613

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
614 615
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
616 617
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
618
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
619
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
620 621 622 623 624 625 626 627 628 629 630
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
631 632
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
633 634 635 636 637 638 639 640

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
641 642
}

643 644 645 646 647 648 649 650 651 652 653 654 655
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

656 657
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

658
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
659
{
660
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
661 662
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
663 664
}

665 666 667 668 669
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

R
Russell King 已提交
670
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
671
{
672
	if (pmd_none(*pmd)) {
673
		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
674
		__pmd_populate(pmd, __pa(pte), prot);
675
	}
R
Russell King 已提交
676 677 678
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
679

R
Russell King 已提交
680 681 682 683 684
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
				  const struct mem_type *type)
{
	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
685
	do {
686
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
687 688
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
689 690
}

691
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
692 693
			unsigned long end, phys_addr_t phys,
			const struct mem_type *type)
694
{
695 696
	pmd_t *p = pmd;

697
#ifndef CONFIG_ARM_LPAE
698
	/*
699 700 701 702 703 704 705
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
706
	 */
707 708
	if (addr & SECTION_SIZE)
		pmd++;
709
#endif
710 711 712 713
	do {
		*pmd = __pmd(phys | type->prot_sect);
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
714

715
	flush_pmd_entry(p);
716
}
717

718 719 720 721 722 723 724 725
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
				      const struct mem_type *type)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
726
		/*
727 728
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
729
		 */
730 731 732 733 734 735 736 737
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
738
			__map_init_section(pmd, addr, next, phys, type);
739 740 741 742 743 744 745 746
		} else {
			alloc_init_pte(pmd, addr, next,
						__phys_to_pfn(phys), type);
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
747 748
}

749
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
750 751
				  unsigned long end, phys_addr_t phys,
				  const struct mem_type *type)
R
Russell King 已提交
752 753 754 755 756 757
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
758
		alloc_init_pmd(pud, addr, next, phys, type);
R
Russell King 已提交
759 760 761 762
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

763
#ifndef CONFIG_ARM_LPAE
764 765 766
static void __init create_36bit_mapping(struct map_desc *md,
					const struct mem_type *type)
{
767 768
	unsigned long addr, length, end;
	phys_addr_t phys;
769 770 771
	pgd_t *pgd;

	addr = md->virtual;
772
	phys = __pfn_to_phys(md->pfn);
773 774 775 776 777
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
		printk(KERN_ERR "MM: CPU does not support supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
778
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
779 780 781 782 783 784 785 786 787 788 789 790
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
		printk(KERN_ERR "MM: invalid domain in supersection "
		       "mapping for 0x%08llx at 0x%08lx\n",
791
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
792 793 794 795
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
796 797 798
		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
		       " at 0x%08lx invalid alignment\n",
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
799 800 801 802 803 804 805 806 807 808 809 810
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
R
Russell King 已提交
811 812
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
813 814 815 816 817 818 819 820 821 822
		int i;

		for (i = 0; i < 16; i++)
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
823
#endif	/* !CONFIG_ARM_LPAE */
824

825 826 827 828 829 830 831
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
832
static void __init create_mapping(struct map_desc *md)
833
{
834 835
	unsigned long addr, length, end;
	phys_addr_t phys;
836
	const struct mem_type *type;
837
	pgd_t *pgd;
838 839

	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
840 841 842
		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
		       " at 0x%08lx in user region\n",
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
843 844 845 846
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
847 848
	    md->virtual >= PAGE_OFFSET &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
849
		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
850
		       " at 0x%08lx out of vmalloc space\n",
851
		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
852 853
	}

854
	type = &mem_types[md->type];
855

856
#ifndef CONFIG_ARM_LPAE
857 858 859
	/*
	 * Catch 36-bit addresses
	 */
860 861 862
	if (md->pfn >= 0x100000) {
		create_36bit_mapping(md, type);
		return;
863
	}
864
#endif
865

