intel_lrc.c 65.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233
static int intel_lr_context_pin(struct i915_gem_context *ctx,
234
				struct intel_engine_cs *engine);
235 236 237 238
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
239

240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242
 * @dev_priv: i915 device private
243 244 245
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
246
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 248 249
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
250
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251
{
252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 257
		return 1;

258
	if (INTEL_GEN(dev_priv) >= 9)
259 260
		return 1;

261 262 263
	if (enable_execlists == 0)
		return 0;

264 265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_i915_private *dev_priv = engine->i915;
276

277 278 279 280
	engine->disable_lite_restore_wa =
		(IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
		 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
		(engine->id == VCS || engine->id == VCS2);
281

282
	engine->ctx_desc_template = GEN8_CTX_VALID;
283
	if (IS_GEN8(dev_priv))
284 285
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286 287 288 289 290 291 292

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293 294
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 296
}

297
/**
298 299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
301
 * @engine: Engine the descriptor will be used with
302
 *
303 304 305 306 307
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
308 309 310 311 312 313 314
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
315
 */
316
static void
317
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
318
				   struct intel_engine_cs *engine)
319
{
320
	struct intel_context *ce = &ctx->engine[engine->id];
321
	u64 desc;
322

323
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324

325 326
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
327
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
328
								/* bits 12-31 */
329
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
330

331
	ce->lrc_desc = desc;
332 333
}

334
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
335
				     struct intel_engine_cs *engine)
336
{
337
	return ctx->engine[engine->id].lrc_desc;
338
}
339

340 341 342
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
343
{
344 345 346 347 348 349
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
350

351
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
352 353
}

354 355 356 357 358 359 360 361 362
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

363
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
364
{
365
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
366
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
367
	u32 *reg_state = ce->lrc_reg_state;
368

369
	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
370

371 372 373 374 375 376 377
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
378 379

	return ce->lrc_desc;
380 381
}

382
static void execlists_submit_ports(struct intel_engine_cs *engine)
383
{
384 385
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
386 387 388 389
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

390 391 392 393 394 395 396 397 398 399 400 401
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
402 403 404
	} else {
		desc[1] = 0;
	}
405
	GEM_BUG_ON(desc[0] == desc[1]);
406 407 408 409 410 411 412 413 414 415

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

416
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
417
{
418 419 420
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
421

422 423 424 425 426
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
427

428 429
	if (ctx_single_port_submission(prev))
		return false;
430

431
	return true;
432 433
}

434
static void execlists_dequeue(struct intel_engine_cs *engine)
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448
	struct drm_i915_gem_request *cursor, *last;
	struct execlist_port *port = engine->execlist_port;
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
		 * as we resubmit the request. See gen8_emit_request()
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
449

450
	GEM_BUG_ON(port[1].request);
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
471
	 */
472

473 474 475 476 477
	spin_lock(&engine->execlist_lock);
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
478
		 *
479 480 481 482
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
483
		 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
		last = cursor;
		submit = true;
	}
	if (submit) {
		/* Decouple all the requests submitted from the queue */
		engine->execlist_queue.next = &cursor->execlist_link;
		cursor->execlist_link.prev = &engine->execlist_queue;

		i915_gem_request_assign(&port->request, last);
514
	}
515
	spin_unlock(&engine->execlist_lock);
516

517 518
	if (submit)
		execlists_submit_ports(engine);
519 520
}

521
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
522
{
523
	return !engine->execlist_port[0].request;
524 525
}

526
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
527
{
528
	int port;
B
Ben Widawsky 已提交
529

530 531 532
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
533

534
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
535 536
}

537
/*
538 539 540
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
541
static void intel_lrc_irq_handler(unsigned long data)
542
{
543
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
544
	struct execlist_port *port = engine->execlist_port;
545
	struct drm_i915_private *dev_priv = engine->i915;
546

547
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
580

581 582
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
583 584
		}

585 586 587
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
588 589
	}

590 591
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
592

593
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
594 595
}

596
static void execlists_submit_request(struct drm_i915_gem_request *request)
597
{
598
	struct intel_engine_cs *engine = request->engine;
599
	unsigned long flags;
600

601
	spin_lock_irqsave(&engine->execlist_lock, flags);
602

603
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
604 605
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
606

