intel_pm.c 175.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <linux/vgaarb.h>
34
#include <drm/i915_powerwell.h>
35
#include <linux/pm_runtime.h>
36

B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59 60
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
61
 *
62 63
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
64
 *
65 66
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
67 68
 */

69
static void i8xx_disable_fbc(struct drm_device *dev)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

91
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
92 93 94 95 96 97 98 99 100 101 102
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
	int plane, i;
	u32 fbc_ctl, fbc_ctl2;

103
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104 105 106
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

107 108 109 110 111
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

	/* Set it up... */
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
	fbc_ctl2 |= plane;
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
	I915_WRITE(FBC_FENCE_OFF, crtc->y);

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

133 134
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
135 136
}

137
static bool i8xx_fbc_enabled(struct drm_device *dev)
138 139 140 141 142 143
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

144
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

168
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 170
}

171
static void g4x_disable_fbc(struct drm_device *dev)
172 173 174 175 176 177 178 179 180 181 182 183 184 185
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

186
static bool g4x_fbc_enabled(struct drm_device *dev)
187 188 189 190 191 192 193 194 195 196 197 198
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
199 200 201 202

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203

204 205 206 207 208 209 210 211 212 213
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
214

215
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 217
}

218
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	/* Set persistent mode for front-buffer rendering, ala X. */
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
235 236 237
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
238 239 240 241 242 243
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
244
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
245 246 247 248 249 250 251 252 253 254
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

255
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
256 257
}

258
static void ironlake_disable_fbc(struct drm_device *dev)
259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

273
static bool ironlake_fbc_enabled(struct drm_device *dev)
274 275 276 277 278 279
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

280 281 282 283 284 285 286 287 288
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

289
	I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
290 291 292 293 294

	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
		   IVB_DPFC_CTL_FENCE_EN |
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);

R
Rodrigo Vivi 已提交
295
	if (IS_IVYBRIDGE(dev)) {
296
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
R
Rodrigo Vivi 已提交
297
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
298
	} else {
299
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
300 301
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
			   HSW_BYPASS_FBC_QUEUE);
R
Rodrigo Vivi 已提交
302
	}
303

304 305 306 307 308 309
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

310
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
311 312
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
332
	if (work == dev_priv->fbc.fbc_work) {
333 334 335 336 337 338 339
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
		if (work->crtc->fb == work->fb) {
			dev_priv->display.enable_fbc(work->crtc,
						     work->interval);

340 341 342
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
			dev_priv->fbc.fb_id = work->crtc->fb->base.id;
			dev_priv->fbc.y = work->crtc->y;
343 344
		}

345
		dev_priv->fbc.fbc_work = NULL;
346 347 348 349 350 351 352 353
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
354
	if (dev_priv->fbc.fbc_work == NULL)
355 356 357 358 359
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
360
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
361 362
	 * entirely asynchronously.
	 */
363
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
364
		/* tasklet was killed before being run, clean up */
365
		kfree(dev_priv->fbc.fbc_work);
366 367 368 369 370 371

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
372
	dev_priv->fbc.fbc_work = NULL;
373 374
}

375
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
376 377 378 379 380 381 382 383 384 385
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

386
	work = kzalloc(sizeof(*work), GFP_KERNEL);
387
	if (work == NULL) {
388
		DRM_ERROR("Failed to allocate FBC work structure\n");
389 390 391 392 393 394 395 396 397
		dev_priv->display.enable_fbc(crtc, interval);
		return;
	}

	work->crtc = crtc;
	work->fb = crtc->fb;
	work->interval = interval;
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

398
	dev_priv->fbc.fbc_work = work;
399 400 401 402 403 404 405 406 407 408 409

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
410 411
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
412 413 414 415 416 417 418 419 420 421 422 423 424 425
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
426
	dev_priv->fbc.plane = -1;
427 428
}

429 430 431 432 433 434 435 436 437 438
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

439 440 441 442 443 444 445 446 447 448
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
449
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
466
	const struct drm_display_mode *adjusted_mode;
467
	unsigned int max_width, max_height;
468

469 470
	if (!I915_HAS_FBC(dev)) {
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
471
		return;
472
	}
473

474 475 476
	if (!i915_powersave) {
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
477
		return;
478
	}
479 480 481 482 483 484 485 486 487 488 489

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
490
		if (intel_crtc_active(tmp_crtc) &&
491
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
492
			if (crtc) {
493 494
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
495 496 497 498 499 500 501
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
502 503
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
504 505 506 507 508 509 510
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;
511
	adjusted_mode = &intel_crtc->config.adjusted_mode;
512

513 514
	if (i915_enable_fbc < 0 &&
	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
515 516
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
517
		goto out_disable;
518
	}
519
	if (!i915_enable_fbc) {
520 521
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
522 523
		goto out_disable;
	}
524 525
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
526 527 528
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
529 530
		goto out_disable;
	}
531 532

	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
533 534
		max_width = 4096;
		max_height = 2048;
535
	} else {
536 537
		max_width = 2048;
		max_height = 1536;
538
	}
539 540
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
541 542
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
543 544
		goto out_disable;
	}
545 546
	if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
	    intel_crtc->plane != PLANE_A) {
547
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
548
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
549 550 551 552 553 554 555 556
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
557 558
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
559 560 561 562 563 564 565
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

566
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
567 568
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
569 570 571
		goto out_disable;
	}

572 573 574 575 576
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
577 578 579
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

	intel_enable_fbc(crtc, 500);
611
	dev_priv->fbc.no_fbc_reason = FBC_OK;
612 613 614 615 616 617 618 619
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
620
	i915_gem_stolen_cleanup_compression(dev);
621 622
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

690
	dev_priv->ips.r_t = dev_priv->mem_freq;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
722
		dev_priv->ips.c_m = 0;
723
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
724
		dev_priv->ips.c_m = 1;
725
	} else {
726
		dev_priv->ips.c_m = 2;
727 728 729
	}
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

768
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

792
static void pineview_disable_cxsr(struct drm_device *dev)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

816
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

832
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

849
static int i845_get_fifo_size(struct drm_device *dev, int plane)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

865
static int i830_get_fifo_size(struct drm_device *dev, int plane)
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
	VALLEYVIEW_FIFO_SIZE,
	VALLEYVIEW_MAX_WM,
	VALLEYVIEW_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
	I965_CURSOR_FIFO,
	VALLEYVIEW_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static const struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static const struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1087
		if (intel_crtc_active(crtc)) {
1088 1089 1090 1091 1092 1093 1094 1095 1096
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1097
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1098
{
1099
	struct drm_device *dev = unused_crtc->dev;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1116
		const struct drm_display_mode *adjusted_mode;
1117
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1118 1119 1120 1121
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1181
	const struct drm_display_mode *adjusted_mode;
1182 1183 1184 1185 1186
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1187
	if (!intel_crtc_active(crtc)) {
1188 1189 1190 1191 1192
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1193
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1194
	clock = adjusted_mode->crtc_clock;
1195
	htotal = adjusted_mode->htotal;
1196
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1267
	const struct drm_display_mode *adjusted_mode;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1280
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1281
	clock = adjusted_mode->crtc_clock;
1282
	htotal = adjusted_mode->htotal;
1283
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

static bool vlv_compute_drain_latency(struct drm_device *dev,
				     int plane,
				     int *plane_prec_mult,
				     int *plane_dl,
				     int *cursor_prec_mult,
				     int *cursor_dl)
{
	struct drm_crtc *crtc;
	int clock, pixel_size;
	int entries;

	crtc = intel_get_crtc_for_plane(dev, plane);
1319
	if (!intel_crtc_active(crtc))
1320 1321
		return false;

1322
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */

	entries = (clock / 1000) * pixel_size;
	*plane_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
						     pixel_size);

	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
	*cursor_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

static void vlv_update_drain_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
							either 16 or 32 */

	/* For plane A, Cursor A */
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
				      &cursor_prec_mult, &cursora_dl)) {
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;

		I915_WRITE(VLV_DDL1, cursora_prec |
				(cursora_dl << DDL_CURSORA_SHIFT) |
				planea_prec | planea_dl);
	}

	/* For plane B, Cursor B */
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
				      &cursor_prec_mult, &cursorb_dl)) {
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;

		I915_WRITE(VLV_DDL2, cursorb_prec |
				(cursorb_dl << DDL_CURSORB_SHIFT) |
				planeb_prec | planeb_dl);
	}
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1384
static void valleyview_update_wm(struct drm_crtc *crtc)
1385
{
1386
	struct drm_device *dev = crtc->dev;
1387 1388 1389 1390
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1391
	int ignore_plane_sr, ignore_cursor_sr;
1392 1393 1394 1395
	unsigned int enabled = 0;

	vlv_update_drain_latency(dev);