866
	addr = md->virtual & PAGE_MASK;
867
	phys = __pfn_to_phys(md->pfn);
868
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
869

870
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
871
		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
872
		       "be mapped using pages, ignoring.\n",
873
		       (long long)__pfn_to_phys(md->pfn), addr);
874 875 876
		return;
	}

877 878 879 880
	pgd = pgd_offset_k(addr);
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
881

R
Russell King 已提交
882
		alloc_init_pud(pgd, addr, next, phys, type);
883

884 885 886
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
887 888 889 890 891 892 893
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
894 895
	struct map_desc *md;
	struct vm_struct *vm;
896
	struct static_vm *svm;
897 898 899

	if (!nr)
		return;
900

901
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
902 903 904

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
905 906

		vm = &svm->vm;
907 908
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
909 910
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
911
		vm->flags |= VM_ARM_MTYPE(md->type);
912
		vm->caller = iotable_init;
913
		add_static_vm_early(svm++);
914
	}
915 916
}

R
Rob Herring 已提交
917 918 919 920
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
921 922 923
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
924

925
	vm = &svm->vm;
R
Rob Herring 已提交
926 927
	vm->addr = (void *)addr;
	vm->size = size;
928
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
929
	vm->caller = caller;
930
	add_static_vm_early(svm);
R
Rob Herring 已提交
931 932
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
950
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
951 952 953 954
}

static void __init fill_pmd_gaps(void)
{
955
	struct static_vm *svm;
956 957 958 959
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

960 961
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
998 999 1000
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1001
	struct static_vm *svm;
R
Rob Herring 已提交
1002

1003 1004 1005
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1006 1007 1008 1009 1010 1011 1012

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1025
	iotable_init(&map, 1);
R
Rob Herring 已提交
1026 1027 1028
}
#endif

1029 1030
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1031 1032 1033 1034

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1035
 * area - the default is 240m.
1036
 */
1037
static int __init early_vmalloc(char *arg)
1038
{
R
Russell King 已提交
1039
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1040 1041 1042 1043 1044 1045 1046

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
		printk(KERN_WARNING
			"vmalloc area too small, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
1047 1048 1049 1050 1051 1052 1053

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
		printk(KERN_WARNING
			"vmalloc area is too big, limiting to %luMB\n",
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1054 1055

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1056
	return 0;
1057
}
1058
early_param("vmalloc", early_vmalloc);
1059

1060
phys_addr_t arm_lowmem_limit __initdata = 0;
1061

1062
void __init sanity_check_meminfo(void)
1063
{
1064
	phys_addr_t memblock_limit = 0;
R
Russell King 已提交
1065
	int i, j, highmem = 0;
1066
	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1067

1068
	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1069
		struct membank *bank = &meminfo.bank[j];
1070
		phys_addr_t size_limit;
1071

1072
		*bank = meminfo.bank[i];
1073
		size_limit = bank->size;
1074

1075
		if (bank->start >= vmalloc_limit)
R
Russell King 已提交
1076
			highmem = 1;
1077 1078
		else
			size_limit = vmalloc_limit - bank->start;
R
Russell King 已提交
1079 1080 1081

		bank->highmem = highmem;

1082
#ifdef CONFIG_HIGHMEM
1083 1084 1085 1086
		/*
		 * Split those memory banks which are partially overlapping
		 * the vmalloc area greatly simplifying things later.
		 */
1087
		if (!highmem && bank->size > size_limit) {
1088 1089 1090 1091 1092 1093 1094 1095
			if (meminfo.nr_banks >= NR_BANKS) {
				printk(KERN_CRIT "NR_BANKS too low, "
						 "ignoring high memory\n");
			} else {
				memmove(bank + 1, bank,
					(meminfo.nr_banks - i) * sizeof(*bank));
				meminfo.nr_banks++;
				i++;
1096
				bank[1].size -= size_limit;
1097
				bank[1].start = vmalloc_limit;
R
Russell King 已提交
1098
				bank[1].highmem = highmem = 1;
1099 1100
				j++;
			}
1101
			bank->size = size_limit;
1102 1103
		}
#else
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		/*
		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
		 */
		if (highmem) {
			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
			       "(!CONFIG_HIGHMEM).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1);
			continue;
		}