607
	spin_unlock_irqrestore(&engine->execlist_lock, flags);
608 609
}

610
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
611
{
612
	struct intel_engine_cs *engine = request->engine;
613
	struct intel_context *ce = &request->ctx->engine[engine->id];
614
	int ret;
615

616 617 618 619
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
620
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
621

622
	if (!ce->state) {
623 624 625 626 627
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

628
	request->ring = ce->ring;
629

630 631 632 633
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;

634 635 636 637 638 639
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
640
		ret = i915_guc_wq_reserve(request);
641
		if (ret)
642
			goto err_unpin;
643 644
	}

645 646
	ret = intel_ring_begin(request, 0);
	if (ret)
647
		goto err_unreserve;
648

649
	if (!ce->initialised) {
650 651
		ret = engine->init_context(request);
		if (ret)
652
			goto err_unreserve;
653

654
		ce->initialised = true;
655 656 657 658 659 660 661 662 663
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

664
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
665 666
	return 0;

667 668 669
err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
670
err_unpin:
671
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
672
	return ret;
673 674 675
}

/*
676
 * intel_logical_ring_advance() - advance the tail and prepare for submission
677
 * @request: Request to advance the logical ringbuffer of.
678 679 680 681 682 683
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
684
static int
685
intel_logical_ring_advance(struct drm_i915_gem_request *request)
686
{
687
	struct intel_ring *ring = request->ring;
688
	struct intel_engine_cs *engine = request->engine;
689

690 691
	intel_ring_advance(ring);
	request->tail = ring->tail;
692

693 694 695 696 697 698
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
699 700 701
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
702
	request->wa_tail = ring->tail;
703

704 705 706 707 708 709 710 711
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
712
	return 0;
713 714
}

715
static int intel_lr_context_pin(struct i915_gem_context *ctx,
716
				struct intel_engine_cs *engine)
717
{
718
	struct intel_context *ce = &ctx->engine[engine->id];
719
	void *vaddr;
720
	int ret;
721

722
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
723

724
	if (ce->pin_count++)
725 726
		return 0;

727 728
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
729
	if (ret)
730
		goto err;
731

732
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
733 734
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
735
		goto unpin_vma;
736 737
	}

738
	ret = intel_ring_pin(ce->ring);
739
	if (ret)
740
		goto unpin_map;
741

742
	intel_lr_context_descriptor_update(ctx, engine);
743

744 745
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
746
		i915_ggtt_offset(ce->ring->vma);
747

748
	ce->state->obj->dirty = true;
749

750
	/* Invalidate GuC TLB. */
751 752
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
753
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
754
	}
755

756
	i915_gem_context_get(ctx);
757
	return 0;
758

759
unpin_map:
760 761 762
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
763
err:
764
	ce->pin_count = 0;
765 766 767
	return ret;
}

768
void intel_lr_context_unpin(struct i915_gem_context *ctx,
769
			    struct intel_engine_cs *engine)
770
{
771
	struct intel_context *ce = &ctx->engine[engine->id];
772

773
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
774
	GEM_BUG_ON(ce->pin_count == 0);
775

776
	if (--ce->pin_count)
777
		return;
778

779
	intel_ring_unpin(ce->ring);
780

781 782
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
783

784
	i915_gem_context_put(ctx);
785 786
}

787
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
788 789
{
	int ret, i;
790
	struct intel_ring *ring = req->ring;
791
	struct i915_workarounds *w = &req->i915->workarounds;
792

793
	if (w->count == 0)
794 795
		return 0;

796
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
797 798 799
	if (ret)
		return ret;

800
	ret = intel_ring_begin(req, w->count * 2 + 2);
801 802 803
	if (ret)
		return ret;

804
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
805
	for (i = 0; i < w->count; i++) {
806 807
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
808
	}
809
	intel_ring_emit(ring, MI_NOOP);
810

811
	intel_ring_advance(ring);
812

813
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
814 815 816 817 818 819
	if (ret)
		return ret;

	return 0;
}

820
#define wa_ctx_emit(batch, index, cmd)					\
821
	do {								\
822 823
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
824 825
			return -ENOSPC;					\
		}							\
826
		batch[__index] = (cmd);					\
827 828
	} while (0)

V
Ville Syrjälä 已提交
829
#define wa_ctx_emit_reg(batch, index, reg) \
830
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
848
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
849
						uint32_t *batch,
850 851
						uint32_t index)
{
D
Dave Airlie 已提交
852
	struct drm_i915_private *dev_priv = engine->i915;
853 854
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