1396
	if (g4x_compute_wm0(dev, PIPE_A,
1397 1398 1399
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1400
		enabled |= 1 << PIPE_A;
1401

1402
	if (g4x_compute_wm0(dev, PIPE_B,
1403 1404 1405
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1406
		enabled |= 1 << PIPE_B;
1407 1408 1409 1410 1411 1412

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1413 1414 1415 1416 1417
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1418
			     &ignore_plane_sr, &cursor_sr)) {
1419
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1420
	} else {
1421 1422
		I915_WRITE(FW_BLC_SELF_VLV,
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1423 1424
		plane_sr = cursor_sr = 0;
	}
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1437
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1438 1439
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1440 1441
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1442 1443
}

1444
static void g4x_update_wm(struct drm_crtc *crtc)
1445
{
1446
	struct drm_device *dev = crtc->dev;
1447 1448 1449 1450 1451 1452
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;

1453
	if (g4x_compute_wm0(dev, PIPE_A,
1454 1455 1456
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1457
		enabled |= 1 << PIPE_A;
1458

1459
	if (g4x_compute_wm0(dev, PIPE_B,
1460 1461 1462
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1463
		enabled |= 1 << PIPE_B;
1464 1465 1466 1467 1468 1469

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1470
			     &plane_sr, &cursor_sr)) {
1471
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1472
	} else {
1473 1474
		I915_WRITE(FW_BLC_SELF,
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1475 1476
		plane_sr = cursor_sr = 0;
	}
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1489
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1490 1491 1492
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1493
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1494 1495 1496
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1497
static void i965_update_wm(struct drm_crtc *unused_crtc)
1498
{
1499
	struct drm_device *dev = unused_crtc->dev;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1510 1511
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1512
		int clock = adjusted_mode->crtc_clock;
1513
		int htotal = adjusted_mode->htotal;
1514
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		int pixel_size = crtc->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = ((htotal * 1000) / clock);

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
		   (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1565
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1566
{
1567
	struct drm_device *dev = unused_crtc->dev;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
		wm_info = &i855_wm_info;

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1586
	if (intel_crtc_active(crtc)) {
1587
		const struct drm_display_mode *adjusted_mode;
1588 1589 1590 1591
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1592 1593
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1594
					       wm_info, fifo_size, cpp,
1595 1596 1597 1598 1599 1600 1601
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1602
	if (intel_crtc_active(crtc)) {
1603
		const struct drm_display_mode *adjusted_mode;
1604 1605 1606 1607
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1608 1609
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1610
					       wm_info, fifo_size, cpp,
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
	if (IS_I945G(dev) || IS_I945GM(dev))
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
	else if (IS_I915GM(dev))
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1636 1637
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1638
		int clock = adjusted_mode->crtc_clock;
1639
		int htotal = adjusted_mode->htotal;
1640
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		int pixel_size = enabled->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = (htotal * 1000) / clock;

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

	if (HAS_FW_BLC(dev)) {
		if (enabled) {
			if (IS_I945G(dev) || IS_I945GM(dev))
				I915_WRITE(FW_BLC_SELF,
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
			else if (IS_I915GM(dev))
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
			DRM_DEBUG_KMS("memory self refresh enabled\n");
		} else
			DRM_DEBUG_KMS("memory self refresh disabled\n");
	}
}

1689
static void i830_update_wm(struct drm_crtc *unused_crtc)
1690
{
1691
	struct drm_device *dev = unused_crtc->dev;
1692 1693
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1694
	const struct drm_display_mode *adjusted_mode;
1695 1696 1697 1698 1699 1700 1701
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1702 1703
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1704
				       &i830_wm_info,
1705
				       dev_priv->display.get_fifo_size(dev, 0),
1706
				       4, latency_ns);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
1740 1741 1742 1743
	} else if (INTEL_INFO(dev)->gen >= 6) {
		/* enable FBC WM (except on ILK, where it must remain off) */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
				  int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1776
	const struct drm_display_mode *adjusted_mode;
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	unsigned long line_time_us;
	int hdisplay, htotal, pixel_size, clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1789
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1790
	clock = adjusted_mode->crtc_clock;
1791
	htotal = adjusted_mode->htotal;
1792
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

1822
static void ironlake_update_wm(struct drm_crtc *crtc)
1823
{
1824
	struct drm_device *dev = crtc->dev;
1825 1826 1827 1828 1829
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1830
	if (g4x_compute_wm0(dev, PIPE_A,
1831
			    &ironlake_display_wm_info,
1832
			    dev_priv->wm.pri_latency[0] * 100,
1833
			    &ironlake_cursor_wm_info,
1834
			    dev_priv->wm.cur_latency[0] * 100,
1835 1836 1837 1838 1839 1840
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1841
		enabled |= 1 << PIPE_A;
1842 1843
	}

1844
	if (g4x_compute_wm0(dev, PIPE_B,
1845
			    &ironlake_display_wm_info,
1846
			    dev_priv->wm.pri_latency[0] * 100,
1847
			    &ironlake_cursor_wm_info,
1848
			    dev_priv->wm.cur_latency[0] * 100,
1849 1850 1851 1852 1853 1854
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1855
		enabled |= 1 << PIPE_B;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled))
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1872
				   dev_priv->wm.pri_latency[1] * 500,
1873 1874 1875 1876 1877 1878 1879
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1880
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1881 1882 1883 1884 1885 1886
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1887
				   dev_priv->wm.pri_latency[2] * 500,
1888 1889 1890 1891 1892 1893 1894
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1895
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

1906
static void sandybridge_update_wm(struct drm_crtc *crtc)
1907
{
1908
	struct drm_device *dev = crtc->dev;
1909
	struct drm_i915_private *dev_priv = dev->dev_private;
1910
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
1911 1912 1913 1914 1915
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1916
	if (g4x_compute_wm0(dev, PIPE_A,
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1927
		enabled |= 1 << PIPE_A;
1928 1929
	}

1930
	if (g4x_compute_wm0(dev, PIPE_B,
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1941
		enabled |= 1 << PIPE_B;
1942 1943
	}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1965
				   dev_priv->wm.pri_latency[1] * 500,
1966 1967 1968 1969 1970 1971 1972
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1973
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1974 1975 1976 1977 1978 1979
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1980
				   dev_priv->wm.pri_latency[2] * 500,
1981 1982 1983 1984 1985 1986 1987
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1988
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1989 1990 1991 1992 1993 1994
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3, enabled,
1995
				   dev_priv->wm.pri_latency[3] * 500,
1996 1997 1998 1999 2000 2001 2002
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
2003
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2004 2005 2006 2007 2008
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2009
static void ivybridge_update_wm(struct drm_crtc *crtc)
2010
{
2011
	struct drm_device *dev = crtc->dev;
2012
	struct drm_i915_private *dev_priv = dev->dev_private;
2013
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
2014 2015 2016 2017 2018 2019
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
	unsigned int enabled;

	enabled = 0;
2020
	if (g4x_compute_wm0(dev, PIPE_A,
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
2031
		enabled |= 1 << PIPE_A;
2032 2033
	}

2034
	if (g4x_compute_wm0(dev, PIPE_B,
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2045
		enabled |= 1 << PIPE_B;
2046 2047
	}

2048
	if (g4x_compute_wm0(dev, PIPE_C,
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEC_IVB);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEC_IVB, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2059
		enabled |= 1 << PIPE_C;
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
2083
				   dev_priv->wm.pri_latency[1] * 500,
2084 2085 2086 2087 2088 2089 2090
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
2091
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2092 2093 2094 2095 2096 2097
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
2098
				   dev_priv->wm.pri_latency[2] * 500,
2099 2100 2101 2102 2103 2104 2105
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
2106
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2107 2108 2109 2110
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

2111
	/* WM3, note we have to correct the cursor latency */
2112
	if (!ironlake_compute_srwm(dev, 3, enabled,
2113
				   dev_priv->wm.pri_latency[3] * 500,
2114 2115
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
2116 2117
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
	    !ironlake_compute_srwm(dev, 3, enabled,
2118
				   dev_priv->wm.cur_latency[3] * 500,
2119 2120 2121
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2122 2123 2124 2125
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
2126
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2127 2128 2129 2130 2131
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2132 2133
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
2134 2135
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136
	uint32_t pixel_rate;
2137

2138
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2139 2140 2141 2142

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

2143
	if (intel_crtc->config.pch_pfit.enabled) {
2144
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2145
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2146

