amba-pl08x.c 60.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
18 19
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
20 21
 *
 * Documentation: ARM DDI 0196G == PL080
22
 * Documentation: ARM DDI 0218E == PL081
23
 * Documentation: S3C6410 User's Manual == PL080S
24
 *
25 26
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
27 28 29 30 31 32 33 34 35
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
36 37 38 39 40 41 42 43
 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
 * It differs in following aspects:
 * - CH_CONFIG register at different offset,
 * - separate CH_CONTROL2 register for transfer size,
 * - bigger maximum transfer size,
 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
 * - no support for peripheral flow control.
 *
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
61 62 63 64 65 66 67 68 69 70 71
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
72
 *    will then move to the next LLI entry. Unsupported by PL080S.
73
 */
74
#include <linux/amba/bus.h>
75 76
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
77 78 79 80
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
81
#include <linux/dma-mapping.h>
82
#include <linux/export.h>
83 84 85
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
86
#include <linux/pm_runtime.h>
87
#include <linux/seq_file.h>
88
#include <linux/slab.h>
89
#include <linux/amba/pl080.h>
90

91
#include "dmaengine.h"
92
#include "virt-dma.h"
93

94 95
#define DRIVER_NAME	"pl08xdmac"

96
static struct amba_driver pl08x_amba_driver;
97
struct pl08x_driver_data;
98

99
/**
100
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
101
 * @channels: the number of channels available in this variant
102
 * @dualmaster: whether this version supports dual AHB masters or not.
103 104 105
 * @nomadik: whether the channels have Nomadik security extension bits
 *	that need to be checked for permission before use and some registers are
 *	missing
106 107
 * @pl080s: whether this version is a PL080S, which has separate register and
 *	LLI word for transfer size.
108 109
 */
struct vendor_data {
110
	u8 config_offset;
111 112
	u8 channels;
	bool dualmaster;
113
	bool nomadik;
114
	bool pl080s;
115
	u32 max_transfer_size;
116 117
};

118 119 120 121 122 123 124 125 126 127 128 129 130
/**
 * struct pl08x_bus_data - information of source or destination
 * busses for a transfer
 * @addr: current address
 * @maxwidth: the maximum width of a transfer on this bus
 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 */
struct pl08x_bus_data {
	dma_addr_t addr;
	u8 maxwidth;
	u8 buswidth;
};

131 132
#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)

133 134 135 136 137 138
/**
 * struct pl08x_phy_chan - holder for the physical channels
 * @id: physical index to this channel
 * @lock: a lock to use when altering an instance of this struct
 * @serving: the virtual channel currently being served by this physical
 * channel
139 140
 * @locked: channel unavailable for the system, e.g. dedicated to secure
 * world
141 142 143 144
 */
struct pl08x_phy_chan {
	unsigned int id;
	void __iomem *base;
145
	void __iomem *reg_config;
146 147
	spinlock_t lock;
	struct pl08x_dma_chan *serving;
148
	bool locked;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
};

/**
 * struct pl08x_sg - structure containing data per sg
 * @src_addr: src address of sg
 * @dst_addr: dst address of sg
 * @len: transfer len in bytes
 * @node: node for txd's dsg_list
 */
struct pl08x_sg {
	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	size_t len;
	struct list_head node;
};

/**
 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
167
 * @vd: virtual DMA descriptor
168 169 170 171 172
 * @dsg_list: list of children sg's
 * @llis_bus: DMA memory address (physical) start for the LLIs
 * @llis_va: virtual memory address start for the LLIs
 * @cctl: control reg values for current txd
 * @ccfg: config reg values for current txd
173 174
 * @done: this marks completed descriptors, which should not have their
 *   mux released.
175
 * @cyclic: indicate cyclic transfers
176 177
 */
struct pl08x_txd {
178
	struct virt_dma_desc vd;
179 180
	struct list_head dsg_list;
	dma_addr_t llis_bus;
181
	u32 *llis_va;
182 183 184 185 186 187 188
	/* Default cctl value for LLIs */
	u32 cctl;
	/*
	 * Settings to be put into the physical channel when we
	 * trigger this txd.  Other registers are in llis_va[0].
	 */
	u32 ccfg;
189
	bool done;
190
	bool cyclic;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
};

/**
 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 * states
 * @PL08X_CHAN_IDLE: the channel is idle
 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 * channel and is running a transfer on it
 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 * channel, but the transfer is currently paused
 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 * channel to become available (only pertains to memcpy channels)
 */
enum pl08x_dma_chan_state {
	PL08X_CHAN_IDLE,
	PL08X_CHAN_RUNNING,
	PL08X_CHAN_PAUSED,
	PL08X_CHAN_WAITING,
};