855
	/*
856
	 * WaDisableLSQCROPERFforOCL:skl,kbl
857 858 859 860
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
861 862
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
863 864
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

865
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
866
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
867
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
868
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
869 870 871
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
872
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
873 874 875 876 877 878 879 880 881 882
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

883
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
884
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
885
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
886
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
887
	wa_ctx_emit(batch, index, 0);
888 889 890 891

	return index;
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

911 912 913 914 915 916
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
917
 *
918 919
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
920
 *
921 922 923 924
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
925
 */
926
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
927
				    struct i915_wa_ctx_bb *wa_ctx,
928
				    uint32_t *batch,
929 930
				    uint32_t *offset)
{
931
	uint32_t scratch_addr;
932 933
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

934
	/* WaDisableCtxRestoreArbitration:bdw,chv */
935
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
936

937
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
938
	if (IS_BROADWELL(engine->i915)) {
939
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
940 941 942
		if (rc < 0)
			return rc;
		index = rc;
943 944
	}

945 946
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
947
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
948

949 950 951 952 953 954 955 956 957
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
958

959 960
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
961
		wa_ctx_emit(batch, index, MI_NOOP);
962 963 964 965 966 967 968 969 970 971

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

972 973 974
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
975
 *
976
 *  The number of DWORDS written are returned using this field.
977 978 979 980
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
981
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
982
			       struct i915_wa_ctx_bb *wa_ctx,
983
			       uint32_t *batch,
984 985 986 987
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

988
	/* WaDisableCtxRestoreArbitration:bdw,chv */
989
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
990

991
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
992 993 994 995

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

996
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
997
				    struct i915_wa_ctx_bb *wa_ctx,
998
				    uint32_t *batch,
999 1000
				    uint32_t *offset)
{
1001
	int ret;
D
Dave Airlie 已提交
1002
	struct drm_i915_private *dev_priv = engine->i915;
1003 1004
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1005
	/* WaDisableCtxRestoreArbitration:skl,bxt */
D
Dave Airlie 已提交
1006 1007
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1008
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1009

1010
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1011
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1012 1013 1014 1015
	if (ret < 0)
		return ret;
	index = ret;

1016 1017 1018 1019 1020 1021 1022
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1023 1024
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1025
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1026
		u32 scratch_addr =
1027
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1064 1065 1066 1067 1068 1069 1070
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1071
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1072
			       struct i915_wa_ctx_bb *wa_ctx,
1073
			       uint32_t *batch,
1074 1075 1076 1077
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1078
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1079 1080
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1081
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1082
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1083 1084 1085 1086 1087
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1088
	/* WaClearTdlStateAckDirtyBits:bxt */
1089
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1107
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1108 1109
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1110 1111
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1112 1113 1114 1115 1116
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1117
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1118
{
1119 1120 1121
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1122

1123 1124 1125
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1126

1127 1128 1129 1130
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1131 1132
	}

1133 1134 1135 1136 1137
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1138
	return 0;
1139 1140 1141 1142

err:
	i915_gem_object_put(obj);
	return err;
1143 1144
}

1145
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1146
{
1147
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1148 1149
}

1150
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1151
{
1152
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1153 1154 1155
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1156
	int ret;
1157

1158
	WARN_ON(engine->id != RCS);
1159

1160
	/* update this when WA for higher Gen are added */
1161
	if (INTEL_GEN(engine->i915) > 9) {
1162
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1163
			  INTEL_GEN(engine->i915));
1164
		return 0;
1165
	}
1166

1167
	/* some WA perform writes to scratch page, ensure it is valid */
1168
	if (!engine->scratch) {
1169
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1170 1171 1172
		return -EINVAL;
	}

1173
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1174 1175 1176 1177 1178
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1179
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1180 1181 1182
	batch = kmap_atomic(page);
	offset = 0;

1183
	if (IS_GEN8(engine->i915)) {
1184
		ret = gen8_init_indirectctx_bb(engine,
1185 1186 1187 1188 1189 1190
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1191
		ret = gen8_init_perctx_bb(engine,
1192 1193 1194 1195 1196
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1197
	} else if (IS_GEN9(engine->i915)) {
1198
		ret = gen9_init_indirectctx_bb(engine,
1199 1200 1201 1202 1203 1204
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1205
		ret = gen9_init_perctx_bb(engine,
1206 1207 1208 1209 1210
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1211 1212 1213 1214 1215
	}

out:
	kunmap_atomic(batch);
	if (ret)
1216
		lrc_destroy_wa_ctx_obj(engine);
1217 1218 1219 1220

	return ret;
}

1221 1222
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1223
	struct drm_i915_private *dev_priv = engine->i915;
1224 1225