2147 2148
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

2163
/* latency must be in 0.1us units. */
2164
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2165 2166 2167 2168
			       uint32_t latency)
{
	uint64_t ret;

2169 2170 2171
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2172 2173 2174 2175 2176 2177
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

2178
/* latency must be in 0.1us units. */
2179
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2180 2181 2182 2183 2184
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

2185 2186 2187
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2188 2189 2190 2191 2192 2193
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

2194
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2195 2196 2197 2198 2199
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

2200 2201 2202 2203
struct hsw_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
2204 2205 2206
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
2207 2208
};

2209 2210 2211 2212 2213 2214 2215
struct hsw_wm_maximums {
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2216 2217 2218 2219 2220 2221 2222
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

2223 2224 2225 2226
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2227
static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2228 2229
				   uint32_t mem_value,
				   bool is_lp)
2230
{
2231 2232
	uint32_t method1, method2;

2233
	if (!params->active || !params->pri.enabled)
2234 2235
		return 0;

2236
	method1 = ilk_wm_method1(params->pixel_rate,
2237
				 params->pri.bytes_per_pixel,
2238 2239 2240 2241 2242
				 mem_value);

	if (!is_lp)
		return method1;

2243
	method2 = ilk_wm_method2(params->pixel_rate,
2244
				 params->pipe_htotal,
2245 2246
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
2247 2248 2249
				 mem_value);

	return min(method1, method2);
2250 2251
}

2252 2253 2254 2255
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2256
static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2257 2258 2259 2260
				   uint32_t mem_value)
{
	uint32_t method1, method2;

2261
	if (!params->active || !params->spr.enabled)
2262 2263
		return 0;

2264
	method1 = ilk_wm_method1(params->pixel_rate,
2265
				 params->spr.bytes_per_pixel,
2266
				 mem_value);
2267
	method2 = ilk_wm_method2(params->pixel_rate,
2268
				 params->pipe_htotal,
2269 2270
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
2271 2272 2273 2274
				 mem_value);
	return min(method1, method2);
}

2275 2276 2277 2278
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2279
static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2280 2281
				   uint32_t mem_value)
{
2282
	if (!params->active || !params->cur.enabled)
2283 2284
		return 0;

2285
	return ilk_wm_method2(params->pixel_rate,
2286
			      params->pipe_htotal,
2287 2288
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2289 2290 2291
			      mem_value);
}

2292
/* Only for WM_LP. */
2293
static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2294
				   uint32_t pri_val)
2295
{
2296
	if (!params->active || !params->pri.enabled)
2297 2298
		return 0;

2299
	return ilk_wm_fbc(pri_val,
2300 2301
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2302 2303
}

2304 2305
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2306 2307 2308
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2309 2310 2311 2312 2313 2314 2315 2316
		return 768;
	else
		return 512;
}

/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2317
				     const struct intel_wm_config *config,
2318 2319 2320 2321 2322 2323 2324
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);
	unsigned int max;

	/* if sprites aren't enabled, sprites get nothing */
2325
	if (is_sprite && !config->sprites_enabled)
2326 2327 2328
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2329
	if (level == 0 || config->num_pipes_active > 1) {
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2341
	if (config->sprites_enabled) {
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2353 2354 2355
	if (INTEL_INFO(dev)->gen >= 8)
		max = level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
		/* IVB/HSW primary/sprite plane watermarks */
		max = level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		max = level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		max = level == 0 ? 63 : 255;

	return min(fifo_size, max);
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2370 2371
				      int level,
				      const struct intel_wm_config *config)
2372 2373
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2374
	if (level > 0 && config->num_pipes_active > 1)
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		return 64;

	/* otherwise just report max that registers can hold */
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

/* Calculate the maximum FBC watermark */
2385
static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
2386 2387
{
	/* max that registers can hold */
2388 2389 2390 2391
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
2392 2393
}

2394 2395 2396 2397 2398
static void ilk_compute_wm_maximums(struct drm_device *dev,
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
				    struct hsw_wm_maximums *max)
2399
{
2400 2401 2402
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2403
	max->fbc = ilk_fbc_wm_max(dev);
2404 2405
}

2406 2407 2408
static bool ilk_validate_wm_level(int level,
				  const struct hsw_wm_maximums *max,
				  struct intel_wm_level *result)
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2447 2448
static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
				 int level,
2449
				 const struct hsw_pipe_wm_parameters *p,
2450
				 struct intel_wm_level *result)
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2470 2471
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2472 2473
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2474 2475
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2476
	u32 linetime, ips_linetime;
2477

2478 2479
	if (!intel_crtc_active(crtc))
		return 0;
2480

2481 2482 2483
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2484 2485 2486
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
					 intel_ddi_get_cdclk_freq(dev_priv));
2487

2488 2489
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2490 2491
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (IS_HASWELL(dev)) {
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2502 2503 2504 2505
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2506 2507 2508 2509 2510 2511 2512
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2513 2514 2515 2516 2517 2518 2519
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2520 2521 2522
	}
}

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2541
static int ilk_wm_max_level(const struct drm_device *dev)
2542 2543 2544
{
	/* how many WM levels are we expecting */
	if (IS_HASWELL(dev))
2545
		return 4;
2546
	else if (INTEL_INFO(dev)->gen >= 6)
2547
		return 3;
2548
	else
2549 2550 2551 2552 2553 2554 2555 2556
		return 2;
}

static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static void intel_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2590 2591 2592 2593

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2594 2595
}

2596 2597
static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
				      struct hsw_pipe_wm_parameters *p,
2598
				      struct intel_wm_config *config)
2599
{
2600 2601 2602 2603
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2604

2605 2606
	p->active = intel_crtc_active(crtc);
	if (p->active) {
2607
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2608
		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2609 2610
		p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
		p->cur.bytes_per_pixel = 4;
2611
		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2612 2613 2614 2615
		p->cur.horiz_pixels = 64;
		/* TODO: for now, assume primary and cursor planes are always enabled. */
		p->pri.enabled = true;
		p->cur.enabled = true;
2616 2617
	}

2618
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2619
		config->num_pipes_active += intel_crtc_active(crtc);
2620

2621 2622 2623
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2624 2625
		if (intel_plane->pipe == pipe)
			p->spr = intel_plane->wm;
2626

2627 2628
		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
2629
	}
2630 2631
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
				  const struct hsw_pipe_wm_parameters *params,
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
	struct hsw_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
2649
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2650 2651 2652 2653 2654 2655 2656 2657

	for (level = 0; level <= max_level; level++)
		ilk_compute_wm_level(dev_priv, level, params,
				     &pipe_wm->wm[level]);

	pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);

	/* At least LP0 must be valid */
2658
	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		const struct intel_wm_level *wm =
			&intel_crtc->wm.active.wm[level];

		if (!wm->enable)
			return;

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}

	ret_wm->enable = true;
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
			 const struct hsw_wm_maximums *max,
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);

	merged->fbc_wm_enabled = true;

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2703
		if (!ilk_validate_wm_level(level, max, wm))
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
			break;

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
			merged->fbc_wm_enabled = false;
			wm->fbc_val = 0;
		}
	}
}

2717 2718 2719 2720 2721 2722
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2723
static void hsw_compute_wm_results(struct drm_device *dev,
2724
				   const struct intel_pipe_wm *merged,
2725
				   enum intel_ddb_partitioning partitioning,
2726 2727
				   struct hsw_wm_values *results)
{
2728 2729
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2730

2731
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2732
	results->partitioning = partitioning;
2733

2734
	/* LP1+ register values */
2735
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2736
		const struct intel_wm_level *r;
2737

2738
		level = ilk_wm_lp_to_level(wm_lp, merged);
2739

2740
		r = &merged->wm[level];
2741
		if (!r->enable)
2742 2743
			break;

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
			((level * 2) << WM1_LP_LATENCY_SHIFT) |
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2756 2757
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
	}
2758

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	/* LP0 register values */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2769

2770 2771 2772 2773
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2774 2775 2776
	}
}

2777 2778
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2779 2780 2781
static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2782
{
2783 2784
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2785

2786 2787 2788 2789 2790
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2791 2792
	}

2793 2794
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2795 2796 2797
			return r2;
		else
			return r1;
2798
	} else if (level1 > level2) {
2799 2800 2801 2802 2803 2804
		return r1;
	} else {
		return r2;
	}
}

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
					 const struct hsw_wm_values *old,
					 const struct hsw_wm_values *new)
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

	for_each_pipe(pipe) {
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2865 2866 2867 2868 2869
/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2870
				struct hsw_wm_values *results)
2871
{
2872
	struct hsw_wm_values *previous = &dev_priv->wm.hw;
2873
	unsigned int dirty;
2874 2875
	uint32_t val;