/**
 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
213
 * @vc: wrappped virtual channel
214 215 216 217 218 219 220 221 222
 * @phychan: the physical channel utilized by this channel, if there is one
 * @name: name of channel
 * @cd: channel platform data
 * @runtime_addr: address for RX/TX according to the runtime config
 * @at: active transaction on this channel
 * @lock: a lock for this channel data
 * @host: a pointer to the host (internal use)
 * @state: whether the channel is idle, paused, running etc
 * @slave: whether this channel is a device (slave) or for memcpy
223
 * @signal: the physical DMA request signal which this channel is using
224
 * @mux_use: count of descriptors using this DMA request signal setting
225 226
 */
struct pl08x_dma_chan {
227
	struct virt_dma_chan vc;
228
	struct pl08x_phy_chan *phychan;
229
	const char *name;
230
	const struct pl08x_channel_data *cd;
231
	struct dma_slave_config cfg;
232 233 234 235
	struct pl08x_txd *at;
	struct pl08x_driver_data *host;
	enum pl08x_dma_chan_state state;
	bool slave;
236
	int signal;
237
	unsigned mux_use;
238 239
};

240 241 242 243 244 245 246 247 248 249
/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
250 251
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
252
 * @mem_buses: set to indicate memory transfers on AHB2.
253 254 255 256 257 258 259
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
260
	const struct vendor_data *vd;
261 262 263
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
264 265
	u8 lli_buses;
	u8 mem_buses;
266
	u8 lli_words;
267 268 269 270 271 272
};

/*
 * PL08X specific defines
 */

273 274 275 276 277
/* The order of words in an LLI. */
#define PL080_LLI_SRC		0
#define PL080_LLI_DST		1
#define PL080_LLI_LLI		2
#define PL080_LLI_CCTL		3
278
#define PL080S_LLI_CCTL2	4
279 280 281

/* Total words in an LLI. */
#define PL080_LLI_WORDS		4
282
#define PL080S_LLI_WORDS	8
283

284 285 286 287 288
/*
 * Number of LLIs in each LLI buffer allocated for one transfer
 * (maximum times we call dma_pool_alloc on this pool without freeing)
 */
#define MAX_NUM_TSFR_LLIS	512
289 290 291 292
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
293
	return container_of(chan, struct pl08x_dma_chan, vc.chan);
294 295
}

296 297
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
298
	return container_of(tx, struct pl08x_txd, vd.tx);
299 300
}

301 302 303 304 305 306 307 308
/*
 * Mux handling.
 *
 * This gives us the DMA request input to the PL08x primecell which the
 * peripheral described by the channel data will be routed to, possibly
 * via a board/SoC specific external MUX.  One important point to note
 * here is that this does not depend on the physical channel.
 */
309
static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
310 311 312 313
{
	const struct pl08x_platform_data *pd = plchan->host->pd;
	int ret;

314 315
	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
		ret = pd->get_xfer_signal(plchan->cd);
316 317
		if (ret < 0) {
			plchan->mux_use = 0;
318
			return ret;
319
		}
320

321
		plchan->signal = ret;
322 323 324 325 326 327 328 329
	}
	return 0;
}

static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
{
	const struct pl08x_platform_data *pd = plchan->host->pd;

330 331 332
	if (plchan->signal >= 0) {
		WARN_ON(plchan->mux_use == 0);

333 334
		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
			pd->put_xfer_signal(plchan->cd, plchan->signal);
335 336
			plchan->signal = -1;
		}
337 338 339
	}
}

340 341 342 343 344 345 346 347 348
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

349
	val = readl(ch->reg_config);
350 351 352
	return val & PL080_CONFIG_ACTIVE;
}

353 354 355
static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
{
356 357 358 359 360 361 362 363 364 365 366 367 368
	if (pl08x->vd->pl080s)
		dev_vdbg(&pl08x->adev->dev,
			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
			lli[PL080S_LLI_CCTL2], ccfg);
	else
		dev_vdbg(&pl08x->adev->dev,
			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
369 370 371 372 373 374

	writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
	writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
	writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
	writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);

375 376 377 378
	if (pl08x->vd->pl080s)
		writel_relaxed(lli[PL080S_LLI_CCTL2],
				phychan->base + PL080S_CH_CONTROL2);

379 380 381
	writel(ccfg, phychan->reg_config);
}

382 383
/*
 * Set the initial DMA register values i.e. those for the first LLI
384
 * The next LLI pointer and the configuration interrupt bit have
385 386
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
387
 */
388
static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
389
{
390
	struct pl08x_driver_data *pl08x = plchan->host;
391
	struct pl08x_phy_chan *phychan = plchan->phychan;
392 393
	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
394
	u32 val;
395

396
	list_del(&txd->vd.node);
397

398
	plchan->at = txd;
399

400 401 402
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
403

404
	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
405 406 407 408

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
409
		cpu_relax();
410

411
	/* Do not access config register until channel shows as inactive */
412
	val = readl(phychan->reg_config);
413
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
414
		val = readl(phychan->reg_config);
415

416
	writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
417 418 419
}

/*
420
 * Pause the channel by setting the HALT bit.
421
 *
422 423 424
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
425
 *
426 427
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
428 429 430 431
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
432
	int timeout;
433 434

	/* Set the HALT bit and wait for the FIFO to drain */
435
	val = readl(ch->reg_config);
436
	val |= PL080_CONFIG_HALT;
437
	writel(val, ch->reg_config);
438 439

	/* Wait for channel inactive */
440 441 442 443 444 445 446
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
447 448 449 450 451 452 453
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
454
	val = readl(ch->reg_config);
455
	val &= ~PL080_CONFIG_HALT;
456
	writel(val, ch->reg_config);
457 458
}