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1226
		   engine->status_page.ggtt_offset);
1227 1228 1229
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1230
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1231
{
1232
	struct drm_i915_private *dev_priv = engine->i915;
1233 1234 1235 1236 1237
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1238

1239
	lrc_init_hws(engine);
1240

1241
	intel_engine_reset_breadcrumbs(engine);
1242

1243
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1244

1245
	I915_WRITE(RING_MODE_GEN7(engine),
1246 1247
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1248

1249
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1250

1251
	intel_engine_init_hangcheck(engine);
1252

1253 1254 1255 1256
	if (!execlists_elsp_idle(engine))
		execlists_submit_ports(engine);

	return 0;
1257 1258
}

1259
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1260
{
1261
	struct drm_i915_private *dev_priv = engine->i915;
1262 1263
	int ret;

1264
	ret = gen8_init_common_ring(engine);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1278
	return init_workarounds_ring(engine);
1279 1280
}

1281
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1282 1283 1284
{
	int ret;

1285
	ret = gen8_init_common_ring(engine);
1286 1287 1288
	if (ret)
		return ret;

1289
	return init_workarounds_ring(engine);
1290 1291
}

1292 1293 1294 1295 1296 1297 1298
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1309
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1310 1311
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1312
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	/* CS is stopped, and we will resubmit both ports on resume */
	GEM_BUG_ON(request->ctx != port[0].request->ctx);
	port[0].count = 0;
	port[1].count = 0;
1333 1334 1335

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1336 1337
}

1338 1339 1340
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1341
	struct intel_ring *ring = req->ring;
1342
	struct intel_engine_cs *engine = req->engine;
1343 1344 1345
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1346
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1347 1348 1349
	if (ret)
		return ret;

1350
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1351 1352 1353
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1354 1355 1356 1357
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1358 1359
	}

1360 1361
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1362 1363 1364 1365

	return 0;
}

1366
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1367 1368
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1369
{
1370
	struct intel_ring *ring = req->ring;
1371
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1372 1373
	int ret;

1374 1375 1376 1377
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1378 1379
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1380
	if (req->ctx->ppgtt &&
1381
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1382
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1383
		    !intel_vgpu_active(req->i915)) {
1384 1385 1386 1387
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1388

1389
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1390 1391
	}

1392
	ret = intel_ring_begin(req, 4);
1393 1394 1395 1396
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1397 1398 1399 1400 1401 1402 1403 1404
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1405 1406 1407 1408

	return 0;
}

1409
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1410
{
1411
	struct drm_i915_private *dev_priv = engine->i915;
1412 1413 1414
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1415 1416
}

1417
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1418
{
1419
	struct drm_i915_private *dev_priv = engine->i915;
1420
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1421 1422
}

1423
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1424
{
1425 1426
	struct intel_ring *ring = request->ring;
	u32 cmd;
1427 1428
	int ret;

1429
	ret = intel_ring_begin(request, 4);
1430 1431 1432 1433 1434
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1435 1436 1437 1438 1439 1440 1441
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1442
	if (mode & EMIT_INVALIDATE) {
1443
		cmd |= MI_INVALIDATE_TLB;
1444
		if (request->engine->id == VCS)
1445
			cmd |= MI_INVALIDATE_BSD;
1446 1447
	}

1448 1449 1450 1451 1452 1453 1454
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1455 1456 1457 1458

	return 0;
}

1459
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1460
				  u32 mode)
1461
{
1462
	struct intel_ring *ring = request->ring;
1463
	struct intel_engine_cs *engine = request->engine;
1464 1465
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1466
	bool vf_flush_wa = false, dc_flush_wa = false;
1467 1468
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1469
	int len;
1470 1471 1472

	flags |= PIPE_CONTROL_CS_STALL;

1473
	if (mode & EMIT_FLUSH) {
1474 1475
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1476
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1477
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1478 1479
	}

1480
	if (mode & EMIT_INVALIDATE) {
1481 1482 1483 1484 1485 1486 1487 1488 1489
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1490 1491 1492 1493
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1494
		if (IS_GEN9(request->i915))
1495
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1496 1497 1498 1499

