core.c 67.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * NVM Express device driver
 * Copyright (c) 2011-2014, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/blkdev.h>
#include <linux/blk-mq.h>
17
#include <linux/delay.h>
18
#include <linux/errno.h>
19
#include <linux/hdreg.h>
20
#include <linux/kernel.h>
21 22
#include <linux/module.h>
#include <linux/list_sort.h>
23 24
#include <linux/slab.h>
#include <linux/types.h>
25 26 27 28
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/t10-pi.h>
29
#include <linux/pm_qos.h>
30 31
#include <scsi/sg.h>
#include <asm/unaligned.h>
32 33

#include "nvme.h"
S
Sagi Grimberg 已提交
34
#include "fabrics.h"
35

36 37
#define NVME_MINORS		(1U << MINORBITS)

38 39 40
unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
41
EXPORT_SYMBOL_GPL(admin_timeout);
42 43 44 45

unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
46
EXPORT_SYMBOL_GPL(nvme_io_timeout);
47

48
static unsigned char shutdown_timeout = 5;
49 50 51
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");

52 53
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
K
Keith Busch 已提交
54
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
55

56 57 58
static int nvme_char_major;
module_param(nvme_char_major, int, 0);

59
static unsigned long default_ps_max_latency_us = 100000;
60 61 62 63
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
		 "max power saving latency for new devices; use PM QOS to change per device");

64 65 66 67
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");

68 69 70
struct workqueue_struct *nvme_wq;
EXPORT_SYMBOL_GPL(nvme_wq);

71
static LIST_HEAD(nvme_ctrl_list);
M
Ming Lin 已提交
72
static DEFINE_SPINLOCK(dev_list_lock);
73

74 75
static struct class *nvme_class;

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
{
	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
		return -EBUSY;
	if (!queue_work(nvme_wq, &ctrl->reset_work))
		return -EBUSY;
	return 0;
}
EXPORT_SYMBOL_GPL(nvme_reset_ctrl);

static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
{
	int ret;

	ret = nvme_reset_ctrl(ctrl);
	if (!ret)
		flush_work(&ctrl->reset_work);
	return ret;
}

96
static blk_status_t nvme_error_status(struct request *req)
97 98 99
{
	switch (nvme_req(req)->status & 0x7ff) {
	case NVME_SC_SUCCESS:
100
		return BLK_STS_OK;
101
	case NVME_SC_CAP_EXCEEDED:
102
		return BLK_STS_NOSPC;
103
	case NVME_SC_ONCS_NOT_SUPPORTED:
104
		return BLK_STS_NOTSUPP;
105 106 107
	case NVME_SC_WRITE_FAULT:
	case NVME_SC_READ_ERROR:
	case NVME_SC_UNWRITTEN_BLOCK:
108 109 110
		return BLK_STS_MEDIUM;
	default:
		return BLK_STS_IOERR;
111 112 113
	}
}

114
static inline bool nvme_req_needs_retry(struct request *req)
115
{
116 117
	if (blk_noretry_request(req))
		return false;
118
	if (nvme_req(req)->status & NVME_SC_DNR)
119 120 121
		return false;
	if (jiffies - req->start_time >= req->timeout)
		return false;
122
	if (nvme_req(req)->retries >= nvme_max_retries)
123 124
		return false;
	return true;
125 126 127 128
}

void nvme_complete_rq(struct request *req)
{
129 130 131 132
	if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
		nvme_req(req)->retries++;
		blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
		return;
133 134
	}

135
	blk_mq_end_request(req, nvme_error_status(req));
136 137 138
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);

139 140 141 142 143 144 145 146 147 148 149 150 151
void nvme_cancel_request(struct request *req, void *data, bool reserved)
{
	int status;

	if (!blk_mq_request_started(req))
		return;

	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
				"Cancelling I/O %d", req->tag);

	status = NVME_SC_ABORT_REQ;
	if (blk_queue_dying(req->q))
		status |= NVME_SC_DNR;
152
	nvme_req(req)->status = status;
153
	blk_mq_complete_request(req);
154

155 156 157
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);

158 159 160
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
		enum nvme_ctrl_state new_state)
{
161
	enum nvme_ctrl_state old_state;
162 163 164
	bool changed = false;

	spin_lock_irq(&ctrl->lock);
165 166

	old_state = ctrl->state;
167 168 169
	switch (new_state) {
	case NVME_CTRL_LIVE:
		switch (old_state) {
170
		case NVME_CTRL_NEW:
171
		case NVME_CTRL_RESETTING:
172
		case NVME_CTRL_RECONNECTING:
173 174 175 176 177 178 179 180 181
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RESETTING:
		switch (old_state) {
		case NVME_CTRL_NEW:
182 183 184 185 186 187 188 189 190
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_RECONNECTING:
		switch (old_state) {
191 192 193 194 195 196 197 198 199 200 201
		case NVME_CTRL_LIVE:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
	case NVME_CTRL_DELETING:
		switch (old_state) {
		case NVME_CTRL_LIVE:
		case NVME_CTRL_RESETTING:
202
		case NVME_CTRL_RECONNECTING:
203 204 205 206 207 208
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
209 210 211 212 213 214 215 216 217
	case NVME_CTRL_DEAD:
		switch (old_state) {
		case NVME_CTRL_DELETING:
			changed = true;
			/* FALLTHRU */
		default:
			break;
		}
		break;
218 219 220 221 222 223 224
	default:
		break;
	}

	if (changed)
		ctrl->state = new_state;

225 226
	spin_unlock_irq(&ctrl->lock);

227 228 229 230
	return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);

231 232 233 234
static void nvme_free_ns(struct kref *kref)
{
	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);

235 236
	if (ns->ndev)
		nvme_nvm_unregister(ns);
237

238 239 240 241 242
	if (ns->disk) {
		spin_lock(&dev_list_lock);
		ns->disk->private_data = NULL;
		spin_unlock(&dev_list_lock);
	}
243 244

	put_disk(ns->disk);
245 246
	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
	nvme_put_ctrl(ns->ctrl);
247 248 249
	kfree(ns);
}

250
static void nvme_put_ns(struct nvme_ns *ns)
251 252 253 254 255 256 257 258 259 260
{
	kref_put(&ns->kref, nvme_free_ns);
}

static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
{
	struct nvme_ns *ns;

	spin_lock(&dev_list_lock);
	ns = disk->private_data;
261 262 263 264 265 266
	if (ns) {
		if (!kref_get_unless_zero(&ns->kref))
			goto fail;
		if (!try_module_get(ns->ctrl->ops->module))
			goto fail_put_ns;
	}
267 268 269
	spin_unlock(&dev_list_lock);

	return ns;
270 271 272 273 274 275

fail_put_ns:
	kref_put(&ns->kref, nvme_free_ns);
fail:
	spin_unlock(&dev_list_lock);
	return NULL;
276 277
}

278
struct request *nvme_alloc_request(struct request_queue *q,
279
		struct nvme_command *cmd, unsigned int flags, int qid)
280
{
281
	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
282 283
	struct request *req;

284
	if (qid == NVME_QID_ANY) {
285
		req = blk_mq_alloc_request(q, op, flags);
286
	} else {
287
		req = blk_mq_alloc_request_hctx(q, op, flags,
288 289
				qid ? qid - 1 : 0);
	}
290
	if (IS_ERR(req))
291
		return req;
292 293

	req->cmd_flags |= REQ_FAILFAST_DRIVER;
294
	nvme_req(req)->cmd = cmd;
295

296 297
	return req;
}
298
EXPORT_SYMBOL_GPL(nvme_alloc_request);
299

M
Ming Lin 已提交
300 301 302 303 304 305 306 307
static inline void nvme_setup_flush(struct nvme_ns *ns,
		struct nvme_command *cmnd)
{
	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->common.opcode = nvme_cmd_flush;
	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}

308
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
309 310
		struct nvme_command *cmnd)
{
311
	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
M
Ming Lin 已提交
312
	struct nvme_dsm_range *range;
313
	struct bio *bio;
M
Ming Lin 已提交
314

315
	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
M
Ming Lin 已提交
316
	if (!range)
317
		return BLK_STS_RESOURCE;
M
Ming Lin 已提交
318

319 320 321 322 323 324 325 326 327 328 329 330
	__rq_for_each_bio(bio, req) {
		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;

		range[n].cattr = cpu_to_le32(0);
		range[n].nlb = cpu_to_le32(nlb);
		range[n].slba = cpu_to_le64(slba);
		n++;
	}

	if (WARN_ON_ONCE(n != segments)) {
		kfree(range);
331
		return BLK_STS_IOERR;
332
	}
M
Ming Lin 已提交
333 334 335 336