459 460 461 462 463 464 465 466
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
467
{
468
	u32 val = readl(ch->reg_config);
469

470 471
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
472

473
	writel(val, ch->reg_config);
474 475 476

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
477 478 479 480 481 482 483
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

484 485
	cctl &= PL080_CONTROL_SWIDTH_MASK;

486 487 488 489 490 491 492 493 494 495 496 497 498
	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

499 500 501 502 503
static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;

504 505
	cctl &= PL080_CONTROL_SWIDTH_MASK;

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
522 523
	struct pl08x_driver_data *pl08x = plchan->host;
	const u32 *llis_va, *llis_va_limit;
524
	struct pl08x_phy_chan *ch;
525
	dma_addr_t llis_bus;
526
	struct pl08x_txd *txd;
527
	u32 llis_max_words;
528 529
	size_t bytes;
	u32 clli;
530 531 532 533

	ch = plchan->phychan;
	txd = plchan->at;

534 535 536
	if (!ch || !txd)
		return 0;

537
	/*
538 539
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
540
	 */
541
	clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
542

543
	/* First get the remaining bytes in the active transfer */
544 545 546 547 548
	if (pl08x->vd->pl080s)
		bytes = get_bytes_in_cctl_pl080s(
				readl(ch->base + PL080_CH_CONTROL),
				readl(ch->base + PL080S_CH_CONTROL2));
	else
549 550
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

551 552
	if (!clli)
		return bytes;
553

554 555
	llis_va = txd->llis_va;
	llis_bus = txd->llis_bus;
556

557
	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
558
	BUG_ON(clli < llis_bus || clli >= llis_bus +
559
						sizeof(u32) * llis_max_words);
560

561 562 563 564
	/*
	 * Locate the next LLI - as this is an array,
	 * it's simple maths to find.
	 */
565
	llis_va += (clli - llis_bus) / sizeof(u32);
566

567 568 569
	llis_va_limit = llis_va + llis_max_words;

	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
570 571 572 573 574 575
		if (pl08x->vd->pl080s)
			bytes += get_bytes_in_cctl_pl080s(
						llis_va[PL080_LLI_CCTL],
						llis_va[PL080S_LLI_CCTL2]);
		else
			bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
576 577

		/*
578
		 * A LLI pointer going backward terminates the LLI list
579
		 */
580
		if (llis_va[PL080_LLI_LLI] <= clli)
581
			break;
582 583 584 585 586 587 588
	}

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
589 590 591 592
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
593 594 595 596 597 598 599 600 601 602 603 604 605 606
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

607
		if (!ch->locked && !ch->serving) {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
			ch->serving = virt_chan;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

624
/* Mark the physical channel as free.  Note, this write is atomic. */
625 626 627
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
628 629
	ch->serving = NULL;
}
630

631 632 633 634 635 636 637 638 639
/*
 * Try to allocate a physical channel.  When successful, assign it to
 * this virtual channel, and initiate the next descriptor.  The
 * virtual channel lock must be held at this point.
 */
static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
640

641 642 643 644 645 646
	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		plchan->state = PL08X_CHAN_WAITING;
		return;
	}
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
		ch->id, plchan->name);

	plchan->phychan = ch;
	plchan->state = PL08X_CHAN_RUNNING;
	pl08x_start_next_txd(plchan);
}

static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
	struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
		ch->id, plchan->name);

	/*
	 * We do this without taking the lock; we're really only concerned
	 * about whether this pointer is NULL or not, and we're guaranteed
	 * that this will only be called when it _already_ is non-NULL.
	 */
	ch->serving = plchan;
	plchan->phychan = ch;
	plchan->state = PL08X_CHAN_RUNNING;
	pl08x_start_next_txd(plchan);
}

/*
 * Free a physical DMA channel, potentially reallocating it to another
 * virtual channel if we have any pending.
 */
static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_dma_chan *p, *next;

 retry:
	next = NULL;

	/* Find a waiting virtual channel for the next transfer. */
688
	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
689 690 691 692 693 694
		if (p->state == PL08X_CHAN_WAITING) {
			next = p;
			break;
		}

	if (!next) {
695
		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
			if (p->state == PL08X_CHAN_WAITING) {
				next = p;
				break;
			}
	}

	/* Ensure that the physical channel is stopped */
	pl08x_terminate_phy_chan(pl08x, plchan->phychan);

	if (next) {
		bool success;

		/*
		 * Eww.  We know this isn't going to deadlock
		 * but lockdep probably doesn't.
		 */
712
		spin_lock(&next->vc.lock);
713 714 715 716
		/* Re-check the state now that we have the lock */
		success = next->state == PL08X_CHAN_WAITING;
		if (success)
			pl08x_phy_reassign_start(plchan->phychan, next);
717
		spin_unlock(&next->vc.lock);
718 719 720 721 722 723 724 725 726 727 728

		/* If the state changed, try to find another channel */
		if (!success)
			goto retry;
	} else {
		/* No more jobs, so free up the physical channel */
		pl08x_put_phy_channel(pl08x, plchan->phychan);
	}

	plchan->phychan = NULL;
	plchan->state = PL08X_CHAN_IDLE;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
752
				  size_t tsize)
753 754 755
{
	u32 retbits = cctl;