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1500
	}
1501

M
Mika Kuoppala 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1511 1512 1513
	if (ret)
		return ret;

1514
	if (vf_flush_wa) {
1515 1516 1517 1518 1519 1520
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1521 1522
	}

M
Mika Kuoppala 已提交
1523
	if (dc_flush_wa) {
1524 1525 1526 1527 1528 1529
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1530 1531
	}

1532 1533 1534 1535 1536 1537
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1538 1539

	if (dc_flush_wa) {
1540 1541 1542 1543 1544 1545
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1546 1547
	}

1548
	intel_ring_advance(ring);
1549 1550 1551 1552

	return 0;
}

1553
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1565
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1566 1567
}

1568 1569 1570 1571 1572 1573
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */

1574
static int gen8_emit_request(struct drm_i915_gem_request *request)
1575
{
1576
	struct intel_ring *ring = request->ring;
1577 1578
	int ret;

1579
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1580 1581 1582
	if (ret)
		return ret;

1583 1584
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1585

1586 1587 1588 1589 1590 1591 1592 1593
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1594
	return intel_logical_ring_advance(request);
1595
}
1596

1597 1598
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1599
	struct intel_ring *ring = request->ring;
1600
	int ret;
1601

1602
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1603 1604 1605
	if (ret)
		return ret;

1606 1607 1608
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1609 1610 1611 1612
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1613 1614 1615 1616 1617 1618 1619 1620
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1621
	/* We're thrashing one dword of HWS. */
1622 1623 1624
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1625
	return intel_logical_ring_advance(request);
1626 1627
}

1628
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1629 1630 1631
{
	int ret;

1632
	ret = intel_logical_ring_workarounds_emit(req);
1633 1634 1635
	if (ret)
		return ret;

1636 1637 1638 1639 1640 1641 1642 1643
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1644
	return i915_gem_render_state_init(req);
1645 1646
}

1647 1648
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1649
 * @engine: Engine Command Streamer.
1650
 */
1651
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1652
{
1653
	struct drm_i915_private *dev_priv;
1654

1655
	if (!intel_engine_initialized(engine))
1656 1657
		return;

1658 1659 1660 1661 1662 1663 1664
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1665
	dev_priv = engine->i915;
1666

1667 1668
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1669
	}
1670

1671 1672
	if (engine->cleanup)
		engine->cleanup(engine);
1673

1674
	intel_engine_cleanup_common(engine);
1675

1676 1677 1678
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1679
	}
1680
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1681

1682
	lrc_destroy_wa_ctx_obj(engine);
1683
	engine->i915 = NULL;
1684 1685
}

1686 1687 1688 1689 1690
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv)
1691
		engine->submit_request = execlists_submit_request;
1692 1693
}

1694
static void
1695
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1696 1697
{
	/* Default vfuncs which can be overriden by each engine. */
1698
	engine->init_hw = gen8_init_common_ring;
1699
	engine->reset_hw = reset_common_ring;
1700
	engine->emit_flush = gen8_emit_flush;
1701
	engine->emit_request = gen8_emit_request;
1702
	engine->submit_request = execlists_submit_request;
1703

1704 1705
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1706
	engine->emit_bb_start = gen8_emit_bb_start;
1707
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1708
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1709 1710
}

1711
static inline void
1712
logical_ring_default_irqs(struct intel_engine_cs *engine)
1713
{
1714
	unsigned shift = engine->irq_shift;
1715 1716
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1717 1718
}

1719
static int
1720
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1721
{
1722
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1723
	void *hws;
1724 1725

	/* The HWSP is part of the default context object in LRC mode. */
1726
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1727 1728
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1729 1730

	engine->status_page.page_addr = hws + hws_offset;
1731
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1732
	engine->status_page.vma = vma;
1733 1734

	return 0;
1735 1736
}

1737 1738 1739 1740 1741 1742
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1743 1744
	intel_engine_setup_common(engine);

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1770 1771 1772 1773 1774 1775
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1776
	ret = intel_engine_init_common(engine);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1806
int logical_render_ring_init(struct intel_engine_cs *engine)
1807 1808 1809 1810
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1811 1812
	logical_ring_setup(engine);

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

1825
	ret = intel_engine_create_scratch(engine, 4096);
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1848
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1849 1850 1851 1852
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1853 1854
}