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->dsm.opcode = nvme_cmd_dsm;
	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
337
	cmnd->dsm.nr = cpu_to_le32(segments - 1);
M
Ming Lin 已提交
338 339
	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);

340 341
	req->special_vec.bv_page = virt_to_page(range);
	req->special_vec.bv_offset = offset_in_page(range);
342
	req->special_vec.bv_len = sizeof(*range) * segments;
343
	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
M
Ming Lin 已提交
344

345
	return BLK_STS_OK;
M
Ming Lin 已提交
346 347
}

348 349
static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
		struct request *req, struct nvme_command *cmnd)
M
Ming Lin 已提交
350 351 352 353
{
	u16 control = 0;
	u32 dsmgmt = 0;

354 355 356 357 358
	/*
	 * If formated with metadata, require the block layer provide a buffer
	 * unless this namespace is formated such that the metadata can be
	 * stripped/generated by the controller with PRACT=1.
	 */
359 360
	if (ns && ns->ms &&
	    (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
361 362 363
	    !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
		return BLK_STS_NOTSUPP;

M
Ming Lin 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	if (req->cmd_flags & REQ_FUA)
		control |= NVME_RW_FUA;
	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
		control |= NVME_RW_LR;

	if (req->cmd_flags & REQ_RAHEAD)
		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;

	memset(cmnd, 0, sizeof(*cmnd));
	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (ns->ms) {
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
		if (!blk_integrity_rq(req))
			control |= NVME_RW_PRINFO_PRACT;
	}

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
397
	return 0;
M
Ming Lin 已提交
398 399
}

400
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
M
Ming Lin 已提交
401 402
		struct nvme_command *cmd)
{
403
	blk_status_t ret = BLK_STS_OK;
M
Ming Lin 已提交
404

405
	if (!(req->rq_flags & RQF_DONTPREP)) {
406
		nvme_req(req)->retries = 0;
407
		nvme_req(req)->flags = 0;
408 409 410
		req->rq_flags |= RQF_DONTPREP;
	}

411 412 413
	switch (req_op(req)) {
	case REQ_OP_DRV_IN:
	case REQ_OP_DRV_OUT:
414
		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
415 416
		break;
	case REQ_OP_FLUSH:
M
Ming Lin 已提交
417
		nvme_setup_flush(ns, cmd);
418
		break;
419 420
	case REQ_OP_WRITE_ZEROES:
		/* currently only aliased to deallocate for a few ctrls: */
421
	case REQ_OP_DISCARD:
M
Ming Lin 已提交
422
		ret = nvme_setup_discard(ns, req, cmd);
423 424 425
		break;
	case REQ_OP_READ:
	case REQ_OP_WRITE:
426
		ret = nvme_setup_rw(ns, req, cmd);
427 428 429
		break;
	default:
		WARN_ON_ONCE(1);
430
		return BLK_STS_IOERR;
431
	}
M
Ming Lin 已提交
432

433
	cmd->common.command_id = req->tag;
M
Ming Lin 已提交
434 435 436 437
	return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);

438 439 440 441 442
/*
 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 * if the result is positive, it's an NVM Express status code
 */
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
443
		union nvme_result *result, void *buffer, unsigned bufflen,
444
		unsigned timeout, int qid, int at_head, int flags)
445 446 447 448
{
	struct request *req;
	int ret;

449
	req = nvme_alloc_request(q, cmd, flags, qid);
450 451 452 453 454
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

455 456 457 458
	if (buffer && bufflen) {
		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
		if (ret)
			goto out;
459 460
	}

461
	blk_execute_rq(req->q, NULL, req, at_head);
462 463
	if (result)
		*result = nvme_req(req)->result;
464 465 466 467
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
468 469 470 471
 out:
	blk_mq_free_request(req);
	return ret;
}
472
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
473 474 475 476

int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
		void *buffer, unsigned bufflen)
{
477 478
	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
			NVME_QID_ANY, 0, 0);
479
}
480
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
481

482 483 484 485
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen,
		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
		u32 *result, unsigned timeout)
486
{
487
	bool write = nvme_is_write(cmd);
488 489
	struct nvme_ns *ns = q->queuedata;
	struct gendisk *disk = ns ? ns->disk : NULL;
490
	struct request *req;
491 492
	struct bio *bio = NULL;
	void *meta = NULL;
493 494
	int ret;

495
	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
496 497 498 499 500 501
	if (IS_ERR(req))
		return PTR_ERR(req);

	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;

	if (ubuffer && bufflen) {
502 503 504 505 506 507
		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
				GFP_KERNEL);
		if (ret)
			goto out;
		bio = req->bio;

508 509 510 511 512 513 514 515
		if (!disk)
			goto submit;
		bio->bi_bdev = bdget_disk(disk, 0);
		if (!bio->bi_bdev) {
			ret = -ENODEV;
			goto out_unmap;
		}

516
		if (meta_buffer && meta_len) {
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
			struct bio_integrity_payload *bip;

			meta = kmalloc(meta_len, GFP_KERNEL);
			if (!meta) {
				ret = -ENOMEM;
				goto out_unmap;
			}

			if (write) {
				if (copy_from_user(meta, meta_buffer,
						meta_len)) {
					ret = -EFAULT;
					goto out_free_meta;
				}
			}

			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
534 535
			if (IS_ERR(bip)) {
				ret = PTR_ERR(bip);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
				goto out_free_meta;
			}

			bip->bip_iter.bi_size = meta_len;
			bip->bip_iter.bi_sector = meta_seed;

			ret = bio_integrity_add_page(bio, virt_to_page(meta),
					meta_len, offset_in_page(meta));
			if (ret != meta_len) {
				ret = -ENOMEM;
				goto out_free_meta;
			}
		}
	}
 submit:
	blk_execute_rq(req->q, disk, req, 0);
552 553 554 555
	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
		ret = -EINTR;
	else
		ret = nvme_req(req)->status;
556
	if (result)
557
		*result = le32_to_cpu(nvme_req(req)->result.u32);
558 559 560 561 562 563 564 565 566 567 568 569
	if (meta && !ret && !write) {
		if (copy_to_user(meta_buffer, meta, meta_len))
			ret = -EFAULT;
	}
 out_free_meta:
	kfree(meta);
 out_unmap:
	if (bio) {
		if (disk && bio->bi_bdev)
			bdput(bio->bi_bdev);
		blk_rq_unmap_user(bio);
	}
570 571 572 573 574
 out:
	blk_mq_free_request(req);
	return ret;
}

575 576 577 578 579 580 581 582
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
		void __user *ubuffer, unsigned bufflen, u32 *result,
		unsigned timeout)
{
	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
			result, timeout);
}

583
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
S
Sagi Grimberg 已提交
584 585 586 587 588
{
	struct nvme_ctrl *ctrl = rq->end_io_data;

	blk_mq_free_request(rq);

589
	if (status) {
S
Sagi Grimberg 已提交
590
		dev_err(ctrl->device,
591 592
			"failed nvme_keep_alive_end_io error=%d\n",
				status);
S
Sagi Grimberg 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		return;
	}

	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}

static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
	struct nvme_command c;
	struct request *rq;

	memset(&c, 0, sizeof(c));
	c.common.opcode = nvme_admin_keep_alive;

	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
			NVME_QID_ANY);
	if (IS_ERR(rq))
		return PTR_ERR(rq);

	rq->timeout = ctrl->kato * HZ;
	rq->end_io_data = ctrl;

	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);

	return 0;
}

static void nvme_keep_alive_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
			struct nvme_ctrl, ka_work);

	if (nvme_keep_alive(ctrl)) {
		/* allocation failure, reset the controller */
		dev_err(ctrl->device, "keep-alive failed\n");
628
		nvme_reset_ctrl(ctrl);
S
Sagi Grimberg 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
		return;
	}
}

void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);

void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
	if (unlikely(ctrl->kato == 0))
		return;

	cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);

652
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
653 654 655 656 657 658
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
	c.identify.opcode = nvme_admin_identify;
659
	c.identify.cns = NVME_ID_CNS_CTRL;
660 661 662 663 664 665 666 667 668 669 670 671

	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ctrl));
	if (error)
		kfree(*id);
	return error;
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid)
{
	struct nvme_command c = { };
	int status;
	void *data;
	int pos;
	int len;

	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;

	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data,
				      NVME_IDENTIFY_DATA_SIZE);
	if (status)
		goto free_data;