756
	/* Remove all src, dst and transfer size bits */
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

792
	tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
793 794 795 796
	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

797 798 799 800 801
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
802
	u32 lli_bus;
803 804
};

805
/*
806 807 808 809 810 811
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
812
 * - prefers bus with fixed address (i.e. peripheral)
813
 */
814 815
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
816 817
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
818 819
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
820 821 822
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
823
	} else {
824
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
825 826
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
827
		} else {
828 829
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
830 831 832 833 834
		}
	}
}

/*
835
 * Fills in one LLI for a certain transfer descriptor and advance the counter
836
 */
837 838
static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
				    struct pl08x_lli_build_data *bd,
839
				    int num_llis, int len, u32 cctl, u32 cctl2)
840
{
841 842
	u32 offset = num_llis * pl08x->lli_words;
	u32 *llis_va = bd->txd->llis_va + offset;
843
	dma_addr_t llis_bus = bd->txd->llis_bus;
844 845 846

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

847 848 849 850 851 852 853 854
	/* Advance the offset to next LLI. */
	offset += pl08x->lli_words;

	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
	llis_va[PL080_LLI_CCTL] = cctl;
855 856
	if (pl08x->vd->pl080s)
		llis_va[PL080S_LLI_CCTL2] = cctl2;
857 858

	if (cctl & PL080_CONTROL_SRC_INCR)
859
		bd->srcbus.addr += len;
860
	if (cctl & PL080_CONTROL_DST_INCR)
861
		bd->dstbus.addr += len;
862

863
	BUG_ON(bd->remainder < len);
864

865
	bd->remainder -= len;
866 867
}

868 869 870
static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
			int num_llis, size_t *total_bytes)
871
{
872
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
873
	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
874
	(*total_bytes) += len;
875 876
}

877 878 879 880 881 882
#ifdef VERBOSE_DEBUG
static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
			   const u32 *llis_va, int num_llis)
{
	int i;

883
	if (pl08x->vd->pl080s) {
884
		dev_vdbg(&pl08x->adev->dev,
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
				i, llis_va, llis_va[PL080_LLI_SRC],
				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
				llis_va[PL080_LLI_CCTL],
				llis_va[PL080S_LLI_CCTL2]);
			llis_va += pl08x->lli_words;
		}
	} else {
		dev_vdbg(&pl08x->adev->dev,
			"%-3s %-9s  %-10s %-10s %-10s %s\n",
			"lli", "", "csrc", "cdst", "clli", "cctl");
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				i, llis_va, llis_va[PL080_LLI_SRC],
				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
				llis_va[PL080_LLI_CCTL]);
			llis_va += pl08x->lli_words;
		}
908 909 910 911 912 913 914
	}
}
#else
static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
				  const u32 *llis_va, int num_llis) {}
#endif

915 916 917 918 919 920 921 922 923
/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
924
	struct pl08x_lli_build_data bd;
925
	int num_llis = 0;
926
	u32 cctl, early_bytes = 0;
927
	size_t max_bytes_per_lli, total_bytes;
928
	u32 *llis_va, *last_lli;
929
	struct pl08x_sg *dsg;
930

931
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
932 933 934 935 936
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

937
	bd.txd = txd;
938
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
939
	cctl = txd->cctl;
940

941
	/* Find maximum width of the source bus */
942
	bd.srcbus.maxwidth =
943 944 945 946
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
947
	bd.dstbus.maxwidth =
948 949 950
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

951 952 953
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
954

955 956 957 958 959
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
960

961
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
962

963 964 965 966
		dev_vdbg(&pl08x->adev->dev,
			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
			(u64)bd.srcbus.addr,
			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
967
			bd.srcbus.buswidth,
968 969
			(u64)bd.dstbus.addr,
			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
970 971 972 973 974
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1001
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1002 1003 1004 1005
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
1006

1007 1008
			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
				!IS_BUS_ALIGNED(&bd.dstbus)) {
1009 1010 1011 1012 1013 1014
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
1015

1016 1017
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
1018
			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1019
					0, cctl, 0);
1020 1021
			break;
		}
1022 1023

		/*
1024 1025 1026
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
1027
		 */
1028 1029
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
1030 1031 1032
		else if (!IS_BUS_ALIGNED(mbus)) {
			early_bytes = mbus->buswidth -
				(mbus->addr & (mbus->buswidth - 1));
1033 1034 1035
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
1036

1037 1038
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
1039
				"%s byte width LLIs (remain 0x%08zx)\n",
1040
				__func__, bd.remainder);
1041 1042
			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
				num_llis++, &total_bytes);
1043 1044
		}

1045 1046 1047 1048 1049
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
1050
			if (!IS_BUS_ALIGNED(sbus)) {
1051 1052 1053
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
1054

1055 1056
				sbus->buswidth = 1;
			}
1057 1058

			/*
1059 1060
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
1061
			 */
1062
			max_bytes_per_lli = bd.srcbus.buswidth *
1063
						pl08x->vd->max_transfer_size;
1064 1065 1066
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
1067 1068

			/*
1069 1070
			 * Make largest possible LLIs until less than one bus
			 * width left
1071
			 */
1072 1073
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
1074