2876
	dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2877
	if (!dirty)
2878 2879
		return;

2880
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2881
		I915_WRITE(WM3_LP_ILK, 0);
2882
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2883
		I915_WRITE(WM2_LP_ILK, 0);
2884
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2885 2886
		I915_WRITE(WM1_LP_ILK, 0);

2887
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2888
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2889
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2890
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2891
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2892 2893
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2894
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2895
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2896
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2897
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2898
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2899 2900
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2901
	if (dirty & WM_DIRTY_DDB) {
2902
		val = I915_READ(WM_MISC);
2903
		if (results->partitioning == INTEL_DDB_PART_1_2)
2904 2905 2906 2907
			val &= ~WM_MISC_DATA_PARTITION_5_6;
		else
			val |= WM_MISC_DATA_PARTITION_5_6;
		I915_WRITE(WM_MISC, val);
2908 2909
	}

2910
	if (dirty & WM_DIRTY_FBC) {
2911 2912 2913 2914 2915 2916 2917 2918
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2919
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2920
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2921
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2922
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2923
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2924 2925
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);

2926
	if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2927
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2928
	if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2929
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2930
	if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2931
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2932 2933

	dev_priv->wm.hw = *results;
2934 2935
}

2936
static void haswell_update_wm(struct drm_crtc *crtc)
2937
{
2938
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2939
	struct drm_device *dev = crtc->dev;
2940
	struct drm_i915_private *dev_priv = dev->dev_private;
2941
	struct hsw_wm_maximums max;
2942
	struct hsw_pipe_wm_parameters params = {};
2943
	struct hsw_wm_values results = {};
2944
	enum intel_ddb_partitioning partitioning;
2945
	struct intel_pipe_wm pipe_wm = {};
2946
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2947
	struct intel_wm_config config = {};
2948

2949
	hsw_compute_wm_parameters(crtc, &params, &config);
2950 2951 2952 2953 2954

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2955

2956
	intel_crtc->wm.active = pipe_wm;
2957

2958
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2959 2960 2961
	ilk_wm_merge(dev, &max, &lp_wm_1_2);

	/* 5/6 split only in single pipe config on IVB+ */
2962 2963
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2964
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2965
		ilk_wm_merge(dev, &max, &lp_wm_5_6);
2966

2967
		best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2968
	} else {
2969
		best_lp_wm = &lp_wm_1_2;
2970 2971
	}

2972
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2973
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2974

2975 2976 2977
	hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);

	hsw_write_wm_values(dev_priv, &results);
2978 2979
}

2980 2981
static void haswell_update_sprite_wm(struct drm_plane *plane,
				     struct drm_crtc *crtc,
2982
				     uint32_t sprite_width, int pixel_size,
2983
				     bool enabled, bool scaled)
2984
{
2985
	struct intel_plane *intel_plane = to_intel_plane(plane);
2986

2987 2988 2989 2990
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.bytes_per_pixel = pixel_size;
2991

2992
	haswell_update_wm(crtc);
2993 2994
}

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
			      uint32_t sprite_width, int pixel_size,
			      const struct intel_watermark_params *display,
			      int display_latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	int clock;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
3006
	if (!intel_crtc_active(crtc)) {
3007 3008 3009 3010
		*sprite_wm = display->guard_size;
		return false;
	}

3011
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

	/* Use the small buffer method to calculate the sprite watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size -
		sprite_width * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*sprite_wm = entries + display->guard_size;
	if (*sprite_wm > (int)display->max_wm)
		*sprite_wm = display->max_wm;

	return true;
}

static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
				uint32_t sprite_width, int pixel_size,
				const struct intel_watermark_params *display,
				int latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*sprite_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
3046
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	if (!clock) {
		*sprite_wm = 0;
		return false;
	}

	line_time_us = (sprite_width * 1000) / clock;
	if (!line_time_us) {
		*sprite_wm = 0;
		return false;
	}

	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = sprite_width * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*sprite_wm = entries + display->guard_size;

	return *sprite_wm > 0x3ff ? false : true;
}

3071 3072
static void sandybridge_update_sprite_wm(struct drm_plane *plane,
					 struct drm_crtc *crtc,
3073
					 uint32_t sprite_width, int pixel_size,
3074
					 bool enabled, bool scaled)
3075
{
3076
	struct drm_device *dev = plane->dev;
3077
	struct drm_i915_private *dev_priv = dev->dev_private;
3078
	int pipe = to_intel_plane(plane)->pipe;
3079
	int latency = dev_priv->wm.spr_latency[0] * 100;	/* In unit 0.1us */
3080 3081 3082 3083
	u32 val;
	int sprite_wm, reg;
	int ret;

3084
	if (!enabled)
3085 3086
		return;

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	switch (pipe) {
	case 0:
		reg = WM0_PIPEA_ILK;
		break;
	case 1:
		reg = WM0_PIPEB_ILK;
		break;
	case 2:
		reg = WM0_PIPEC_IVB;
		break;
	default:
		return; /* bad pipe */
	}

	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
					    &sandybridge_display_wm_info,
					    latency, &sprite_wm);
	if (!ret) {
3105 3106
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
			      pipe_name(pipe));
3107 3108 3109 3110 3111 3112
		return;
	}

	val = I915_READ(reg);
	val &= ~WM0_PIPE_SPRITE_MASK;
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3113
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3114 3115 3116 3117 3118


	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3119
					      dev_priv->wm.spr_latency[1] * 500,
3120 3121
					      &sprite_wm);
	if (!ret) {
3122 3123
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
			      pipe_name(pipe));
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
		return;
	}
	I915_WRITE(WM1S_LP_ILK, sprite_wm);

	/* Only IVB has two more LP watermarks for sprite */
	if (!IS_IVYBRIDGE(dev))
		return;

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3135
					      dev_priv->wm.spr_latency[2] * 500,
3136 3137
					      &sprite_wm);
	if (!ret) {
3138 3139
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
			      pipe_name(pipe));
3140 3141 3142 3143 3144 3145 3146
		return;
	}
	I915_WRITE(WM2S_LP_IVB, sprite_wm);

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3147
					      dev_priv->wm.spr_latency[3] * 500,
3148 3149
					      &sprite_wm);
	if (!ret) {
3150 3151
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
			      pipe_name(pipe));
3152 3153 3154 3155 3156
		return;
	}
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
}

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct hsw_wm_values *hw = &dev_priv->wm.hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	if (intel_crtc_active(crtc)) {
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct hsw_wm_values *hw = &dev_priv->wm.hw;
	struct drm_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);

	hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
		INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3257
void intel_update_watermarks(struct drm_crtc *crtc)
3258
{
3259
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3260 3261

	if (dev_priv->display.update_wm)
3262
		dev_priv->display.update_wm(crtc);
3263 3264
}

3265 3266
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3267
				    uint32_t sprite_width, int pixel_size,
3268
				    bool enabled, bool scaled)
3269
{
3270
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3271 3272

	if (dev_priv->display.update_sprite_wm)
3273
		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3274
						   pixel_size, enabled, scaled);
3275 3276
}

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

B
Ben Widawsky 已提交
3291
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3312 3313 3314 3315 3316 3317 3318 3319 3320
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3321 3322 3323 3324 3325
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3326 3327
	assert_spin_locked(&mchdev_lock);

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3345
static void ironlake_enable_drps(struct drm_device *dev)
3346 3347 3348 3349 3350
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3351 3352
	spin_lock_irq(&mchdev_lock);

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3376 3377
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3378

3379 3380 3381
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3398
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3399
		DRM_ERROR("stuck trying to change perf mode\n");
3400
	mdelay(1);
3401 3402 3403

	ironlake_set_drps(dev, fstart);

3404
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3405
		I915_READ(0x112e0);
3406 3407 3408
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->ips.last_time2);
3409 3410

	spin_unlock_irq(&mchdev_lock);
3411 3412
}

3413
static void ironlake_disable_drps(struct drm_device *dev)
3414 3415
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3416 3417 3418 3419 3420
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3421 3422 3423 3424 3425 3426 3427 3428 3429

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3430
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3431
	mdelay(1);
3432 3433
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3434
	mdelay(1);
3435

3436
	spin_unlock_irq(&mchdev_lock);
3437 3438
}

3439 3440 3441 3442 3443
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3444
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3445
{
3446
	u32 limits;
3447