	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
		struct nvme_ns_id_desc *cur = data + pos;

		if (cur->nidl == 0)
			break;

		switch (cur->nidt) {
		case NVME_NIDT_EUI64:
			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_EUI64_LEN;
			memcpy(ns->eui, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_NGUID:
			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_NGUID_LEN;
			memcpy(ns->nguid, data + pos + sizeof(*cur), len);
			break;
		case NVME_NIDT_UUID:
			if (cur->nidl != NVME_NIDT_UUID_LEN) {
				dev_warn(ns->ctrl->device,
					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
					 cur->nidl);
				goto free_data;
			}
			len = NVME_NIDT_UUID_LEN;
			uuid_copy(&ns->uuid, data + pos + sizeof(*cur));
			break;
		default:
			/* Skip unnkown types */
			len = cur->nidl;
			break;
		}

		len += sizeof(*cur);
	}
free_data:
	kfree(data);
	return status;
}

743 744 745 746 747
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
{
	struct nvme_command c = { };

	c.identify.opcode = nvme_admin_identify;
748
	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
749 750 751 752
	c.identify.nsid = cpu_to_le32(nsid);
	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
}

753
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
754 755 756 757 758 759
		struct nvme_id_ns **id)
{
	struct nvme_command c = { };
	int error;

	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
760 761
	c.identify.opcode = nvme_admin_identify;
	c.identify.nsid = cpu_to_le32(nsid);
762
	c.identify.cns = NVME_ID_CNS_NS;
763 764 765 766 767 768 769 770 771 772 773 774

	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
	if (!*id)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
			sizeof(struct nvme_id_ns));
	if (error)
		kfree(*id);
	return error;
}

775
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
776
		      void *buffer, size_t buflen, u32 *result)
777 778
{
	struct nvme_command c;
779
	union nvme_result res;
780
	int ret;
781 782 783 784 785 786

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_get_features;
	c.features.nsid = cpu_to_le32(nsid);
	c.features.fid = cpu_to_le32(fid);

787
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
788
			NVME_QID_ANY, 0, 0);
789
	if (ret >= 0 && result)
790
		*result = le32_to_cpu(res.u32);
791
	return ret;
792 793
}

794
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
795
		      void *buffer, size_t buflen, u32 *result)
796 797
{
	struct nvme_command c;
798
	union nvme_result res;
799
	int ret;
800 801 802 803 804 805

	memset(&c, 0, sizeof(c));
	c.features.opcode = nvme_admin_set_features;
	c.features.fid = cpu_to_le32(fid);
	c.features.dword11 = cpu_to_le32(dword11);

806
	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
807
			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
808
	if (ret >= 0 && result)
809
		*result = le32_to_cpu(res.u32);
810
	return ret;
811 812
}

813
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
{
	struct nvme_command c = { };
	int error;

	c.common.opcode = nvme_admin_get_log_page,
	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
	c.common.cdw10[0] = cpu_to_le32(
			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
			 NVME_LOG_SMART),

	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
	if (!*log)
		return -ENOMEM;

	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
			sizeof(struct nvme_smart_log));
	if (error)
		kfree(*log);
	return error;
}
834

C
Christoph Hellwig 已提交
835 836 837 838 839 840
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
	u32 q_count = (*count - 1) | ((*count - 1) << 16);
	u32 result;
	int status, nr_io_queues;

841
	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
C
Christoph Hellwig 已提交
842
			&result);
843
	if (status < 0)
C
Christoph Hellwig 已提交
844 845
		return status;

846 847 848 849 850 851
	/*
	 * Degraded controllers might return an error when setting the queue
	 * count.  We still want to be able to bring them online and offer
	 * access to the admin queue, as that might be only way to fix them up.
	 */
	if (status > 0) {
852
		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
853 854 855 856 857 858
		*count = 0;
	} else {
		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
		*count = min(*count, nr_io_queues);
	}

C
Christoph Hellwig 已提交
859 860
	return 0;
}
861
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
C
Christoph Hellwig 已提交
862

863 864 865 866 867 868 869 870 871
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
	struct nvme_user_io io;
	struct nvme_command c;
	unsigned length, meta_len;
	void __user *metadata;

	if (copy_from_user(&io, uio, sizeof(io)))
		return -EFAULT;
872 873
	if (io.flags)
		return -EINVAL;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

	switch (io.opcode) {
	case nvme_cmd_write:
	case nvme_cmd_read:
	case nvme_cmd_compare:
		break;
	default:
		return -EINVAL;
	}

	length = (io.nblocks + 1) << ns->lba_shift;
	meta_len = (io.nblocks + 1) * ns->ms;
	metadata = (void __user *)(uintptr_t)io.metadata;

	if (ns->ext) {
		length += meta_len;
		meta_len = 0;
	} else if (meta_len) {
		if ((io.metadata & 3) || !io.metadata)
			return -EINVAL;
	}

	memset(&c, 0, sizeof(c));
	c.rw.opcode = io.opcode;
	c.rw.flags = io.flags;
	c.rw.nsid = cpu_to_le32(ns->ns_id);
	c.rw.slba = cpu_to_le64(io.slba);
	c.rw.length = cpu_to_le16(io.nblocks);
	c.rw.control = cpu_to_le16(io.control);
	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
	c.rw.reftag = cpu_to_le32(io.reftag);
	c.rw.apptag = cpu_to_le16(io.apptag);
	c.rw.appmask = cpu_to_le16(io.appmask);

	return __nvme_submit_user_cmd(ns->queue, &c,
			(void __user *)(uintptr_t)io.addr, length,
			metadata, meta_len, io.slba, NULL, 0);
}

913
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
914 915 916 917 918 919 920 921 922 923 924
			struct nvme_passthru_cmd __user *ucmd)
{
	struct nvme_passthru_cmd cmd;
	struct nvme_command c;
	unsigned timeout = 0;
	int status;

	if (!capable(CAP_SYS_ADMIN))
		return -EACCES;
	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
		return -EFAULT;
925 926
	if (cmd.flags)
		return -EINVAL;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

	memset(&c, 0, sizeof(c));
	c.common.opcode = cmd.opcode;
	c.common.flags = cmd.flags;
	c.common.nsid = cpu_to_le32(cmd.nsid);
	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);

	if (cmd.timeout_ms)
		timeout = msecs_to_jiffies(cmd.timeout_ms);

	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
945
			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
			&cmd.result, timeout);
	if (status >= 0) {
		if (put_user(cmd.result, &ucmd->result))
			return -EFAULT;
	}

	return status;
}

static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;

	switch (cmd) {
	case NVME_IOCTL_ID:
		force_successful_syscall_return();
		return ns->ns_id;
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
	case NVME_IOCTL_IO_CMD:
		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
	case NVME_IOCTL_SUBMIT_IO:
		return nvme_submit_io(ns, (void __user *)arg);
970
#ifdef CONFIG_BLK_DEV_NVME_SCSI
971 972 973 974
	case SG_GET_VERSION_NUM:
		return nvme_sg_get_version_num((void __user *)arg);
	case SG_IO:
		return nvme_sg_io(ns, (void __user *)arg);
975
#endif
976
	default:
977 978 979 980
#ifdef CONFIG_NVM
		if (ns->ndev)
			return nvme_nvm_ioctl(ns, cmd, arg);
#endif
981
		if (is_sed_ioctl(cmd))
982
			return sed_ioctl(ns->ctrl->opal_dev, cmd,
983
					 (void __user *) arg);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
		return -ENOTTY;
	}
}

#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
			unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SG_IO:
		return -ENOIOCTLCMD;
	}
	return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl	NULL
#endif

static int nvme_open(struct block_device *bdev, fmode_t mode)
{
	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
}

static void nvme_release(struct gendisk *disk, fmode_t mode)
{
1009 1010 1011 1012
	struct nvme_ns *ns = disk->private_data;

	module_put(ns->ctrl->ops->module);
	nvme_put_ns(ns);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
}

static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	/* some standard values */
	geo->heads = 1 << 6;
	geo->sectors = 1 << 5;
	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
	return 0;
}

#ifdef CONFIG_BLK_DEV_INTEGRITY
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
	struct nvme_ns *ns = disk->private_data;
	u16 old_ms = ns->ms;
	u8 pi_type = 0;

	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);

	/* PI implementation requires metadata equal t10 pi tuple size */
	if (ns->ms == sizeof(struct t10_pi_tuple))
		pi_type = id->dps & NVME_NS_DPS_PI_MASK;

	if (blk_get_integrity(disk) &&
	    (ns->pi_type != pi_type || ns->ms != old_ms ||
	     bs != queue_logical_block_size(disk->queue) ||
	     (ns->ms && ns->ext)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
}