1075 1076 1077 1078 1079
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1097
					bd.dstbus.buswidth, tsize);
1098
				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1099
						lli_len, cctl, tsize);
1100 1101
				total_bytes += lli_len;
			}
1102

1103 1104 1105 1106 1107 1108 1109
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
1110 1111
				prep_byte_width_lli(pl08x, &bd, &cctl,
					bd.remainder, num_llis++, &total_bytes);
1112
			}
1113
		}
1114

1115 1116 1117 1118 1119 1120
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
1121

1122 1123 1124
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1125
				__func__, MAX_NUM_TSFR_LLIS);
1126 1127
			return 0;
		}
1128
	}
1129 1130

	llis_va = txd->llis_va;
1131
	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1132

1133 1134 1135 1136 1137 1138 1139 1140
	if (txd->cyclic) {
		/* Link back to the first LLI. */
		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
	} else {
		/* The final LLI terminates the LLI. */
		last_lli[PL080_LLI_LLI] = 0;
		/* The final LLI element shall also fire an interrupt. */
		last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1141 1142
	}

1143
	pl08x_dump_lli(pl08x, llis_va, num_llis);
1144 1145 1146 1147 1148 1149 1150

	return num_llis;
}

static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
1151 1152
	struct pl08x_sg *dsg, *_dsg;

1153 1154
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1155

1156 1157 1158 1159 1160
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

1161 1162 1163
	kfree(txd);
}

1164 1165 1166 1167 1168
static void pl08x_desc_free(struct virt_dma_desc *vd)
{
	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);

R
Russell King - ARM Linux 已提交
1169
	dma_descriptor_unmap(&vd->tx);
1170 1171 1172 1173 1174 1175
	if (!txd->done)
		pl08x_release_mux(plchan);

	pl08x_free_txd(plchan->host, txd);
}

1176 1177 1178
static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
1179
	LIST_HEAD(head);
1180

1181
	vchan_get_all_descriptors(&plchan->vc, &head);
1182
	vchan_dma_desc_free_list(&plchan->vc, &head);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
1195 1196
	/* Ensure all queued descriptors are freed */
	vchan_free_chan_resources(to_virt_chan(chan));
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1208 1209 1210
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1211
 */
1212 1213
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
1214 1215
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1216 1217
	struct virt_dma_desc *vd;
	unsigned long flags;
1218
	enum dma_status ret;
1219
	size_t bytes = 0;
1220

1221
	ret = dma_cookie_status(chan, cookie, txstate);
1222
	if (ret == DMA_COMPLETE)
1223 1224
		return ret;

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	/*
	 * There's no point calculating the residue if there's
	 * no txstate to store the value.
	 */
	if (!txstate) {
		if (plchan->state == PL08X_CHAN_PAUSED)
			ret = DMA_PAUSED;
		return ret;
	}

	spin_lock_irqsave(&plchan->vc.lock, flags);
	ret = dma_cookie_status(chan, cookie, txstate);
1237
	if (ret != DMA_COMPLETE) {
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		vd = vchan_find_desc(&plchan->vc, cookie);
		if (vd) {
			/* On the issued list, so hasn't been processed yet */
			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
			struct pl08x_sg *dsg;

			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
		} else {
			bytes = pl08x_getbytes_chan(plchan);
		}
	}
	spin_unlock_irqrestore(&plchan->vc.lock, flags);

1252 1253
	/*
	 * This cookie not complete yet
1254
	 * Get number of bytes left in the active transactions and queue
1255
	 */
1256
	dma_set_residue(txstate, bytes);
1257

1258 1259
	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
		ret = DMA_PAUSED;
1260 1261

	/* Whether waiting or running, we're in progress */
1262
	return ret;
1263 1264 1265 1266
}

/* PrimeCell DMA extension */
struct burst_table {
1267
	u32 burstwords;
1268 1269 1270 1271 1272 1273
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1274
		.reg = PL080_BSIZE_256,
1275 1276 1277
	},
	{
		.burstwords = 128,
1278
		.reg = PL080_BSIZE_128,
1279 1280 1281
	},
	{
		.burstwords = 64,
1282
		.reg = PL080_BSIZE_64,
1283 1284 1285
	},
	{
		.burstwords = 32,
1286
		.reg = PL080_BSIZE_32,
1287 1288 1289
	},
	{
		.burstwords = 16,
1290
		.reg = PL080_BSIZE_16,
1291 1292 1293
	},
	{
		.burstwords = 8,
1294
		.reg = PL080_BSIZE_8,
1295 1296 1297
	},
	{
		.burstwords = 4,
1298
		.reg = PL080_BSIZE_4,
1299 1300
	},
	{
1301 1302
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1303 1304 1305
	},
};

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1333 1334 1335 1336 1337 1338 1339 1340 1341
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1342 1343
	default:
		return ~0;
1344 1345 1346
	}
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
	enum dma_slave_buswidth addr_width, u32 maxburst)
{
	u32 width, burst, cctl = 0;

	width = pl08x_width(addr_width);
	if (width == ~0)
		return ~0;

	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

	/*
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
	 */
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;

	return pl08x_cctl(cctl);
}

1385 1386 1387 1388 1389 1390 1391 1392 1393
/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