1855
static u32
1856
make_rpcs(struct drm_i915_private *dev_priv)
1857 1858 1859 1860 1861 1862 1863
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1864
	if (INTEL_GEN(dev_priv) < 9)
1865 1866 1867 1868 1869 1870 1871 1872
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1873
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1874
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1875
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1876 1877 1878 1879
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1880
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1881
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1882
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1883 1884 1885 1886
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1887 1888
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1889
			GEN8_RPCS_EU_MIN_SHIFT;
1890
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1891 1892 1893 1894 1895 1896 1897
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1898
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1899 1900 1901
{
	u32 indirect_ctx_offset;

1902
	switch (INTEL_GEN(engine->i915)) {
1903
	default:
1904
		MISSING_CASE(INTEL_GEN(engine->i915));
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1919 1920 1921 1922
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1923
{
1924 1925
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1926 1927 1928 1929 1930 1931

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1932
	reg_state[CTX_LRI_HEADER_0] =
1933 1934 1935
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1936 1937
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1938
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1939
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1940 1941 1942 1943 1944 1945 1946 1947
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1948
		       ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1949 1950 1951 1952 1953 1954
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1955
		       RING_BB_PPGTT);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1969
		if (engine->wa_ctx.vma) {
1970
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1971
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1972 1973 1974 1975 1976 1977

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1978
				intel_lr_indirect_ctx_offset(engine) << 6;
1979 1980 1981 1982 1983

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1984
	}
1985
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1986 1987
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1988
	/* PDP values well be assigned later if needed */
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2018
		execlists_update_context_pdps(ppgtt, reg_state);
2019 2020
	}

2021
	if (engine->id == RCS) {
2022
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2023
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2024
			       make_rpcs(dev_priv));
2025
	}
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
	ctx_obj->dirty = true;

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2056

2057
	i915_gem_object_unpin_map(ctx_obj);
2058 2059 2060 2061

	return 0;
}

2062 2063
/**
 * intel_lr_context_size() - return the size of the context for an engine
2064
 * @engine: which engine to find the context size for
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2076
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2077 2078 2079
{
	int ret = 0;

2080
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2081

2082
	switch (engine->id) {
2083
	case RCS:
2084
		if (INTEL_GEN(engine->i915) >= 9)
2085 2086 2087
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2098 2099
}

2100
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2101
					    struct intel_engine_cs *engine)
2102
{
2103
	struct drm_i915_gem_object *ctx_obj;
2104
	struct intel_context *ce = &ctx->engine[engine->id];
2105
	struct i915_vma *vma;
2106
	uint32_t context_size;
2107
	struct intel_ring *ring;
2108 2109
	int ret;

2110
	WARN_ON(ce->state);
2111

2112
	context_size = round_up(intel_lr_context_size(engine), 4096);
2113

2114 2115 2116
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2117
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2118
	if (IS_ERR(ctx_obj)) {
2119
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2120
		return PTR_ERR(ctx_obj);
2121 2122
	}

2123 2124 2125 2126 2127 2128
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2129
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2130 2131
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2132
		goto error_deref_obj;
2133 2134
	}

2135
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2136 2137
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2138
		goto error_ring_free;
2139 2140
	}

2141
	ce->ring = ring;
2142
	ce->state = vma;
2143
	ce->initialised = engine->init_context == NULL;
2144 2145

	return 0;
2146

2147
error_ring_free:
2148
	intel_ring_free(ring);
2149
error_deref_obj:
2150
	i915_gem_object_put(ctx_obj);
2151
	return ret;
2152
}
2153

2154
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2155
{
2156
	struct i915_gem_context *ctx = dev_priv->kernel_context;
2157
	struct intel_engine_cs *engine;
2158

2159
	for_each_engine(engine, dev_priv) {
2160
		struct intel_context *ce = &ctx->engine[engine->id];
2161
		void *vaddr;
2162 2163
		uint32_t *reg_state;

2164
		if (!ce->state)
2165 2166
			continue;

2167
		vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2168
		if (WARN_ON(IS_ERR(vaddr)))
2169
			continue;
2170 2171

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2172 2173 2174 2175

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2176 2177
		ce->state->obj->dirty = true;
		i915_gem_object_unpin_map(ce->state->obj);
2178

2179 2180
		ce->ring->head = 0;
		ce->ring->tail = 0;
2181 2182
	}
}