3448 3449 3450 3451 3452 3453
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3454 3455
	limits = dev_priv->rps.max_delay << 24;
	if (val <= dev_priv->rps.min_delay)
3456
		limits |= dev_priv->rps.min_delay << 16;
3457 3458 3459 3460

	return limits;
}

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
		if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
			new_power = LOW_POWER;
		else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val == dev_priv->rps.min_delay)
		new_power = LOW_POWER;
	if (val == dev_priv->rps.max_delay)
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3553 3554 3555
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3556

3557
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3558 3559
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);
3560

3561
	if (val == dev_priv->rps.cur_delay)
3562 3563
		return;

3564 3565
	gen6_set_rps_thresholds(dev_priv, val);

3566 3567 3568 3569 3570 3571 3572 3573
	if (IS_HASWELL(dev))
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(val));
	else
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(val) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
3574 3575 3576 3577

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
3578 3579
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   gen6_rps_limits(dev_priv, val));
3580

3581 3582
	POSTING_READ(GEN6_RPNSWREQ);

3583
	dev_priv->rps.cur_delay = val;
3584 3585

	trace_intel_gpu_freq_change(val * 50);
3586 3587
}

3588 3589 3590
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3591 3592 3593 3594 3595 3596 3597
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		dev_priv->rps.last_adj = 0;
	}
3598 3599 3600 3601 3602 3603
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3604 3605 3606 3607 3608 3609 3610
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		dev_priv->rps.last_adj = 0;
	}
3611 3612 3613
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3614 3615 3616
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3617

3618 3619 3620 3621
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);

3622
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3623
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3624
			 dev_priv->rps.cur_delay,
3625
			 vlv_gpu_freq(dev_priv, val), val);
3626 3627 3628 3629

	if (val == dev_priv->rps.cur_delay)
		return;

3630
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3631

3632
	dev_priv->rps.cur_delay = val;
3633

3634
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3635 3636
}

3637
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3638 3639 3640 3641
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3642
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3643 3644 3645 3646 3647
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3648
	spin_lock_irq(&dev_priv->irq_lock);
3649
	dev_priv->rps.pm_iir = 0;
3650
	spin_unlock_irq(&dev_priv->irq_lock);
3651

3652
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3653 3654
}

3655
static void gen6_disable_rps(struct drm_device *dev)
3656 3657 3658 3659
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3660
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3661

3662 3663 3664 3665 3666 3667 3668 3669
	gen6_disable_rps_interrupts(dev);
}

static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3670

3671
	gen6_disable_rps_interrupts(dev);
3672 3673 3674 3675 3676

	if (dev_priv->vlv_pctx) {
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
		dev_priv->vlv_pctx = NULL;
	}
3677 3678
}

B
Ben Widawsky 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
	if (IS_GEN6(dev))
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");

	if (IS_HASWELL(dev))
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");

	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
			(mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			(mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			(mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
}

3693 3694
int intel_enable_rc6(const struct drm_device *dev)
{
3695 3696 3697 3698
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

3699
	/* Respect the kernel parameter if it is set */
3700 3701 3702
	if (i915_enable_rc6 >= 0)
		return i915_enable_rc6;

3703 3704 3705
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3706

B
Ben Widawsky 已提交
3707
	if (IS_HASWELL(dev))
3708
		return INTEL_RC6_ENABLE;
3709

3710
	/* snb/ivb have more than one rc6 state. */
B
Ben Widawsky 已提交
3711
	if (INTEL_INFO(dev)->gen == 6)
3712
		return INTEL_RC6_ENABLE;
3713

3714 3715 3716
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}

3717 3718 3719
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3720
	u32 enabled_intrs;
3721 3722

	spin_lock_irq(&dev_priv->irq_lock);
3723
	WARN_ON(dev_priv->rps.pm_iir);
P
Paulo Zanoni 已提交
3724
	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3725 3726
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
	spin_unlock_irq(&dev_priv->irq_lock);
3727

3728
	/* only unmask PM interrupts we need. Mask all others. */
3729 3730 3731 3732 3733 3734 3735 3736 3737
	enabled_intrs = GEN6_PM_RPS_EVENTS;

	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
		enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;

	I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3738 3739
}

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
	uint32_t rc6_mask = 0, rp_state_cap;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3752
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			GEN6_RC_CTL_EI_MODE(1) |
			rc6_mask);

	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_delay << 24 |
		   dev_priv->rps.min_delay << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);

	gen6_enable_rps_interrupts(dev);

3809
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3810 3811
}

3812
static void gen6_enable_rps(struct drm_device *dev)
3813
{
3814
	struct drm_i915_private *dev_priv = dev->dev_private;
3815
	struct intel_ring_buffer *ring;
3816 3817
	u32 rp_state_cap;
	u32 gt_perf_status;
3818
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3819 3820
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3821
	int i, ret;
3822

3823
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3824

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3839
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3840

3841 3842 3843
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);

3844 3845
	/* In units of 50MHz */
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3846 3847 3848 3849
	dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
	dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3850
	dev_priv->rps.cur_delay = 0;
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3861 3862
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3863 3864 3865

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3866
	if (IS_IVYBRIDGE(dev))
3867 3868 3869
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3870
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3871 3872
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3873
	/* Check if we are enabling RC6 */
3874 3875 3876 3877
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3878 3879 3880 3881
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3882

3883 3884 3885
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3886

B
Ben Widawsky 已提交
3887
	intel_print_rc6_info(dev, rc6_mask);
3888 3889 3890 3891 3892 3893

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3894 3895
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3896 3897
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3898
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3899
	if (!ret) {
B
Ben Widawsky 已提交
3900 3901
		pcu_mbox = 0;
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3902
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3903
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3904 3905
					 (dev_priv->rps.max_delay & 0xff) * 50,
					 (pcu_mbox & 0xff) * 50);
3906
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
B
Ben Widawsky 已提交
3907 3908 3909
		}
	} else {
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3910 3911
	}

3912 3913
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3914

3915
	gen6_enable_rps_interrupts(dev);
3916

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3931
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3932 3933
}

3934
void gen6_update_ring_freq(struct drm_device *dev)
3935
{
3936
	struct drm_i915_private *dev_priv = dev->dev_private;
3937
	int min_freq = 15;
3938 3939
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3940
	int scaling_factor = 180;
3941
	struct cpufreq_policy *policy;
3942

3943
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3944

3945 3946 3947 3948 3949 3950 3951 3952 3953
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
3954
		max_ia_freq = tsc_khz;
3955
	}
3956 3957 3958 3959

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3960
	min_ring_freq = I915_READ(DCLK) & 0xf;
3961 3962
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3963

3964 3965 3966 3967 3968
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3969
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3970
	     gpu_freq--) {
3971
		int diff = dev_priv->rps.max_delay - gpu_freq;
3972 3973
		unsigned int ia_freq = 0, ring_freq = 0;

3974 3975 3976 3977
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
3978
			ring_freq = mult_frac(gpu_freq, 5, 4);
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3995

B
Ben Widawsky 已提交
3996 3997
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3998 3999 4000
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4001 4002 4003
	}
}

4004 4005 4006 4007
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp0;

4008
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4021
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4022
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4023
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4024 4025 4026 4027 4028 4029 4030
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
4031
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4032 4033
}

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4050
								      I915_GTT_OFFSET_NONE,
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4076 4077 4078 4079
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
4080
	u32 gtfifodbg, val, rc6_mode = 0;
4081 4082 4083 4084 4085
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4086 4087
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4088 4089 4090
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4091 4092
	valleyview_setup_pctx(dev);

4093 4094
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4118
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4119 4120

	/* allows RC6 residency counter to work */
4121 4122 4123 4124
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4125
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4126
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4127 4128 4129

	intel_print_rc6_info(dev, rc6_mode);

4130
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4131

4132
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4133 4134 4135 4136 4137

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4138
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4139
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
4140
			 dev_priv->rps.cur_delay);
4141 4142 4143

	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4144
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4145
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
4146
			 dev_priv->rps.max_delay);
4147

4148 4149
	dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4150
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4151
			 dev_priv->rps.rpe_delay);
4152

4153 4154
	dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4155
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
4156
			 dev_priv->rps.min_delay);
4157

4158
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4159
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4160
			 dev_priv->rps.rpe_delay);
4161

4162
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4163

4164
	gen6_enable_rps_interrupts(dev);
4165

4166
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4167 4168
}

4169
void ironlake_teardown_rc6(struct drm_device *dev)
4170 4171 4172
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4173 4174 4175 4176
	if (dev_priv->ips.renderctx) {
		i915_gem_object_unpin(dev_priv->ips.renderctx);
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4177 4178
	}

4179 4180 4181 4182
	if (dev_priv->ips.pwrctx) {
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4183 4184 4185
	}
}

4186
static void ironlake_disable_rc6(struct drm_device *dev)
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4208 4209 4210
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4211 4212
		return -ENOMEM;