1048 1049 1050 1051
static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

1052
	memset(&integrity, 0, sizeof(integrity));
1053 1054 1055
	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity.profile = &t10_pi_type3_crc;
1056 1057
		integrity.tag_size = sizeof(u16) + sizeof(u32);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1058 1059 1060 1061
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity.profile = &t10_pi_type1_crc;
1062 1063
		integrity.tag_size = sizeof(u16);
		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		break;
	default:
		integrity.profile = NULL;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}
#else
1074 1075 1076 1077
static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
		u16 bs)
{
}
1078 1079 1080 1081 1082
static void nvme_init_integrity(struct nvme_ns *ns)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */

1083 1084 1085 1086 1087 1088
static void nvme_set_chunk_size(struct nvme_ns *ns)
{
	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
}

1089 1090
static void nvme_config_discard(struct nvme_ns *ns)
{
1091
	struct nvme_ctrl *ctrl = ns->ctrl;
1092
	u32 logical_block_size = queue_logical_block_size(ns->queue);
1093

1094 1095 1096
	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
			NVME_DSM_MAX_RANGES);

1097 1098
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
1099
	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1100
	blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1101
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1102 1103 1104

	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
		blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1105 1106
}

1107
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
1108
{
1109
	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
1110
		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
1111 1112 1113
		return -ENODEV;
	}

1114 1115 1116
	if ((*id)->ncap == 0) {
		kfree(*id);
		return -ENODEV;
1117 1118
	}

1119
	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
1120
		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
1121
	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
1122
		memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid));
1123 1124 1125 1126 1127 1128 1129 1130
	if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) {
		 /* Don't treat error as fatal we potentially
		  * already have a NGUID or EUI-64
		  */
		if (nvme_identify_ns_descs(ns, ns->ns_id))
			dev_warn(ns->ctrl->device,
				 "%s: Identify Descriptors failed\n", __func__);
	}
1131 1132 1133 1134 1135 1136 1137

	return 0;
}

static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
{
	struct nvme_ns *ns = disk->private_data;
1138
	u16 bs;
1139 1140 1141 1142 1143

	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
1144
	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1145 1146 1147
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;
1148
	ns->noiob = le16_to_cpu(id->noiob);
1149 1150 1151

	blk_mq_freeze_queue(disk->queue);

1152 1153
	if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
		nvme_prep_integrity(disk, id, bs);
1154
	blk_queue_logical_block_size(ns->queue, bs);
1155 1156
	if (ns->noiob)
		nvme_set_chunk_size(ns);
K
Keith Busch 已提交
1157
	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1158 1159 1160 1161 1162 1163 1164 1165 1166
		nvme_init_integrity(ns);
	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);
	blk_mq_unfreeze_queue(disk->queue);
1167
}
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_id_ns *id = NULL;
	int ret;

	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
		set_capacity(disk, 0);
		return -ENODEV;
	}

	ret = nvme_revalidate_ns(ns, &id);
	if (ret)
		return ret;

	__nvme_revalidate_disk(disk, id);
1185
	kfree(id);
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	return 0;
}

static char nvme_pr_type(enum pr_type type)
{
	switch (type) {
	case PR_WRITE_EXCLUSIVE:
		return 1;
	case PR_EXCLUSIVE_ACCESS:
		return 2;
	case PR_WRITE_EXCLUSIVE_REG_ONLY:
		return 3;
	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
		return 4;
	case PR_WRITE_EXCLUSIVE_ALL_REGS:
		return 5;
	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
		return 6;
	default:
		return 0;
	}
};

static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
				u64 key, u64 sa_key, u8 op)
{
	struct nvme_ns *ns = bdev->bd_disk->private_data;
	struct nvme_command c;
	u8 data[16] = { 0, };

	put_unaligned_le64(key, &data[0]);
	put_unaligned_le64(sa_key, &data[8]);

	memset(&c, 0, sizeof(c));
	c.common.opcode = op;
	c.common.nsid = cpu_to_le32(ns->ns_id);
	c.common.cdw10[0] = cpu_to_le32(cdw10);

	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
}

static int nvme_pr_register(struct block_device *bdev, u64 old,
		u64 new, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = old ? 2 : 0;
	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}

static int nvme_pr_reserve(struct block_device *bdev, u64 key,
		enum pr_type type, unsigned flags)
{
	u32 cdw10;

	if (flags & ~PR_FL_IGNORE_KEY)
		return -EOPNOTSUPP;

	cdw10 = nvme_pr_type(type) << 8;
	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}

static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
		enum pr_type type, bool abort)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}

static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
1264
	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}

static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}

static const struct pr_ops nvme_pr_ops = {
	.pr_register	= nvme_pr_register,
	.pr_reserve	= nvme_pr_reserve,
	.pr_release	= nvme_pr_release,
	.pr_preempt	= nvme_pr_preempt,
	.pr_clear	= nvme_pr_clear,
};

1282
#ifdef CONFIG_BLK_SED_OPAL
1283 1284
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
		bool send)
1285
{
1286
	struct nvme_ctrl *ctrl = data;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	struct nvme_command cmd;

	memset(&cmd, 0, sizeof(cmd));
	if (send)
		cmd.common.opcode = nvme_admin_security_send;
	else
		cmd.common.opcode = nvme_admin_security_recv;
	cmd.common.nsid = 0;
	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
	cmd.common.cdw10[1] = cpu_to_le32(len);

	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */

1304
static const struct block_device_operations nvme_fops = {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	.owner		= THIS_MODULE,
	.ioctl		= nvme_ioctl,
	.compat_ioctl	= nvme_compat_ioctl,
	.open		= nvme_open,
	.release	= nvme_release,
	.getgeo		= nvme_getgeo,
	.revalidate_disk= nvme_revalidate_disk,
	.pr_ops		= &nvme_pr_ops,
};

1315 1316 1317 1318 1319 1320 1321 1322
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
	unsigned long timeout =
		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
	int ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
K
Keith Busch 已提交
1323 1324
		if (csts == ~0)
			return -ENODEV;
1325 1326 1327 1328 1329 1330 1331
		if ((csts & NVME_CSTS_RDY) == bit)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1332
			dev_err(ctrl->device,
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
				"Device not ready; aborting %s\n", enabled ?
						"initialisation" : "reset");
			return -ENODEV;
		}
	}

	return ret;
}

/*
 * If the device has been passed off to us in an enabled state, just clear
 * the enabled bit.  The spec says we should set the 'shutdown notification
 * bits', but doing so may cause the device to complete commands to the
 * admin queue ... and we don't know what memory that might be pointing at!
 */
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config &= ~NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
1358

1359
	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1360 1361
		msleep(NVME_QUIRK_DELAY_AMOUNT);

1362 1363
	return nvme_wait_ready(ctrl, cap, false);
}
1364
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
{
	/*
	 * Default to a 4K page size, with the intention to update this
	 * path in the future to accomodate architectures with differing
	 * kernel and IO page sizes.
	 */
	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
	int ret;

	if (page_shift < dev_page_min) {
1377
		dev_err(ctrl->device,
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
			"Minimum device page size %u too large for host (%u)\n",
			1 << dev_page_min, 1 << page_shift);
		return -ENODEV;
	}

	ctrl->page_size = 1 << page_shift;

	ctrl->ctrl_config = NVME_CC_CSS_NVM;
	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
	ctrl->ctrl_config |= NVME_CC_ENABLE;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;
	return nvme_wait_ready(ctrl, cap, true);
}
1396
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1397 1398 1399

int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
1400
	unsigned long timeout = jiffies + (shutdown_timeout * HZ);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	u32 csts;
	int ret;

	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;

	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
	if (ret)
		return ret;

	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
			break;

		msleep(100);
		if (fatal_signal_pending(current))
			return -EINTR;
		if (time_after(jiffies, timeout)) {
1419
			dev_err(ctrl->device,
1420 1421 1422 1423 1424 1425 1426
				"Device shutdown incomplete; abort shutdown\n");
			return -ENODEV;
		}
	}

	return ret;
}
1427
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1428

1429 1430 1431
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
		struct request_queue *q)
{
1432 1433
	bool vwc = false;

1434
	if (ctrl->max_hw_sectors) {
1435 1436 1437
		u32 max_segments =
			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;

1438
		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1439
		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1440
	}
K
Keith Busch 已提交
1441 1442
	if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1443
	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1444 1445 1446
	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
		vwc = true;
	blk_queue_write_cache(q, vwc, vwc);
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457
static void nvme_configure_apst(struct nvme_ctrl *ctrl)
{
	/*
	 * APST (Autonomous Power State Transition) lets us program a
	 * table of power state transitions that the controller will
	 * perform automatically.  We configure it with a simple
	 * heuristic: we are willing to spend at most 2% of the time
	 * transitioning between power states.  Therefore, when running
	 * in any given state, we will enter the next lower-power
A
Andy Lutomirski 已提交
1458
	 * non-operational state after waiting 50 * (enlat + exlat)
1459
	 * microseconds, as long as that state's exit latency is under
1460 1461 1462 1463 1464 1465 1466 1467 1468
	 * the requested maximum latency.
	 *
	 * We will not autonomously enter any non-operational state for
	 * which the total latency exceeds ps_max_latency_us.  Users
	 * can set ps_max_latency_us to zero to turn off APST.
	 */

	unsigned apste;
	struct nvme_feat_auto_pst *table;
1469 1470
	u64 max_lat_us = 0;
	int max_ps = -1;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	int ret;