1115 1116 1117 1118
		/*
		 * Check whether this memory bank would partially overlap
		 * the vmalloc area.
		 */
1119
		if (bank->size > size_limit) {
1120 1121 1122 1123
			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
			       "to -%.8llx (vmalloc region overlap).\n",
			       (unsigned long long)bank->start,
			       (unsigned long long)bank->start + bank->size - 1,
1124 1125
			       (unsigned long long)bank->start + size_limit - 1);
			bank->size = size_limit;
1126 1127
		}
#endif
1128 1129
		if (!bank->highmem) {
			phys_addr_t bank_end = bank->start + bank->size;
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
			if (bank_end > arm_lowmem_limit)
				arm_lowmem_limit = bank_end;

			/*
			 * Find the first non-section-aligned page, and point
			 * memblock_limit at it. This relies on rounding the
			 * limit down to be section-aligned, which happens at
			 * the end of this function.
			 *
			 * With this algorithm, the start or end of almost any
			 * bank can be non-section-aligned. The only exception
			 * is that the start of the bank 0 must be section-
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
					memblock_limit = bank->start;
				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
					memblock_limit = bank_end;
			}
		}
1154
		j++;
1155
	}
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
#ifdef CONFIG_HIGHMEM
	if (highmem) {
		const char *reason = NULL;

		if (cache_is_vipt_aliasing()) {
			/*
			 * Interactions between kmap and other mappings
			 * make highmem support with aliasing VIPT caches
			 * rather difficult.
			 */
			reason = "with VIPT aliasing cache";
		}
		if (reason) {
			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
				reason);
			while (j > 0 && meminfo.bank[j - 1].highmem)
				j--;
		}
	}
#endif
1176
	meminfo.nr_banks = j;
1177
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	/*
	 * Round the memblock limit down to a section size.  This
	 * helps to ensure that we will allocate memory from the
	 * last full section, which should be mapped.
	 */
	if (memblock_limit)
		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1190 1191
}

1192
static inline void prepare_page_table(void)
1193 1194
{
	unsigned long addr;
1195
	phys_addr_t end;
1196 1197 1198 1199

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1200
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1201 1202 1203 1204
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1205
	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1206
#endif
1207
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1208 1209
		pmd_clear(pmd_off_k(addr));

1210 1211 1212 1213
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1214 1215
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1216

1217 1218
	/*
	 * Clear out all the kernel space mappings, except for the first
1219
	 * memory bank, up to the vmalloc region.
1220
	 */
1221
	for (addr = __phys_to_virt(end);
1222
	     addr < VMALLOC_START; addr += PMD_SIZE)
1223 1224 1225
		pmd_clear(pmd_off_k(addr));
}

1226 1227 1228 1229 1230
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1231
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1232
#endif
1233

1234
/*
R
Russell King 已提交
1235
 * Reserve the special regions of memory
1236
 */
R
Russell King 已提交
1237
void __init arm_mm_memblock_reserve(void)
1238 1239 1240 1241 1242
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1243
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1244 1245 1246 1247 1248 1249

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1250
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1251 1252 1253 1254
#endif
}

/*
1255 1256
 * Set up the device mappings.  Since we clear out the page tables for all
 * mappings above VMALLOC_START, we will remove any debug device mappings.
1257 1258 1259 1260
 * This means you have to be careful how you debug this function, or any
 * called function.  This means you can't use any function or debugging
 * method which may touch any device, otherwise the kernel _will_ crash.
 */
1261
static void __init devicemaps_init(const struct machine_desc *mdesc)
1262 1263 1264
{
	struct map_desc map;
	unsigned long addr;
1265
	void *vectors;
1266 1267 1268 1269