4213 4214 4215
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4216 4217 4218 4219 4220 4221 4222
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4223
static void ironlake_enable_rc6(struct drm_device *dev)
4224 4225
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4226
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4227
	bool was_interruptible;
4228 4229 4230 4231 4232 4233 4234 4235
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4236 4237
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4238
	ret = ironlake_setup_rc6(dev);
4239
	if (ret)
4240 4241
		return;

4242 4243 4244
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4245 4246 4247 4248
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4249
	ret = intel_ring_begin(ring, 6);
4250 4251
	if (ret) {
		ironlake_teardown_rc6(dev);
4252
		dev_priv->mm.interruptible = was_interruptible;
4253 4254 4255
		return;
	}

4256 4257
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4258
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4259 4260 4261 4262 4263 4264 4265 4266
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4267 4268 4269 4270 4271 4272

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4273 4274
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4275
	if (ret) {
4276
		DRM_ERROR("failed to enable ironlake power savings\n");
4277 4278 4279 4280
		ironlake_teardown_rc6(dev);
		return;
	}

4281
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4282
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4283 4284

	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
4285 4286
}

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4316
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4317 4318 4319 4320 4321 4322
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4323 4324
	assert_spin_locked(&mchdev_lock);

4325
	diff1 = now - dev_priv->ips.last_time1;
4326 4327 4328 4329 4330 4331 4332

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4333
		return dev_priv->ips.chipset_power;
4334 4335 4336 4337 4338 4339 4340 4341

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4342 4343
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4344 4345
		diff += total_count;
	} else {
4346
		diff = total_count - dev_priv->ips.last_count1;
4347 4348 4349
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4350 4351
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4362 4363
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4364

4365
	dev_priv->ips.chipset_power = ret;
4366 4367 4368 4369

	return ret;
}

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
	if (dev_priv->info->is_mobile)
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4542
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4543 4544 4545 4546 4547 4548
{
	struct timespec now, diff1;
	u64 diff;
	unsigned long diffms;
	u32 count;

4549
	assert_spin_locked(&mchdev_lock);
4550 4551

	getrawmonotonic(&now);
4552
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4553 4554 4555 4556 4557 4558 4559 4560

	/* Don't divide by 0 */
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4561 4562
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4563 4564
		diff += count;
	} else {
4565
		diff = count - dev_priv->ips.last_count2;
4566 4567
	}

4568 4569
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4570 4571 4572 4573

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4574
	dev_priv->ips.gfx_power = diff;
4575 4576
}

4577 4578 4579 4580 4581
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
	if (dev_priv->info->gen != 5)
		return;

4582
	spin_lock_irq(&mchdev_lock);
4583 4584 4585

	__i915_update_gfx_val(dev_priv);

4586
	spin_unlock_irq(&mchdev_lock);
4587 4588
}

4589
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4590 4591 4592 4593
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4594 4595
	assert_spin_locked(&mchdev_lock);

4596
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4616
	corr2 = (corr * dev_priv->ips.corr);
4617 4618 4619 4620

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4621
	__i915_update_gfx_val(dev_priv);
4622

4623
	return dev_priv->ips.gfx_power + state2;
4624 4625
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4653
	spin_lock_irq(&mchdev_lock);
4654 4655 4656 4657
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4658 4659
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4660 4661 4662 4663

	ret = chipset_val + graphics_val;

out_unlock:
4664
	spin_unlock_irq(&mchdev_lock);
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4680
	spin_lock_irq(&mchdev_lock);
4681 4682 4683 4684 4685 4686
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4687 4688
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4689 4690

out_unlock:
4691
	spin_unlock_irq(&mchdev_lock);
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4708
	spin_lock_irq(&mchdev_lock);
4709 4710 4711 4712 4713 4714
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4715 4716
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4717 4718

out_unlock:
4719
	spin_unlock_irq(&mchdev_lock);
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4733
	struct intel_ring_buffer *ring;
4734
	bool ret = false;
4735
	int i;
4736

4737
	spin_lock_irq(&mchdev_lock);
4738 4739 4740 4741
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4742 4743
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4744 4745

out_unlock:
4746
	spin_unlock_irq(&mchdev_lock);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4763
	spin_lock_irq(&mchdev_lock);
4764 4765 4766 4767 4768 4769
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4770
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4771

4772
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4773 4774 4775
		ret = false;

out_unlock:
4776
	spin_unlock_irq(&mchdev_lock);
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4804 4805
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4806
	spin_lock_irq(&mchdev_lock);
4807
	i915_mch_dev = dev_priv;
4808
	spin_unlock_irq(&mchdev_lock);
4809 4810 4811 4812 4813 4814

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4815
	spin_lock_irq(&mchdev_lock);
4816
	i915_mch_dev = NULL;
4817
	spin_unlock_irq(&mchdev_lock);
4818
}
4819
static void intel_init_emon(struct drm_device *dev)
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

4887
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4888 4889
}

4890 4891
void intel_disable_gt_powersave(struct drm_device *dev)
{
4892 4893
	struct drm_i915_private *dev_priv = dev->dev_private;

4894 4895 4896
	/* Interrupts should be disabled already to avoid re-arming. */
	WARN_ON(dev->irq_enabled);

4897
	if (IS_IRONLAKE_M(dev)) {
4898
		ironlake_disable_drps(dev);
4899
		ironlake_disable_rc6(dev);
4900
	} else if (INTEL_INFO(dev)->gen >= 6) {
4901
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4902
		cancel_work_sync(&dev_priv->rps.work);
4903
		mutex_lock(&dev_priv->rps.hw_lock);
4904 4905 4906 4907
		if (IS_VALLEYVIEW(dev))
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
4908
		dev_priv->rps.enabled = false;
4909
		mutex_unlock(&dev_priv->rps.hw_lock);
4910
	}
4911 4912
}

4913 4914 4915 4916 4917 4918 4919
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

4920
	mutex_lock(&dev_priv->rps.hw_lock);
4921 4922 4923

	if (IS_VALLEYVIEW(dev)) {
		valleyview_enable_rps(dev);
4924 4925 4926
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
		gen6_update_ring_freq(dev);
4927 4928 4929 4930
	} else {
		gen6_enable_rps(dev);
		gen6_update_ring_freq(dev);
	}
4931
	dev_priv->rps.enabled = true;
4932
	mutex_unlock(&dev_priv->rps.hw_lock);
4933 4934
}

4935 4936
void intel_enable_gt_powersave(struct drm_device *dev)
{
4937 4938
	struct drm_i915_private *dev_priv = dev->dev_private;

4939 4940 4941 4942
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
4943
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4944 4945 4946 4947 4948 4949 4950
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 */
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
				      round_jiffies_up_relative(HZ));
4951 4952 4953
	}
}

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

4966 4967 4968 4969 4970 4971 4972 4973 4974
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
4975
		intel_flush_primary_plane(dev_priv, pipe);
4976 4977 4978
	}
}

4979
static void ironlake_init_clock_gating(struct drm_device *dev)
4980 4981
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4982
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4983

4984 4985 4986 4987
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
4988 4989 4990
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5008
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5024
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5025 5026 5027 5028 5029 5030 5031 5032
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5033 5034
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5035 5036 5037 5038 5039 5040
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5041

5042
	/* WaDisableRenderCachePipelinedFlush:ilk */
5043 5044
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5045

5046
	g4x_disable_trickle_feed(dev);
5047

5048 5049 5050 5051 5052 5053 5054
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5055
	uint32_t val;
5056 5057 5058 5059 5060 5061

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5062 5063 5064
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5065 5066
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5067 5068 5069
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5070
	for_each_pipe(pipe) {
5071 5072 5073
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5074
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5075
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5076 5077 5078
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5079 5080
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5081 5082 5083 5084 5085
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5086 5087
}

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
		DRM_INFO("This can cause pipe underruns and display issues.\n");
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
	}
}

5101
static void gen6_init_clock_gating(struct drm_device *dev)
5102 5103
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5104
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5105

5106
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5107 5108 5109 5110 5111

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5112
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5113 5114 5115
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5116
	/* WaSetupGtModeTdRowDispatch:snb */
5117 5118 5119 5120
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5121 5122 5123 5124 5125
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	I915_WRITE(CACHE_MODE_0,
5126
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5142
	 *
5143 5144
	 * Also apply WaDisableVDSUnitClockGating:snb and
	 * WaDisableRCPBUnitClockGating:snb.
5145 5146
	 */
	I915_WRITE(GEN6_UCGCTL2,
5147
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5148 5149 5150 5151
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