1394
	spin_lock_irqsave(&plchan->vc.lock, flags);
1395
	if (vchan_issue_pending(&plchan->vc)) {
1396 1397
		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
			pl08x_phy_alloc_and_start(plchan);
1398
	}
1399
	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1400 1401
}

1402
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1403
{
1404
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1405 1406

	if (txd) {
1407
		INIT_LIST_HEAD(&txd->dsg_list);
1408 1409 1410 1411

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1412 1413 1414 1415
	}
	return txd;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1426
	struct pl08x_sg *dsg;
1427 1428
	int ret;

1429
	txd = pl08x_get_txd(plchan);
1430 1431 1432 1433 1434 1435
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1448 1449

	/* Set platform data for m2m */
1450
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1451
	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1452
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1453

1454
	/* Both to be incremented or the code will break */
1455
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1456 1457

	if (pl08x->vd->dualmaster)
1458 1459
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1460

1461 1462 1463
	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
	if (!ret) {
		pl08x_free_txd(pl08x, txd);
1464
		return NULL;
1465
	}
1466

1467
	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1468 1469
}

1470 1471 1472 1473
static struct pl08x_txd *pl08x_init_txd(
		struct dma_chan *chan,
		enum dma_transfer_direction direction,
		dma_addr_t *slave_addr)
1474 1475 1476 1477
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1478
	enum dma_slave_buswidth addr_width;
1479
	int ret, tmp;
1480
	u8 src_buses, dst_buses;
1481
	u32 maxburst, cctl;
1482

1483
	txd = pl08x_get_txd(plchan);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
1494
	if (direction == DMA_MEM_TO_DEV) {
1495
		cctl = PL080_CONTROL_SRC_INCR;
1496
		*slave_addr = plchan->cfg.dst_addr;
1497 1498
		addr_width = plchan->cfg.dst_addr_width;
		maxburst = plchan->cfg.dst_maxburst;
1499 1500
		src_buses = pl08x->mem_buses;
		dst_buses = plchan->cd->periph_buses;
1501
	} else if (direction == DMA_DEV_TO_MEM) {
1502
		cctl = PL080_CONTROL_DST_INCR;
1503
		*slave_addr = plchan->cfg.src_addr;
1504 1505
		addr_width = plchan->cfg.src_addr_width;
		maxburst = plchan->cfg.src_maxburst;
1506 1507
		src_buses = plchan->cd->periph_buses;
		dst_buses = pl08x->mem_buses;
1508
	} else {
1509
		pl08x_free_txd(pl08x, txd);
1510 1511 1512 1513 1514
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1515
	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1516 1517 1518 1519 1520 1521 1522
	if (cctl == ~0) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev,
			"DMA slave configuration botched?\n");
		return NULL;
	}

1523 1524
	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);

1525
	if (plchan->cfg.device_fc)
1526
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1527 1528
			PL080_FLOW_PER2MEM_PER;
	else
1529
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1530 1531 1532 1533
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	ret = pl08x_request_mux(plchan);
	if (ret < 0) {
		pl08x_free_txd(pl08x, txd);
		dev_dbg(&pl08x->adev->dev,
			"unable to mux for transfer on %s due to platform restrictions\n",
			plchan->name);
		return NULL;
	}

	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
		 plchan->signal, plchan->name);

	/* Assign the flow control signal to this channel */
	if (direction == DMA_MEM_TO_DEV)
		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else
		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	return txd;
}

static int pl08x_tx_add_sg(struct pl08x_txd *txd,
			   enum dma_transfer_direction direction,
			   dma_addr_t slave_addr,
			   dma_addr_t buf_addr,
			   unsigned int len)
{
	struct pl08x_sg *dsg;

	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg)
		return -ENOMEM;

	list_add_tail(&dsg->node, &txd->dsg_list);

	dsg->len = len;
	if (direction == DMA_MEM_TO_DEV) {
		dsg->src_addr = buf_addr;
		dsg->dst_addr = slave_addr;
	} else {
		dsg->src_addr = slave_addr;
		dsg->dst_addr = buf_addr;
	}

	return 0;
}

static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_transfer_direction direction,
		unsigned long flags, void *context)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	struct scatterlist *sg;
	int ret, tmp;
	dma_addr_t slave_addr;

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
			__func__, sg_dma_len(sgl), plchan->name);

	txd = pl08x_init_txd(chan, direction, &slave_addr);
	if (!txd)
		return NULL;

1600
	for_each_sg(sgl, sg, sg_len, tmp) {
1601 1602 1603 1604
		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
				      sg_dma_address(sg),
				      sg_dma_len(sg));
		if (ret) {
1605
			pl08x_release_mux(plchan);
1606 1607 1608 1609 1610
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
1611
	}
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
	if (!ret) {
		pl08x_release_mux(plchan);
		pl08x_free_txd(pl08x, txd);
		return NULL;
	}

	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
		size_t period_len, enum dma_transfer_direction direction,
1626
		unsigned long flags)
1627 1628 1629 1630 1631 1632 1633 1634
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret, tmp;
	dma_addr_t slave_addr;

	dev_dbg(&pl08x->adev->dev,
1635
		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
		__func__, period_len, buf_len,
		direction == DMA_MEM_TO_DEV ? "to" : "from",
		plchan->name);

	txd = pl08x_init_txd(chan, direction, &slave_addr);
	if (!txd)
		return NULL;

	txd->cyclic = true;
	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
	for (tmp = 0; tmp < buf_len; tmp += period_len) {
		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
				      buf_addr + tmp, period_len);
		if (ret) {
			pl08x_release_mux(plchan);
			pl08x_free_txd(pl08x, txd);
			return NULL;
1653 1654 1655
		}
	}