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1270
	vectors = early_alloc(PAGE_SIZE * 2);
1271 1272

	early_trap_init(vectors);
1273

1274
	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1275 1276 1277 1278 1279 1280 1281 1282
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1283
	map.virtual = MODULES_VADDR;
R
Russell King 已提交
1284
	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1312
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1313 1314
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1315
#ifdef CONFIG_KUSER_HELPERS
1316
	map.type = MT_HIGH_VECTORS;
1317 1318 1319
#else
	map.type = MT_LOW_VECTORS;
#endif
1320 1321 1322 1323
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1324
		map.length = PAGE_SIZE * 2;
1325 1326 1327 1328
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1329 1330 1331 1332 1333 1334 1335
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1336 1337 1338 1339 1340
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1341 1342
	else
		debug_ll_io_init();
1343
	fill_pmd_gaps();
1344

R
Rob Herring 已提交
1345 1346 1347
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
}

N
Nicolas Pitre 已提交
1358 1359 1360
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1361 1362
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1363 1364 1365

	fixmap_page_table = early_pte_alloc(pmd_off_k(FIXADDR_START),
		FIXADDR_START, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1366 1367 1368
#endif
}

1369 1370
static void __init map_lowmem(void)
{
1371
	struct memblock_region *reg;
1372 1373
	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1374 1375

	/* Map all the lowmem memory banks. */
1376 1377 1378 1379 1380
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1381 1382
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1383 1384 1385
		if (start >= end)
			break;

1386 1387 1388 1389 1390
		if (end < kernel_x_start || start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1420 1421 1422
	}
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
#ifdef CONFIG_ARM_LPAE
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
	unsigned long map_start, map_end;
	pgd_t *pgd0, *pgdk;
	pud_t *pud0, *pudk, *pud_start;
	pmd_t *pmd0, *pmdk;
	phys_addr_t phys;
	int i;

	if (!(mdesc->init_meminfo))
		return;

	/* remap kernel code and data */
	map_start = init_mm.start_code;
	map_end   = init_mm.brk;

	/* get a handle on things... */
	pgd0 = pgd_offset_k(0);
	pud_start = pud0 = pud_offset(pgd0, 0);
	pmd0 = pmd_offset(pud0, 0);

	pgdk = pgd_offset_k(map_start);
	pudk = pud_offset(pgdk, map_start);
	pmdk = pmd_offset(pudk, map_start);

	mdesc->init_meminfo();

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
	 * Cache cleaning operations for self-modifying code
	 * We should clean the entries by MVA but running a
	 * for loop over every pv_table entry pointer would
	 * just complicate the code.
	 */
	flush_cache_louis();
1468
	dsb(ishst);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	isb();

	/* remap level 1 table */
	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
		set_pud(pud0,
			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
		pmd0 += PTRS_PER_PMD;
	}

	/* remap pmds for kernel mapping */
	phys = __pa(map_start) & PMD_MASK;
	do {
		*pmdk++ = __pmd(phys | pmdprot);
		phys += PMD_SIZE;
	} while (phys < map_end);

	flush_cache_all();
	cpu_switch_mm(pgd0, &init_mm);
	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
	local_flush_bp_all();
	local_flush_tlb_all();
}

#else

void __init early_paging_init(const struct machine_desc *mdesc,
			      struct proc_info_list *procinfo)
{
	if (mdesc->init_meminfo)
		mdesc->init_meminfo();
}

#endif

1503 1504 1505 1506
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1507
void __init paging_init(const struct machine_desc *mdesc)
1508 1509 1510 1511
{
	void *zero_page;

	build_mem_type_table();
1512
	prepare_page_table();
1513
	map_lowmem();
1514
	dma_contiguous_remap();
1515
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1516
	kmap_init();
1517
	tcm_init();
1518 1519 1520

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1521 1522
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1523

1524
	bootmem_init();
R
Russell King 已提交
1525

1526
	empty_zero_page = virt_to_page(zero_page);
1527
	__flush_dcache_page(NULL, empty_zero_page);
1528
}