	/* Bspec says we need to always set all mask bits. */
5152 5153
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5154 5155 5156 5157 5158 5159 5160 5161 5162

	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5163 5164
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5165 5166 5167 5168 5169 5170 5171
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5172 5173 5174 5175
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5176

5177
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5178 5179 5180 5181 5182

	/* The default value should be 0x200 according to docs, but the two
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5183 5184

	cpt_init_clock_gating(dev);
5185 5186

	gen6_check_mch_setup(dev);
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

5198 5199 5200
	if (IS_HASWELL(dev_priv->dev))
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;

5201 5202 5203
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5216 5217 5218 5219 5220

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5221 5222
}

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

B
Ben Widawsky 已提交
5235 5236 5237
static void gen8_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5238
	enum pipe i;
B
Ben Widawsky 已提交
5239 5240 5241 5242

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5243 5244 5245 5246

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5247 5248 5249 5250
	WARN(!i915_preliminary_hw_support,
	     "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5251 5252
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5253 5254
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5255 5256 5257
	I915_WRITE(_3D_CHICKEN3,
		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));

5258 5259 5260
	I915_WRITE(COMMON_SLICE_CHICKEN2,
		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));

5261 5262 5263
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));

5264 5265
	/* WaSwitchSolVfFArbitrationPriority */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276

	/* WaPsrDPAMaskVBlankInSRD */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

	/* WaPsrDPRSUnmaskVBlankInSRD */
	for_each_pipe(i) {
		I915_WRITE(CHICKEN_PIPESL_1(i),
			   I915_READ(CHICKEN_PIPESL_1(i) |
				     DPRS_MASK_VBLANK_SRD));
	}
B
Ben Widawsky 已提交
5277 5278
}

5279 5280 5281 5282 5283 5284 5285 5286 5287
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5288
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5289 5290 5291
	 */
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);

5292
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5293 5294 5295
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5296
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
5297 5298 5299 5300 5301
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
			GEN7_WA_L3_CHICKEN_MODE);

5302 5303 5304 5305 5306
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5307
	/* This is required by WaCatErrorRejectionIssue:hsw */
5308 5309 5310 5311
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5312
	/* WaVSRefCountFullforceMissDisable:hsw */
5313 5314
	gen7_setup_fixed_func_scheduler(dev_priv);

5315
	/* WaDisable4x2SubspanOptimization:hsw */
5316 5317
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5318

5319
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5320 5321
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5322 5323 5324
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5325

5326
	lpt_init_clock_gating(dev);
5327 5328
}

5329
static void ivybridge_init_clock_gating(struct drm_device *dev)
5330 5331
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5332
	uint32_t snpcr;
5333 5334 5335 5336 5337

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

5338
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5339

5340
	/* WaDisableEarlyCull:ivb */
5341 5342 5343
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5344
	/* WaDisableBackToBackFlipFix:ivb */
5345 5346 5347 5348
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5349
	/* WaDisablePSDDualDispatchEnable:ivb */
5350 5351 5352 5353 5354 5355 5356
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
	else
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5357
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5358 5359 5360
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5361
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5362 5363 5364
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5365 5366 5367 5368 5369 5370 5371 5372
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	else
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5373

5374
	/* WaForceL3Serialization:ivb */
5375 5376 5377
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5389
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5390 5391 5392 5393 5394
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5395
	/* This is required by WaCatErrorRejectionIssue:ivb */
5396 5397 5398 5399
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5400
	g4x_disable_trickle_feed(dev);
5401

5402
	/* WaVSRefCountFullforceMissDisable:ivb */
5403
	gen7_setup_fixed_func_scheduler(dev_priv);
5404

5405
	/* WaDisable4x2SubspanOptimization:ivb */
5406 5407
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5408 5409 5410 5411 5412

	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5413

5414 5415
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5416 5417

	gen6_check_mch_setup(dev);
5418 5419
}

5420
static void valleyview_init_clock_gating(struct drm_device *dev)
5421 5422
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5423 5424 5425 5426 5427 5428 5429 5430 5431
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	mutex_unlock(&dev_priv->rps.hw_lock);
	switch ((val >> 6) & 3) {
	case 0:
		dev_priv->mem_freq = 800;
		break;
5432
	case 1:
5433 5434
		dev_priv->mem_freq = 1066;
		break;
5435
	case 2:
5436 5437
		dev_priv->mem_freq = 1333;
		break;
5438
	case 3:
5439
		dev_priv->mem_freq = 1333;
5440
		break;
5441 5442
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5443

5444
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5445

5446
	/* WaDisableEarlyCull:vlv */
5447 5448 5449
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5450
	/* WaDisableBackToBackFlipFix:vlv */
5451 5452 5453 5454
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5455
	/* WaDisablePSDDualDispatchEnable:vlv */
5456
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5457 5458
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5459

5460
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5461 5462 5463
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5464
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
5465
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5466 5467
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);

5468
	/* WaForceL3Serialization:vlv */
5469 5470 5471
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5472
	/* WaDisableDopClockGating:vlv */
5473 5474 5475
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5476
	/* This is required by WaCatErrorRejectionIssue:vlv */
5477 5478 5479 5480
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5492
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5493
	 *
5494 5495
	 * Also apply WaDisableVDSUnitClockGating:vlv and
	 * WaDisableRCPBUnitClockGating:vlv.
5496 5497 5498
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5499
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5500 5501 5502 5503
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5504 5505
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);

5506
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5507

5508 5509
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5510

5511
	/*
5512
	 * WaDisableVLVClockGating_VBIIssue:vlv
5513 5514 5515
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);

	/* Conservative clock gating settings for now */
	I915_WRITE(0x9400, 0xffffffff);
	I915_WRITE(0x9404, 0xffffffff);
	I915_WRITE(0x9408, 0xffffffff);
	I915_WRITE(0x940c, 0xffffffff);
	I915_WRITE(0x9410, 0xffffffff);
	I915_WRITE(0x9414, 0xffffffff);
	I915_WRITE(0x9418, 0xffffffff);
5526 5527
}

5528
static void g4x_init_clock_gating(struct drm_device *dev)
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5544 5545 5546 5547

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5548

5549
	g4x_disable_trickle_feed(dev);
5550 5551
}

5552
static void crestline_init_clock_gating(struct drm_device *dev)
5553 5554 5555 5556 5557 5558 5559 5560
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5561 5562
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5563 5564
}

5565
static void broadwater_init_clock_gating(struct drm_device *dev)
5566 5567 5568 5569 5570 5571 5572 5573 5574
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
5575 5576
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5577 5578
}

5579
static void gen3_init_clock_gating(struct drm_device *dev)
5580 5581 5582 5583 5584 5585 5586
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
5587 5588 5589

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5590 5591 5592

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5593 5594
}

5595
static void i85x_init_clock_gating(struct drm_device *dev)
5596 5597 5598 5599 5600 5601
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}

5602
static void i830_init_clock_gating(struct drm_device *dev)
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

5616 5617 5618 5619 5620 5621
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

5635 5636 5637 5638 5639
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
5640 5641 5642 5643 5644 5645 5646 5647 5648
static bool hsw_power_well_enabled(struct drm_device *dev,
				   struct i915_power_well *power_well)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
bool intel_display_power_enabled_sw(struct drm_device *dev,
				    enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_domains *power_domains;

	power_domains = &dev_priv->power_domains;

	return power_domains->domain_use_count[domain];
}

5660 5661
bool intel_display_power_enabled(struct drm_device *dev,
				 enum intel_display_power_domain domain)
5662 5663
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5664 5665 5666 5667
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;
5668

5669 5670 5671 5672 5673 5674
	power_domains = &dev_priv->power_domains;

	is_enabled = true;

	mutex_lock(&power_domains->lock);
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5675 5676 5677
		if (power_well->always_on)
			continue;

5678 5679 5680 5681 5682 5683 5684 5685
		if (!power_well->is_enabled(dev, power_well)) {
			is_enabled = false;
			break;
		}
	}
	mutex_unlock(&power_domains->lock);

	return is_enabled;
5686 5687
}

5688 5689 5690 5691 5692
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	unsigned long irqflags;

5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
	if (IS_BROADWELL(dev)) {
		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
			   dev_priv->de_irq_mask[PIPE_B]);
		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
			   ~dev_priv->de_irq_mask[PIPE_B] |
			   GEN8_PIPE_VBLANK);
		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
			   dev_priv->de_irq_mask[PIPE_C]);
		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
			   ~dev_priv->de_irq_mask[PIPE_C] |
			   GEN8_PIPE_VBLANK);
		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
	}
}

static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	enum pipe p;
	unsigned long irqflags;