1656 1657 1658 1659
	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
	if (!ret) {
		pl08x_release_mux(plchan);
		pl08x_free_txd(pl08x, txd);
1660
		return NULL;
1661
	}
1662

1663
	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1664 1665
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
static int pl08x_config(struct dma_chan *chan,
			struct dma_slave_config *config)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;

	if (!plchan->slave)
		return -EINVAL;

	/* Reject definitely invalid configurations */
	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
		return -EINVAL;

	if (config->device_fc && pl08x->vd->pl080s) {
		dev_err(&pl08x->adev->dev,
			"%s: PL080S does not support peripheral flow control\n",
			__func__);
		return -EINVAL;
	}

	plchan->cfg = *config;

	return 0;
}

static int pl08x_terminate_all(struct dma_chan *chan)
1693 1694 1695 1696 1697
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;

1698 1699 1700 1701
	spin_lock_irqsave(&plchan->vc.lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->vc.lock, flags);
		return 0;
1702 1703
	}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	plchan->state = PL08X_CHAN_IDLE;

	if (plchan->phychan) {
		/*
		 * Mark physical channel as free and free any slave
		 * signal
		 */
		pl08x_phy_free(plchan);
	}
	/* Dequeue jobs and free LLIs */
	if (plchan->at) {
		pl08x_desc_free(&plchan->at->vd);
		plchan->at = NULL;
	}
	/* Dequeue jobs not yet fired as well */
	pl08x_free_txd_list(pl08x, plchan);

	spin_unlock_irqrestore(&plchan->vc.lock, flags);

	return 0;
}

static int pl08x_pause(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

1731 1732 1733 1734
	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
1735
	spin_lock_irqsave(&plchan->vc.lock, flags);
1736
	if (!plchan->phychan && !plchan->at) {
1737
		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1738 1739 1740
		return 0;
	}

1741 1742
	pl08x_pause_phy_chan(plchan->phychan);
	plchan->state = PL08X_CHAN_PAUSED;
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	spin_unlock_irqrestore(&plchan->vc.lock, flags);

	return 0;
}

static int pl08x_resume(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->vc.lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->vc.lock, flags);
		return 0;
1762 1763
	}

1764 1765 1766
	pl08x_resume_phy_chan(plchan->phychan);
	plchan->state = PL08X_CHAN_RUNNING;

1767
	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1768

1769
	return 0;
1770 1771 1772 1773
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1774
	struct pl08x_dma_chan *plchan;
1775 1776
	char *name = chan_id;

1777 1778 1779 1780 1781 1782
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1783 1784 1785 1786 1787 1788
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}
1789
EXPORT_SYMBOL_GPL(pl08x_filter_id);
1790 1791 1792

/*
 * Just check that the device is there and active
1793 1794 1795
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1796 1797 1798
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1799 1800 1801
	/* The Nomadik variant does not have the config register */
	if (pl08x->vd->nomadik)
		return;
1802
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1803 1804 1805 1806 1807
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1808 1809 1810 1811 1812 1813 1814 1815
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1816
	}
1817
	tc = readl(pl08x->base + PL080_TC_STATUS);
1818 1819 1820 1821 1822 1823
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1824
	for (i = 0; i < pl08x->vd->channels; i++) {
1825
		if (((1 << i) & err) || ((1 << i) & tc)) {
1826 1827 1828
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;
1829
			struct pl08x_txd *tx;
1830

1831 1832 1833 1834 1835 1836 1837
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1838
			spin_lock(&plchan->vc.lock);
1839
			tx = plchan->at;
1840 1841 1842
			if (tx && tx->cyclic) {
				vchan_cyclic_callback(&tx->vd);
			} else if (tx) {
1843
				plchan->at = NULL;
1844 1845 1846 1847 1848
				/*
				 * This descriptor is done, release its mux
				 * reservation.
				 */
				pl08x_release_mux(plchan);
1849 1850
				tx->done = true;
				vchan_cookie_complete(&tx->vd);
1851

1852 1853 1854 1855
				/*
				 * And start the next descriptor (if any),
				 * otherwise free this channel.
				 */
1856
				if (vchan_next_desc(&plchan->vc))
1857
					pl08x_start_next_txd(plchan);
1858 1859
				else
					pl08x_phy_free(plchan);
1860
			}
1861
			spin_unlock(&plchan->vc.lock);
1862

1863 1864 1865 1866 1867 1868 1869
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1870 1871 1872 1873
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	chan->slave = true;
	chan->name = chan->cd->bus_id;
1874 1875
	chan->cfg.src_addr = chan->cd->addr;
	chan->cfg.dst_addr = chan->cd->addr;
1876 1877
}

1878 1879 1880 1881 1882
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1883
		struct dma_device *dmadev, unsigned int channels, bool slave)
1884 1885 1886 1887 1888
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1889