	/*
	 * If APST isn't supported or if we haven't been initialized yet,
	 * then don't do anything.
	 */
	if (!ctrl->apsta)
		return;

	if (ctrl->npss > 31) {
		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
		return;
	}

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return;

	if (ctrl->ps_max_latency_us == 0) {
		/* Turn off APST. */
		apste = 0;
1492
		dev_dbg(ctrl->device, "APST disabled\n");
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	} else {
		__le64 target = cpu_to_le64(0);
		int state;

		/*
		 * Walk through all states from lowest- to highest-power.
		 * According to the spec, lower-numbered states use more
		 * power.  NPSS, despite the name, is the index of the
		 * lowest-power state, not the number of states.
		 */
		for (state = (int)ctrl->npss; state >= 0; state--) {
1504
			u64 total_latency_us, exit_latency_us, transition_ms;
1505 1506 1507 1508

			if (target)
				table->entries[state] = target;

1509 1510 1511 1512 1513 1514 1515 1516
			/*
			 * Don't allow transitions to the deepest state
			 * if it's quirked off.
			 */
			if (state == ctrl->npss &&
			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
				continue;

1517 1518 1519 1520 1521 1522 1523 1524
			/*
			 * Is this state a useful non-operational state for
			 * higher-power states to autonomously transition to?
			 */
			if (!(ctrl->psd[state].flags &
			      NVME_PS_FLAGS_NON_OP_STATE))
				continue;

1525 1526 1527
			exit_latency_us =
				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
			if (exit_latency_us > ctrl->ps_max_latency_us)
1528 1529
				continue;

1530 1531 1532 1533
			total_latency_us =
				exit_latency_us +
				le32_to_cpu(ctrl->psd[state].entry_lat);

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
			/*
			 * This state is good.  Use it as the APST idle
			 * target for higher power states.
			 */
			transition_ms = total_latency_us + 19;
			do_div(transition_ms, 20);
			if (transition_ms > (1 << 24) - 1)
				transition_ms = (1 << 24) - 1;

			target = cpu_to_le64((state << 3) |
					     (transition_ms << 8));
1545 1546 1547 1548 1549 1550

			if (max_ps == -1)
				max_ps = state;

			if (total_latency_us > max_lat_us)
				max_lat_us = total_latency_us;
1551 1552 1553
		}

		apste = 1;
1554 1555 1556 1557 1558 1559 1560

		if (max_ps == -1) {
			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
		} else {
			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
				max_ps, max_lat_us, (int)sizeof(*table), table);
		}
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	}

	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
				table, sizeof(*table), NULL);
	if (ret)
		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);

	kfree(table);
}

static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	u64 latency;

	switch (val) {
	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
	case PM_QOS_LATENCY_ANY:
		latency = U64_MAX;
		break;

	default:
		latency = val;
	}

	if (ctrl->ps_max_latency_us != latency) {
		ctrl->ps_max_latency_us = latency;
		nvme_configure_apst(ctrl);
	}
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
struct nvme_core_quirk_entry {
	/*
	 * NVMe model and firmware strings are padded with spaces.  For
	 * simplicity, strings in the quirk table are padded with NULLs
	 * instead.
	 */
	u16 vid;
	const char *mn;
	const char *fr;
	unsigned long quirks;
};

static const struct nvme_core_quirk_entry core_quirks[] = {
1605
	{
1606 1607 1608 1609 1610 1611
		/*
		 * This Toshiba device seems to die using any APST states.  See:
		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
		 */
		.vid = 0x1179,
		.mn = "THNSF5256GPUK TOSHIBA",
1612
		.quirks = NVME_QUIRK_NO_APST,
1613
	}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
};

/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
	size_t matchlen;

	if (!match)
		return true;

	matchlen = strlen(match);
	WARN_ON_ONCE(matchlen > len);

	if (memcmp(idstr, match, matchlen))
		return false;

	for (; matchlen < len; matchlen++)
		if (idstr[matchlen] != ' ')
			return false;

	return true;
}

static bool quirk_matches(const struct nvme_id_ctrl *id,
			  const struct nvme_core_quirk_entry *q)
{
	return q->vid == le16_to_cpu(id->vid) &&
		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
		string_matches(id->fr, q->fr, sizeof(id->fr));
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/*
 * Initialize the cached copies of the Identify data and various controller
 * register in our nvme_ctrl structure.  This should be called as soon as
 * the admin queue is fully up and running.
 */
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
	struct nvme_id_ctrl *id;
	u64 cap;
	int ret, page_shift;
1655
	u32 max_hw_sectors;
1656
	u8 prev_apsta;
1657

1658 1659
	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
	if (ret) {
1660
		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1661 1662 1663
		return ret;
	}

1664 1665
	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
	if (ret) {
1666
		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1667 1668 1669 1670
		return ret;
	}
	page_shift = NVME_CAP_MPSMIN(cap) + 12;

1671
	if (ctrl->vs >= NVME_VS(1, 1, 0))
1672 1673
		ctrl->subsystem = NVME_CAP_NSSRC(cap);

1674 1675
	ret = nvme_identify_ctrl(ctrl, &id);
	if (ret) {
1676
		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1677 1678 1679
		return -EIO;
	}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	if (!ctrl->identified) {
		/*
		 * Check for quirks.  Quirk can depend on firmware version,
		 * so, in principle, the set of quirks present can change
		 * across a reset.  As a possible future enhancement, we
		 * could re-scan for quirks every time we reinitialize
		 * the device, but we'd have to make sure that the driver
		 * behaves intelligently if the quirks change.
		 */

		int i;

		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
			if (quirk_matches(id, &core_quirks[i]))
				ctrl->quirks |= core_quirks[i].quirks;
		}
	}

1698
	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1699
		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1700 1701 1702
		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
	}

1703
	ctrl->oacs = le16_to_cpu(id->oacs);
1704
	ctrl->vid = le16_to_cpu(id->vid);
1705
	ctrl->oncs = le16_to_cpup(&id->oncs);
1706
	atomic_set(&ctrl->abort_limit, id->acl + 1);
1707
	ctrl->vwc = id->vwc;
M
Ming Lin 已提交
1708
	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1709 1710 1711 1712
	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
	memcpy(ctrl->model, id->mn, sizeof(id->mn));
	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
	if (id->mdts)
1713
		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1714
	else
1715 1716 1717
		max_hw_sectors = UINT_MAX;
	ctrl->max_hw_sectors =
		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1718

1719
	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1720
	ctrl->sgls = le32_to_cpu(id->sgls);
S
Sagi Grimberg 已提交
1721
	ctrl->kas = le16_to_cpu(id->kas);
1722

1723 1724
	ctrl->npss = id->npss;
	prev_apsta = ctrl->apsta;
1725 1726
	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
		if (force_apst && id->apsta) {
1727
			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1728 1729 1730 1731 1732 1733 1734
			ctrl->apsta = 1;
		} else {
			ctrl->apsta = 0;
		}
	} else {
		ctrl->apsta = id->apsta;
	}
1735 1736
	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));

1737
	if (ctrl->ops->flags & NVME_F_FABRICS) {
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
		ctrl->icdoff = le16_to_cpu(id->icdoff);
		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
		ctrl->maxcmd = le16_to_cpu(id->maxcmd);

		/*
		 * In fabrics we need to verify the cntlid matches the
		 * admin connect
		 */
		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
			ret = -EINVAL;
S
Sagi Grimberg 已提交
1749 1750

		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1751
			dev_err(ctrl->device,
S
Sagi Grimberg 已提交
1752 1753 1754
				"keep-alive support is mandatory for fabrics\n");
			ret = -EINVAL;
		}
1755 1756
	} else {
		ctrl->cntlid = le16_to_cpu(id->cntlid);
1757 1758
		ctrl->hmpre = le32_to_cpu(id->hmpre);
		ctrl->hmmin = le32_to_cpu(id->hmmin);
1759
	}
1760

1761
	kfree(id);
1762

1763 1764 1765 1766 1767 1768 1769
	if (ctrl->apsta && !prev_apsta)
		dev_pm_qos_expose_latency_tolerance(ctrl->device);
	else if (!ctrl->apsta && prev_apsta)
		dev_pm_qos_hide_latency_tolerance(ctrl->device);

	nvme_configure_apst(ctrl);