	/*
	 * After this, the registers on the pipes that are part of the power
	 * well will become zero, so we have to adjust our counters according to
	 * that.
	 *
	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
	 */
	spin_lock_irqsave(&dev->vbl_lock, irqflags);
	for_each_pipe(p)
		if (p != PIPE_A)
			dev->vblank[p].last = 0;
	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
}

5744 5745
static void hsw_set_power_well(struct drm_device *dev,
			       struct i915_power_well *power_well, bool enable)
5746 5747
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5748 5749
	bool is_enabled, enable_requested;
	uint32_t tmp;
5750

5751 5752
	WARN_ON(dev_priv->pc8.enabled);

5753
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5754 5755
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5756

5757 5758
	if (enable) {
		if (!enable_requested)
5759 5760
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
5761

5762 5763 5764
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5765
				      HSW_PWR_WELL_STATE_ENABLED), 20))
5766 5767
				DRM_ERROR("Timeout enabling power well\n");
		}
5768

5769
		hsw_power_well_post_enable(dev_priv);
5770 5771 5772
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5773
			POSTING_READ(HSW_PWR_WELL_DRIVER);
5774
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5775

5776
			hsw_power_well_post_disable(dev_priv);
5777 5778
		}
	}
5779
}
5780

5781 5782
static void __intel_power_well_get(struct drm_device *dev,
				   struct i915_power_well *power_well)
5783
{
5784 5785 5786 5787
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!power_well->count++ && power_well->set) {
		hsw_disable_package_c8(dev_priv);
5788
		power_well->set(dev, power_well, true);
5789
	}
5790 5791
}

5792 5793
static void __intel_power_well_put(struct drm_device *dev,
				   struct i915_power_well *power_well)
5794
{
5795 5796
	struct drm_i915_private *dev_priv = dev->dev_private;

5797
	WARN_ON(!power_well->count);
5798

5799 5800
	if (!--power_well->count && power_well->set &&
	    i915_disable_power_well) {
5801
		power_well->set(dev, power_well, false);
5802 5803
		hsw_enable_package_c8(dev_priv);
	}
5804 5805
}

5806 5807 5808 5809
void intel_display_power_get(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5810
	struct i915_power_domains *power_domains;
5811 5812
	struct i915_power_well *power_well;
	int i;
5813

5814 5815 5816
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
5817

5818 5819
	for_each_power_well(i, power_well, BIT(domain), power_domains)
		__intel_power_well_get(dev, power_well);
5820

5821 5822
	power_domains->domain_use_count[domain]++;

5823
	mutex_unlock(&power_domains->lock);
5824 5825 5826 5827 5828 5829
}

void intel_display_power_put(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5830
	struct i915_power_domains *power_domains;
5831 5832
	struct i915_power_well *power_well;
	int i;
5833

5834 5835 5836
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
5837 5838 5839

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
5840 5841 5842

	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
		__intel_power_well_put(dev, power_well);
5843

5844
	mutex_unlock(&power_domains->lock);
5845 5846
}

5847
static struct i915_power_domains *hsw_pwr;
5848 5849 5850 5851

/* Display audio driver power well request */
void i915_request_power_well(void)
{
5852 5853
	struct drm_i915_private *dev_priv;

5854 5855 5856
	if (WARN_ON(!hsw_pwr))
		return;

5857 5858
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
I
Imre Deak 已提交
5859
	intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5860 5861 5862 5863 5864 5865
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
void i915_release_power_well(void)
{
5866 5867
	struct drm_i915_private *dev_priv;

5868 5869 5870
	if (WARN_ON(!hsw_pwr))
		return;

5871 5872
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
I
Imre Deak 已提交
5873
	intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5874 5875 5876
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

5877 5878 5879 5880 5881 5882 5883 5884
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
	},
};

5885
static struct i915_power_well hsw_power_wells[] = {
5886 5887 5888 5889 5890
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
	},
5891 5892 5893 5894 5895 5896 5897 5898 5899
	{
		.name = "display",
		.domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
		.is_enabled = hsw_power_well_enabled,
		.set = hsw_set_power_well,
	},
};

static struct i915_power_well bdw_power_wells[] = {
5900 5901 5902 5903 5904
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
	},
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	{
		.name = "display",
		.domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
		.is_enabled = hsw_power_well_enabled,
		.set = hsw_set_power_well,
	},
};

#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

5918
int intel_power_domains_init(struct drm_device *dev)
5919 5920
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5921
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5922

5923
	mutex_init(&power_domains->lock);
5924

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
	if (IS_HASWELL(dev)) {
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
	} else if (IS_BROADWELL(dev)) {
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
	} else {
5936
		set_power_wells(power_domains, i9xx_always_on_power_well);
5937
	}
5938 5939 5940 5941

	return 0;
}

5942
void intel_power_domains_remove(struct drm_device *dev)
5943 5944 5945 5946
{
	hsw_pwr = NULL;
}

5947
static void intel_power_domains_resume(struct drm_device *dev)
5948 5949
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5950 5951
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
5952
	int i;
5953

5954
	mutex_lock(&power_domains->lock);
5955 5956 5957 5958
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->set)
			power_well->set(dev, power_well, power_well->count > 0);
	}
5959
	mutex_unlock(&power_domains->lock);
5960 5961
}

5962 5963 5964 5965 5966
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
5967
 */
5968
void intel_power_domains_init_hw(struct drm_device *dev)
5969 5970 5971
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5972
	/* For now, we need the power well to be always enabled. */
5973
	intel_display_set_init_power(dev, true);
5974
	intel_power_domains_resume(dev);
5975

5976 5977 5978
	if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
		return;

5979 5980
	/* We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now. */
5981
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5982
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5983 5984
}

5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
	hsw_disable_package_c8(dev_priv);
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
	hsw_enable_package_c8(dev_priv);
}

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	dev_priv->pm.suspended = false;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_set_active(device);

	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);
}

void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	/* Make sure we're not suspended first. */
	pm_runtime_get_sync(device);
	pm_runtime_disable(device);
}

6050 6051 6052 6053 6054 6055
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_HAS_FBC(dev)) {
6056
		if (INTEL_INFO(dev)->gen >= 7) {
6057
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6058 6059 6060 6061 6062
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
6063 6064 6065 6066 6067
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
6068
		} else {
6069 6070 6071 6072 6073 6074
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
	}

6075 6076 6077 6078 6079 6080
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6081 6082
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
6083 6084
		intel_setup_wm_latency(dev);

6085
		if (IS_GEN5(dev)) {
6086 6087 6088
			if (dev_priv->wm.pri_latency[1] &&
			    dev_priv->wm.spr_latency[1] &&
			    dev_priv->wm.cur_latency[1])
6089 6090 6091 6092 6093 6094 6095 6096
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
		} else if (IS_GEN6(dev)) {
6097 6098 6099
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6100 6101 6102 6103 6104 6105 6106 6107 6108
				dev_priv->display.update_wm = sandybridge_update_wm;
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
		} else if (IS_IVYBRIDGE(dev)) {
6109 6110 6111
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6112
				dev_priv->display.update_wm = ivybridge_update_wm;
6113 6114 6115 6116 6117 6118 6119
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6120
		} else if (IS_HASWELL(dev)) {
6121 6122 6123
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6124
				dev_priv->display.update_wm = haswell_update_wm;
6125 6126
				dev_priv->display.update_sprite_wm =
					haswell_update_sprite_wm;
6127 6128 6129 6130 6131
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
6132
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
B
Ben Widawsky 已提交
6133 6134
		} else if (INTEL_INFO(dev)->gen == 8) {
			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_I865G(dev)) {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

B
Ben Widawsky 已提交
6188 6189
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
6190
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
6214
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6234

6235
int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6236
{
6237
	int div;
6238

6239
	/* 4 x czclk */
6240
	switch (dev_priv->mem_freq) {
6241
	case 800:
6242
		div = 10;
6243 6244
		break;
	case 1066:
6245
		div = 12;
6246 6247
		break;
	case 1333:
6248
		div = 16;
6249 6250 6251 6252 6253
		break;
	default:
		return -1;
	}

6254
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6255 6256
}

6257
int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6258
{
6259
	int mul;
6260

6261
	/* 4 x czclk */
6262
	switch (dev_priv->mem_freq) {
6263
	case 800:
6264
		mul = 10;
6265 6266
		break;
	case 1066:
6267
		mul = 12;
6268 6269
		break;
	case 1333:
6270
		mul = 16;
6271 6272 6273 6274 6275
		break;
	default:
		return -1;
	}

6276
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6277 6278
}

6279 6280 6281 6282 6283 6284 6285
void intel_pm_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
}