1890 1891 1892 1893 1894 1895
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1896
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1897 1898 1899 1900 1901 1902 1903 1904
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;
1905
		chan->signal = -1;
1906 1907 1908

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1909
			pl08x_dma_slave_init(chan);
1910 1911 1912 1913 1914 1915 1916 1917
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1918
		dev_dbg(&pl08x->adev->dev,
1919 1920 1921
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

1922
		chan->vc.desc_free = pl08x_desc_free;
1923
		vchan_init(&chan->vc, dmadev);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
1936 1937
				 next, &dmadev->channels, vc.chan.device_node) {
		list_del(&chan->vc.chan.device_node);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

1979 1980 1981 1982
		seq_printf(s, "%d\t\t%s%s\n",
			   ch->id,
			   virt_chan ? virt_chan->name : "(none)",
			   ch->locked ? " LOCKED" : "");
1983 1984 1985 1986 1987 1988 1989

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
1990
	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1991
		seq_printf(s, "%s\t\t%s\n", chan->name,
1992 1993 1994 1995 1996 1997
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
1998
	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1999
		seq_printf(s, "%s\t\t%s\n", chan->name,
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
2021 2022 2023
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
2024 2025 2026 2027 2028 2029 2030 2031
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

2032
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2033 2034
{
	struct pl08x_driver_data *pl08x;
2035
	const struct vendor_data *vd = id->data;
2036
	u32 tsfr_size;
2037 2038 2039 2040 2041 2042 2043
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

2044 2045 2046 2047 2048
	/* Ensure that we can do DMA */
	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
	if (ret)
		goto out_no_pl08x;

2049
	/* Create the driver state holder */
2050
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2065 2066 2067 2068
	pl08x->memcpy.device_config = pl08x_config;
	pl08x->memcpy.device_pause = pl08x_pause;
	pl08x->memcpy.device_resume = pl08x_resume;
	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2069 2070 2071

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2072
	dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2073 2074 2075 2076 2077 2078 2079
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2080
	pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2081 2082 2083 2084
	pl08x->slave.device_config = pl08x_config;
	pl08x->slave.device_pause = pl08x_pause;
	pl08x->slave.device_resume = pl08x_resume;
	pl08x->slave.device_terminate_all = pl08x_terminate_all;
2085 2086 2087 2088 2089

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
2090
		ret = -EINVAL;
2091 2092 2093 2094 2095 2096 2097
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

2098 2099 2100 2101 2102 2103 2104 2105
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

2106 2107 2108 2109
	if (vd->pl080s)
		pl08x->lli_words = PL080S_LLI_WORDS;
	else
		pl08x->lli_words = PL080_LLI_WORDS;
2110 2111
	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);

2112 2113
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2114
						tsfr_size, PL08X_ALIGN, 0);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

2129
	/* Attach the interrupt handler */
2130 2131 2132
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

2133
	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2134 2135 2136 2137 2138 2139 2140
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
2141
	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2142 2143 2144 2145 2146
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
2147
		ret = -ENOMEM;
2148 2149 2150 2151 2152 2153 2154 2155
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
2156
		ch->reg_config = ch->base + vd->config_offset;
2157
		spin_lock_init(&ch->lock);
2158 2159 2160 2161 2162 2163 2164 2165 2166

		/*
		 * Nomadik variants can have channels that are locked
		 * down for the secure world only. Lock up these channels
		 * by perpetually serving a dummy virtual channel.
		 */
		if (vd->nomadik) {
			u32 val;

2167
			val = readl(ch->reg_config);
2168 2169 2170 2171 2172 2173
			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
				ch->locked = true;
			}
		}

2174 2175
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2190
			pl08x->pd->num_slave_channels, true);
2191
	if (ret < 0) {
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2216 2217
	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2218
		 (unsigned long long)adev->res.start, adev->irq[0]);
2219

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
2246
	.config_offset = PL080_CH_CONFIG,
2247 2248
	.channels = 8,
	.dualmaster = true,
2249
	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2250 2251
};

2252
static struct vendor_data vendor_nomadik = {
2253
	.config_offset = PL080_CH_CONFIG,
2254 2255 2256
	.channels = 8,
	.dualmaster = true,
	.nomadik = true,
2257
	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2258 2259
};

2260 2261 2262 2263
static struct vendor_data vendor_pl080s = {
	.config_offset = PL080S_CH_CONFIG,
	.channels = 8,
	.pl080s = true,
2264
	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2265 2266
};

2267
static struct vendor_data vendor_pl081 = {
2268
	.config_offset = PL080_CH_CONFIG,
2269 2270
	.channels = 2,
	.dualmaster = false,
2271
	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2272 2273 2274
};

static struct amba_id pl08x_ids[] = {
2275 2276 2277 2278 2279 2280
	/* Samsung PL080S variant */
	{
		.id	= 0x0a141080,
		.mask	= 0xffffffff,
		.data	= &vendor_pl080s,
	},
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
2295
		.id	= 0x00280080,
2296
		.mask	= 0x00ffffff,
2297
		.data	= &vendor_nomadik,
2298 2299 2300 2301
	},
	{ 0, 0 },
};

2302 2303
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2316
		       "failed to register as an AMBA device (%d)\n",
2317 2318 2319 2320
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);