1770
	ctrl->identified = true;
1771

1772
	return ret;
1773
}
1774
EXPORT_SYMBOL_GPL(nvme_init_identify);
1775

1776
static int nvme_dev_open(struct inode *inode, struct file *file)
1777
{
1778 1779 1780
	struct nvme_ctrl *ctrl;
	int instance = iminor(inode);
	int ret = -ENODEV;
1781

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	spin_lock(&dev_list_lock);
	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
		if (ctrl->instance != instance)
			continue;

		if (!ctrl->admin_q) {
			ret = -EWOULDBLOCK;
			break;
		}
		if (!kref_get_unless_zero(&ctrl->kref))
			break;
		file->private_data = ctrl;
		ret = 0;
		break;
	}
	spin_unlock(&dev_list_lock);

	return ret;
1800 1801
}

1802
static int nvme_dev_release(struct inode *inode, struct file *file)
1803
{
1804 1805 1806 1807
	nvme_put_ctrl(file->private_data);
	return 0;
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
	struct nvme_ns *ns;
	int ret;

	mutex_lock(&ctrl->namespaces_mutex);
	if (list_empty(&ctrl->namespaces)) {
		ret = -ENOTTY;
		goto out_unlock;
	}

	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1821
		dev_warn(ctrl->device,
1822 1823 1824 1825 1826
			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
		ret = -EINVAL;
		goto out_unlock;
	}

1827
	dev_warn(ctrl->device,
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
	kref_get(&ns->kref);
	mutex_unlock(&ctrl->namespaces_mutex);

	ret = nvme_user_cmd(ctrl, ns, argp);
	nvme_put_ns(ns);
	return ret;

out_unlock:
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
		unsigned long arg)
{
	struct nvme_ctrl *ctrl = file->private_data;
	void __user *argp = (void __user *)arg;

	switch (cmd) {
	case NVME_IOCTL_ADMIN_CMD:
		return nvme_user_cmd(ctrl, NULL, argp);
	case NVME_IOCTL_IO_CMD:
1851
		return nvme_dev_user_cmd(ctrl, argp);
1852
	case NVME_IOCTL_RESET:
1853
		dev_warn(ctrl->device, "resetting controller\n");
1854
		return nvme_reset_ctrl_sync(ctrl);
1855 1856
	case NVME_IOCTL_SUBSYS_RESET:
		return nvme_reset_subsystem(ctrl);
K
Keith Busch 已提交
1857 1858 1859
	case NVME_IOCTL_RESCAN:
		nvme_queue_scan(ctrl);
		return 0;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	default:
		return -ENOTTY;
	}
}

static const struct file_operations nvme_dev_fops = {
	.owner		= THIS_MODULE,
	.open		= nvme_dev_open,
	.release	= nvme_dev_release,
	.unlocked_ioctl	= nvme_dev_ioctl,
	.compat_ioctl	= nvme_dev_ioctl,
};

static ssize_t nvme_sysfs_reset(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	int ret;

1880
	ret = nvme_reset_ctrl_sync(ctrl);
1881 1882 1883
	if (ret < 0)
		return ret;
	return count;
1884
}
1885
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1886

K
Keith Busch 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static ssize_t nvme_sysfs_rescan(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	nvme_queue_scan(ctrl);
	return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);

1898 1899 1900
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1901
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1902 1903 1904 1905
	struct nvme_ctrl *ctrl = ns->ctrl;
	int serial_len = sizeof(ctrl->serial);
	int model_len = sizeof(ctrl->model);

1906 1907
	if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
		return sprintf(buf, "eui.%16phN\n", ns->nguid);
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
		return sprintf(buf, "eui.%8phN\n", ns->eui);

	while (ctrl->serial[serial_len - 1] == ' ')
		serial_len--;
	while (ctrl->model[model_len - 1] == ' ')
		model_len--;

	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
}
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);

1922 1923 1924 1925 1926 1927 1928 1929
static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
	return sprintf(buf, "%pU\n", ns->nguid);
}
static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);

1930 1931 1932
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1933
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

	/* For backward compatibility expose the NGUID to userspace if
	 * we have no UUID set
	 */
	if (uuid_is_null(&ns->uuid)) {
		printk_ratelimited(KERN_WARNING
				   "No UUID available providing old NGUID\n");
		return sprintf(buf, "%pU\n", ns->nguid);
	}
	return sprintf(buf, "%pU\n", &ns->uuid);
1944 1945 1946 1947 1948 1949
}
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);

static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1950
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1951 1952 1953 1954 1955 1956 1957
	return sprintf(buf, "%8phd\n", ns->eui);
}
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);

static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
								char *buf)
{
1958
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1959 1960 1961 1962 1963
	return sprintf(buf, "%d\n", ns->ns_id);
}
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);

static struct attribute *nvme_ns_attrs[] = {
1964
	&dev_attr_wwid.attr,
1965
	&dev_attr_uuid.attr,
1966
	&dev_attr_nguid.attr,
1967 1968 1969 1970 1971
	&dev_attr_eui.attr,
	&dev_attr_nsid.attr,
	NULL,
};

M
Ming Lin 已提交
1972
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1973 1974 1975
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
1976
	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1977 1978

	if (a == &dev_attr_uuid.attr) {
1979 1980 1981 1982 1983
		if (uuid_is_null(&ns->uuid) ||
		    !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
			return 0;
	}
	if (a == &dev_attr_nguid.attr) {
1984
		if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
			return 0;
	}
	if (a == &dev_attr_eui.attr) {
		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
			return 0;
	}
	return a->mode;
}

static const struct attribute_group nvme_ns_attr_group = {
	.attrs		= nvme_ns_attrs,
M
Ming Lin 已提交
1996
	.is_visible	= nvme_ns_attrs_are_visible,
1997 1998
};

M
Ming Lin 已提交
1999
#define nvme_show_str_function(field)						\
2000 2001 2002 2003 2004 2005 2006 2007
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

M
Ming Lin 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
#define nvme_show_int_function(field)						\
static ssize_t  field##_show(struct device *dev,				\
			    struct device_attribute *attr, char *buf)		\
{										\
        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
        return sprintf(buf, "%d\n", ctrl->field);	\
}										\
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);

nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
nvme_show_int_function(cntlid);
2021

M
Ming Lin 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static ssize_t nvme_sysfs_delete(struct device *dev,
				struct device_attribute *attr, const char *buf,
				size_t count)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (device_remove_file_self(dev, attr))
		ctrl->ops->delete_ctrl(ctrl);
	return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);

static ssize_t nvme_sysfs_show_transport(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
static ssize_t nvme_sysfs_show_state(struct device *dev,
				     struct device_attribute *attr,
				     char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
	static const char *const state_name[] = {
		[NVME_CTRL_NEW]		= "new",
		[NVME_CTRL_LIVE]	= "live",
		[NVME_CTRL_RESETTING]	= "resetting",
		[NVME_CTRL_RECONNECTING]= "reconnecting",
		[NVME_CTRL_DELETING]	= "deleting",
		[NVME_CTRL_DEAD]	= "dead",
	};

	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
	    state_name[ctrl->state])
		return sprintf(buf, "%s\n", state_name[ctrl->state]);

	return sprintf(buf, "unknown state\n");
}

static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);

M
Ming Lin 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return snprintf(buf, PAGE_SIZE, "%s\n",
			ctrl->ops->get_subsysnqn(ctrl));
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);

static ssize_t nvme_sysfs_show_address(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);

2088 2089
static struct attribute *nvme_dev_attrs[] = {
	&dev_attr_reset_controller.attr,
K
Keith Busch 已提交
2090
	&dev_attr_rescan_controller.attr,
2091 2092 2093
	&dev_attr_model.attr,
	&dev_attr_serial.attr,
	&dev_attr_firmware_rev.attr,
M
Ming Lin 已提交
2094
	&dev_attr_cntlid.attr,
M
Ming Lin 已提交
2095 2096 2097 2098
	&dev_attr_delete_controller.attr,
	&dev_attr_transport.attr,
	&dev_attr_subsysnqn.attr,
	&dev_attr_address.attr,
2099
	&dev_attr_state.attr,
2100 2101 2102
	NULL
};

M
Ming Lin 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
#define CHECK_ATTR(ctrl, a, name)		\
	if ((a) == &dev_attr_##name.attr &&	\
	    !(ctrl)->ops->get_##name)		\
		return 0

static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
		struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);

	if (a == &dev_attr_delete_controller.attr) {
		if (!ctrl->ops->delete_ctrl)
			return 0;
	}

	CHECK_ATTR(ctrl, a, subsysnqn);
	CHECK_ATTR(ctrl, a, address);

	return a->mode;
}

2125
static struct attribute_group nvme_dev_attrs_group = {
M
Ming Lin 已提交
2126 2127
	.attrs		= nvme_dev_attrs,
	.is_visible	= nvme_dev_attrs_are_visible,
2128 2129 2130 2131 2132 2133 2134
};

static const struct attribute_group *nvme_dev_attr_groups[] = {
	&nvme_dev_attrs_group,
	NULL,
};

2135 2136 2137 2138 2139 2140 2141 2142
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);

	return nsa->ns_id - nsb->ns_id;
}

2143
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2144
{
2145
	struct nvme_ns *ns, *ret = NULL;
2146

2147
	mutex_lock(&ctrl->namespaces_mutex);
2148
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2149 2150 2151 2152 2153
		if (ns->ns_id == nsid) {
			kref_get(&ns->kref);
			ret = ns;
			break;
		}
2154 2155 2156
		if (ns->ns_id > nsid)
			break;
	}
2157 2158
	mutex_unlock(&ctrl->namespaces_mutex);
	return ret;
2159 2160 2161 2162 2163 2164
}

static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
2165 2166
	struct nvme_id_ns *id;
	char disk_name[DISK_NAME_LEN];
2167 2168 2169 2170 2171 2172
	int node = dev_to_node(ctrl->dev);

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return;

2173 2174 2175 2176
	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
	if (ns->instance < 0)
		goto out_free_ns;

2177 2178
	ns->queue = blk_mq_init_queue(ctrl->tagset);
	if (IS_ERR(ns->queue))
2179
		goto out_release_instance;
2180 2181 2182 2183 2184 2185 2186 2187 2188
	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
	ns->queue->queuedata = ns;
	ns->ctrl = ctrl;

	kref_init(&ns->kref);
	ns->ns_id = nsid;
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2189
	nvme_set_queue_limits(ctrl, ns->queue);
2190

2191
	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2192

2193 2194 2195
	if (nvme_revalidate_ns(ns, &id))
		goto out_free_queue;

2196 2197
	if (nvme_nvm_ns_supported(ns, id) &&
				nvme_nvm_register(ns, disk_name, node)) {
2198
		dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2199 2200
		goto out_free_id;
	}
2201

2202 2203 2204
	disk = alloc_disk_node(0, node);
	if (!disk)
		goto out_free_id;
2205

2206 2207 2208 2209 2210 2211 2212 2213
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->flags = GENHD_FL_EXT_DEVT;
	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
	ns->disk = disk;

	__nvme_revalidate_disk(disk, id);
2214

2215 2216 2217 2218
	mutex_lock(&ctrl->namespaces_mutex);
	list_add_tail(&ns->list, &ctrl->namespaces);
	mutex_unlock(&ctrl->namespaces_mutex);

2219
	kref_get(&ctrl->kref);
2220 2221 2222

	kfree(id);

2223
	device_add_disk(ctrl->device, ns->disk);
2224 2225 2226 2227
	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group))
		pr_warn("%s: failed to create sysfs group for identification\n",
			ns->disk->disk_name);
2228 2229 2230
	if (ns->ndev && nvme_nvm_register_sysfs(ns))
		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
			ns->disk->disk_name);
2231
	return;
2232 2233
 out_free_id:
	kfree(id);
2234 2235
 out_free_queue:
	blk_cleanup_queue(ns->queue);
2236 2237
 out_release_instance:
	ida_simple_remove(&ctrl->ns_ida, ns->instance);
2238 2239 2240 2241 2242 2243
 out_free_ns:
	kfree(ns);
}

static void nvme_ns_remove(struct nvme_ns *ns)
{
2244 2245
	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
		return;
2246

2247
	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2248 2249
		if (blk_get_integrity(ns->disk))
			blk_integrity_unregister(ns->disk);
2250 2251
		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
					&nvme_ns_attr_group);
2252 2253
		if (ns->ndev)
			nvme_nvm_unregister_sysfs(ns);
2254 2255 2256
		del_gendisk(ns->disk);
		blk_cleanup_queue(ns->queue);
	}
2257 2258

	mutex_lock(&ns->ctrl->namespaces_mutex);
2259
	list_del_init(&ns->list);
2260 2261
	mutex_unlock(&ns->ctrl->namespaces_mutex);

2262 2263 2264
	nvme_put_ns(ns);
}

2265 2266 2267 2268
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
	struct nvme_ns *ns;

2269
	ns = nvme_find_get_ns(ctrl, nsid);
2270
	if (ns) {
2271
		if (ns->disk && revalidate_disk(ns->disk))
2272
			nvme_ns_remove(ns);
2273
		nvme_put_ns(ns);
2274 2275 2276 2277
	} else
		nvme_alloc_ns(ctrl, nsid);
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
					unsigned nsid)
{
	struct nvme_ns *ns, *next;

	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
		if (ns->ns_id > nsid)
			nvme_ns_remove(ns);
	}
}

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
{
	struct nvme_ns *ns;
	__le32 *ns_list;
	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
	int ret = 0;

	ns_list = kzalloc(0x1000, GFP_KERNEL);
	if (!ns_list)
		return -ENOMEM;

	for (i = 0; i < num_lists; i++) {
		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
		if (ret)
2303
			goto free;
2304 2305 2306 2307 2308 2309 2310 2311 2312

		for (j = 0; j < min(nn, 1024U); j++) {
			nsid = le32_to_cpu(ns_list[j]);
			if (!nsid)
				goto out;

			nvme_validate_ns(ctrl, nsid);

			while (++prev < nsid) {
2313 2314
				ns = nvme_find_get_ns(ctrl, prev);
				if (ns) {
2315
					nvme_ns_remove(ns);
2316 2317
					nvme_put_ns(ns);
				}
2318 2319 2320 2321 2322
			}
		}
		nn -= j;
	}
 out:
2323 2324
	nvme_remove_invalid_namespaces(ctrl, prev);
 free:
2325 2326 2327 2328
	kfree(ns_list);
	return ret;
}

2329
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2330 2331 2332
{
	unsigned i;

2333 2334 2335
	for (i = 1; i <= nn; i++)
		nvme_validate_ns(ctrl, i);

2336
	nvme_remove_invalid_namespaces(ctrl, nn);
2337 2338
}

2339
static void nvme_scan_work(struct work_struct *work)
2340
{
2341 2342
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, scan_work);
2343
	struct nvme_id_ctrl *id;
2344
	unsigned nn;
2345

2346 2347 2348
	if (ctrl->state != NVME_CTRL_LIVE)
		return;

2349 2350
	if (nvme_identify_ctrl(ctrl, &id))
		return;
2351 2352

	nn = le32_to_cpu(id->nn);
2353
	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2354 2355 2356 2357
	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
		if (!nvme_scan_ns_list(ctrl, nn))
			goto done;
	}
2358
	nvme_scan_ns_sequential(ctrl, nn);
2359
 done:
2360
	mutex_lock(&ctrl->namespaces_mutex);
2361
	list_sort(NULL, &ctrl->namespaces, ns_cmp);
2362
	mutex_unlock(&ctrl->namespaces_mutex);
2363 2364
	kfree(id);
}
2365 2366 2367 2368 2369 2370 2371 2372

void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
	/*
	 * Do not queue new scan work when a controller is reset during
	 * removal.
	 */
	if (ctrl->state == NVME_CTRL_LIVE)
2373
		queue_work(nvme_wq, &ctrl->scan_work);
2374 2375
}
EXPORT_SYMBOL_GPL(nvme_queue_scan);
2376

2377 2378 2379 2380 2381
/*
 * This function iterates the namespace list unlocked to allow recovery from
 * controller failure. It is up to the caller to ensure the namespace list is
 * not modified by scan work while this function is executing.
 */
2382 2383 2384 2385
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns, *next;

2386 2387 2388 2389 2390 2391 2392 2393 2394
	/*
	 * The dead states indicates the controller was not gracefully
	 * disconnected. In that case, we won't be able to flush any data while
	 * removing the namespaces' disks; fail all the queues now to avoid
	 * potentially having to clean up the failed sync later.
	 */
	if (ctrl->state == NVME_CTRL_DEAD)
		nvme_kill_queues(ctrl);

2395 2396 2397
	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
		nvme_ns_remove(ns);
}
2398
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2399

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
static void nvme_async_event_work(struct work_struct *work)
{
	struct nvme_ctrl *ctrl =
		container_of(work, struct nvme_ctrl, async_event_work);

	spin_lock_irq(&ctrl->lock);
	while (ctrl->event_limit > 0) {
		int aer_idx = --ctrl->event_limit;

		spin_unlock_irq(&ctrl->lock);
		ctrl->ops->submit_async_event(ctrl, aer_idx);
		spin_lock_irq(&ctrl->lock);
	}
	spin_unlock_irq(&ctrl->lock);
}

2416 2417
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
		union nvme_result *res)
2418
{
2419 2420
	u32 result = le32_to_cpu(res->u32);
	bool done = true;
2421

2422 2423 2424 2425 2426
	switch (le16_to_cpu(status) >> 1) {
	case NVME_SC_SUCCESS:
		done = false;
		/*FALLTHRU*/
	case NVME_SC_ABORT_REQ:
2427
		++ctrl->event_limit;
2428
		queue_work(nvme_wq, &ctrl->async_event_work);
2429 2430 2431
		break;
	default:
		break;
2432 2433
	}

2434
	if (done)
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		return;

	switch (result & 0xff07) {
	case NVME_AER_NOTICE_NS_CHANGED:
		dev_info(ctrl->device, "rescanning\n");
		nvme_queue_scan(ctrl);
		break;
	default:
		dev_warn(ctrl->device, "async event result %08x\n", result);
	}
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);

void nvme_queue_async_events(struct nvme_ctrl *ctrl)
{
	ctrl->event_limit = NVME_NR_AERS;
2451
	queue_work(nvme_wq, &ctrl->async_event_work);
2452 2453 2454
}
EXPORT_SYMBOL_GPL(nvme_queue_async_events);

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
static DEFINE_IDA(nvme_instance_ida);

static int nvme_set_instance(struct nvme_ctrl *ctrl)
{
	int instance, error;

	do {
		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
			return -ENODEV;

		spin_lock(&dev_list_lock);
		error = ida_get_new(&nvme_instance_ida, &instance);
		spin_unlock(&dev_list_lock);
	} while (error == -EAGAIN);

	if (error)
		return -ENODEV;

	ctrl->instance = instance;
	return 0;
}

static void nvme_release_instance(struct nvme_ctrl *ctrl)
{
	spin_lock(&dev_list_lock);
	ida_remove(&nvme_instance_ida, ctrl->instance);
	spin_unlock(&dev_list_lock);
}

2484
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2485
{
2486
	flush_work(&ctrl->async_event_work);
2487 2488 2489
	flush_work(&ctrl->scan_work);
	nvme_remove_namespaces(ctrl);

2490
	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2491 2492 2493 2494

	spin_lock(&dev_list_lock);
	list_del(&ctrl->node);
	spin_unlock(&dev_list_lock);
2495
}
2496
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2497 2498 2499 2500

static void nvme_free_ctrl(struct kref *kref)
{
	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2501 2502 2503

	put_device(ctrl->device);
	nvme_release_instance(ctrl);
2504
	ida_destroy(&ctrl->ns_ida);
2505 2506 2507 2508 2509 2510 2511 2512

	ctrl->ops->free_ctrl(ctrl);
}

void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
	kref_put(&ctrl->kref, nvme_free_ctrl);
}
2513
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

/*
 * Initialize a NVMe controller structures.  This needs to be called during
 * earliest initialization so that we have the initialized structured around
 * during probing.
 */
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
		const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
	int ret;

2525 2526
	ctrl->state = NVME_CTRL_NEW;
	spin_lock_init(&ctrl->lock);
2527
	INIT_LIST_HEAD(&ctrl->namespaces);
2528
	mutex_init(&ctrl->namespaces_mutex);
2529 2530 2531 2532
	kref_init(&ctrl->kref);
	ctrl->dev = dev;
	ctrl->ops = ops;
	ctrl->quirks = quirks;
2533
	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2534
	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2535 2536 2537 2538 2539

	ret = nvme_set_instance(ctrl);
	if (ret)
		goto out;

2540
	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2541
				MKDEV(nvme_char_major, ctrl->instance),
2542
				ctrl, nvme_dev_attr_groups,
2543
				"nvme%d", ctrl->instance);
2544 2545 2546 2547 2548
	if (IS_ERR(ctrl->device)) {
		ret = PTR_ERR(ctrl->device);
		goto out_release_instance;
	}
	get_device(ctrl->device);
2549
	ida_init(&ctrl->ns_ida);
2550 2551 2552 2553 2554

	spin_lock(&dev_list_lock);
	list_add_tail(&ctrl->node, &nvme_ctrl_list);
	spin_unlock(&dev_list_lock);

2555 2556 2557 2558 2559 2560 2561 2562
	/*
	 * Initialize latency tolerance controls.  The sysfs files won't
	 * be visible to userspace unless the device actually supports APST.
	 */
	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
		min(default_ps_max_latency_us, (unsigned long)S32_MAX));

2563 2564 2565 2566 2567 2568
	return 0;
out_release_instance:
	nvme_release_instance(ctrl);
out:
	return ret;
}
2569
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2570

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/**
 * nvme_kill_queues(): Ends all namespace queues
 * @ctrl: the dead controller that needs to end
 *
 * Call this function when the driver determines it is unable to get the
 * controller in a state capable of servicing IO.
 */
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

2582
	mutex_lock(&ctrl->namespaces_mutex);
M
Ming Lei 已提交
2583 2584 2585 2586

	/* Forcibly start all queues to avoid having stuck requests */
	blk_mq_start_hw_queues(ctrl->admin_q);

2587
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2588 2589 2590 2591
		/*
		 * Revalidating a dead namespace sets capacity to 0. This will
		 * end buffered writers dirtying pages that can't be synced.
		 */
2592 2593 2594
		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
			continue;
		revalidate_disk(ns->disk);
2595
		blk_set_queue_dying(ns->queue);
2596 2597 2598 2599 2600 2601 2602

		/*
		 * Forcibly start all queues to avoid having stuck requests.
		 * Note that we must ensure the queues are not stopped
		 * when the final removal happens.
		 */
		blk_mq_start_hw_queues(ns->queue);
2603 2604 2605

		/* draining requests in requeue list */
		blk_mq_kick_requeue_list(ns->queue);
2606
	}
2607
	mutex_unlock(&ctrl->namespaces_mutex);
2608
}
2609
EXPORT_SYMBOL_GPL(nvme_kill_queues);
2610

K
Keith Busch 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_unfreeze_queue(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);

void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
		if (timeout <= 0)
			break;
	}
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);

void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
		blk_mq_freeze_queue_wait(ns->queue);
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);

void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
	struct nvme_ns *ns;

	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list)
2653
		blk_freeze_queue_start(ns->queue);
K
Keith Busch 已提交
2654 2655 2656 2657
	mutex_unlock(&ctrl->namespaces_mutex);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);

2658
void nvme_stop_queues(struct nvme_ctrl *ctrl)
2659 2660 2661
{
	struct nvme_ns *ns;

2662
	mutex_lock(&ctrl->namespaces_mutex);
2663
	list_for_each_entry(ns, &ctrl->namespaces, list)
2664
		blk_mq_quiesce_queue(ns->queue);
2665
	mutex_unlock(&ctrl->namespaces_mutex);
2666
}
2667
EXPORT_SYMBOL_GPL(nvme_stop_queues);
2668

2669
void nvme_start_queues(struct nvme_ctrl *ctrl)
2670 2671 2672
{
	struct nvme_ns *ns;

2673 2674
	mutex_lock(&ctrl->namespaces_mutex);
	list_for_each_entry(ns, &ctrl->namespaces, list) {
2675 2676 2677
		blk_mq_start_stopped_hw_queues(ns->queue, true);
		blk_mq_kick_requeue_list(ns->queue);
	}
2678
	mutex_unlock(&ctrl->namespaces_mutex);
2679
}
2680
EXPORT_SYMBOL_GPL(nvme_start_queues);
2681

2682 2683 2684 2685
int __init nvme_core_init(void)
{
	int result;

2686 2687 2688 2689 2690
	nvme_wq = alloc_workqueue("nvme-wq",
			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
	if (!nvme_wq)
		return -ENOMEM;

2691 2692 2693
	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
2694
		goto destroy_wq;
2695 2696 2697 2698 2699 2700 2701 2702 2703
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (IS_ERR(nvme_class)) {
		result = PTR_ERR(nvme_class);
		goto unregister_chrdev;
	}

2704
	return 0;
2705

2706
unregister_chrdev:
2707
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2708 2709
destroy_wq:
	destroy_workqueue(nvme_wq);
2710
	return result;
2711 2712 2713 2714
}

void nvme_core_exit(void)
{
2715 2716
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2717
	destroy_workqueue(nvme_wq);
2718
}
2719 2720 2721 2722 2723

MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);