amba-pl08x.c 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
 * Only the former works sanely with scatter lists, so we only implement
 * the DMAC flow control method.  However, peripherals which use the LBREQ
 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
 * these hardware restrictions prevents them from using scatter DMA.
73 74 75 76
 *
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
77
#include <linux/amba/bus.h>
78 79
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
80 81 82 83 84 85 86
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
87
#include <linux/pm_runtime.h>
88
#include <linux/seq_file.h>
89
#include <linux/slab.h>
90 91 92 93 94
#include <asm/hardware/pl080.h>

#define DRIVER_NAME	"pl08xdmac"

/**
95
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96
 * @channels: the number of channels available in this variant
97
 * @dualmaster: whether this version supports dual AHB masters or not.
98 99 100 101 102 103 104 105
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
};

/*
 * PL08X private data structures
106
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
107 108
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
109
 */
110
struct pl08x_lli {
111 112
	u32 src;
	u32 dst;
113
	u32 lli;
114 115 116 117 118 119 120 121 122 123 124 125 126 127
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
128 129
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
130
 * @mem_buses: set to indicate memory transfers on AHB2.
131 132 133 134 135 136 137
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
138
	const struct vendor_data *vd;
139 140 141 142
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
143 144
	u8 lli_buses;
	u8 mem_buses;
145 146 147 148 149 150 151 152 153 154
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

155
/* Maximum times we call dma_pool_alloc on this pool without freeing */
156
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
157 158 159 160 161 162 163
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

164 165 166 167 168
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
184
 * The next LLI pointer and the configuration interrupt bit have
185 186
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
187
 */
188 189
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
190
{
191
	struct pl08x_driver_data *pl08x = plchan->host;
192
	struct pl08x_phy_chan *phychan = plchan->phychan;
193
	struct pl08x_lli *lli = &txd->llis_va[0];
194
	u32 val;
195 196

	plchan->at = txd;
197

198 199 200
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
201

202 203
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
204 205
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
206
		txd->ccfg);
207 208 209 210 211

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
212
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
213 214 215 216

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
217
		cpu_relax();
218

219 220
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
221
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
222
		val = readl(phychan->base + PL080_CH_CONFIG);
223

224
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
225 226 227
}

/*
228
 * Pause the channel by setting the HALT bit.
229
 *
230 231 232
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
233
 *
234 235
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
236 237 238 239
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
240
	int timeout;
241 242 243 244 245 246 247

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
248 249 250 251 252 253 254
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
255 256 257 258 259 260 261 262 263 264 265 266
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

267 268 269 270 271 272 273 274
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
275
{
276
	u32 val = readl(ch->base + PL080_CH_CONFIG);
277

278 279
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
280 281

	writel(val, ch->base + PL080_CH_CONFIG);
282 283 284

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
311
	size_t bytes = 0;
312 313 314 315 316 317

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
318 319
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
320 321
	 */
	if (ch && txd) {
322
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
323

324
		/* First get the remaining bytes in the active transfer */
325 326 327
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
328 329 330 331 332 333
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
334

335 336 337 338 339 340 341 342
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
343 344

				/*
345
				 * A LLI pointer of 0 terminates the LLI list
346
				 */
347 348
				if (!llis_va[index].lli)
					break;
349 350 351 352 353
			}
		}
	}

	/* Sum up all queued transactions */
354
	if (!list_empty(&plchan->pend_list)) {
355
		struct pl08x_txd *txdi;
356
		list_for_each_entry(txdi, &plchan->pend_list, node) {
357 358 359 360 361 362 363 364 365 366 367
			bytes += txdi->len;
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
368 369 370 371
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

		if (!ch->serving) {
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

401
	pm_runtime_get_sync(&pl08x->adev->dev);
402 403 404 405 406 407 408 409
	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

410 411
	spin_lock_irqsave(&ch->lock, flags);

412
	/* Stop the channel and clear its interrupts */
413
	pl08x_terminate_phy_chan(pl08x, ch);
414

415 416
	pm_runtime_put(&pl08x->adev->dev);

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
443
				  size_t tsize)
444 445 446
{
	u32 retbits = cctl;

447
	/* Remove all src, dst and transfer size bits */
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

487 488 489 490 491
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
492
	u32 lli_bus;
493 494
};

495
/*
496 497 498 499 500 501 502
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
 * - if fixed address on one bus the other will be chosen
503
 */
504 505
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
506 507
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
508 509
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
510
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
511 512
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
513
	} else {
514 515 516 517 518 519 520 521 522 523 524 525
		if (bd->dstbus.buswidth == 4) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 4) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
		} else if (bd->dstbus.buswidth == 2) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 2) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
526
		} else {
527 528 529
			/* bd->srcbus.buswidth == 1 */
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
530 531 532 533 534
		}
	}
}

/*
535
 * Fills in one LLI for a certain transfer descriptor and advance the counter
536
 */
537 538
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
539
{
540 541
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
542 543 544

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

545
	llis_va[num_llis].cctl = cctl;
546 547
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
548 549
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
550
	llis_va[num_llis].lli |= bd->lli_bus;
551 552

	if (cctl & PL080_CONTROL_SRC_INCR)
553
		bd->srcbus.addr += len;
554
	if (cctl & PL080_CONTROL_DST_INCR)
555
		bd->dstbus.addr += len;
556

557
	BUG_ON(bd->remainder < len);
558

559
	bd->remainder -= len;
560 561 562 563 564 565 566 567 568 569 570
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
571
	struct pl08x_lli_build_data bd;
572 573
	int num_llis = 0;
	u32 cctl;
574
	size_t max_bytes_per_lli, total_bytes = 0;
575
	struct pl08x_lli *llis_va;
576

577
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
578 579 580 581 582 583 584
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

585 586
	/* Get the default CCTL */
	cctl = txd->cctl;
587

588
	bd.txd = txd;
589 590
	bd.srcbus.addr = txd->src_addr;
	bd.dstbus.addr = txd->dst_addr;
591
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
592

593
	/* Find maximum width of the source bus */
594
	bd.srcbus.maxwidth =
595 596 597 598
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
599
	bd.dstbus.maxwidth =
600 601 602 603
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

	/* Set up the bus widths to the maximum */
604 605
	bd.srcbus.buswidth = bd.srcbus.maxwidth;
	bd.dstbus.buswidth = bd.dstbus.maxwidth;
606 607 608 609

	/*
	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
	 */
610
	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
611 612 613
		PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* We need to count this down to zero */
614
	bd.remainder = txd->len;
615

616
	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
617

618 619 620 621 622 623 624 625 626 627
	dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
		 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
		 bd.srcbus.buswidth,
		 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
		 bd.dstbus.buswidth,
		 bd.remainder, max_bytes_per_lli);
	dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
		 mbus == &bd.srcbus ? "src" : "dst",
		 sbus == &bd.srcbus ? "src" : "dst");

628
	if (txd->len < mbus->buswidth) {
629
		/* Less than a bus width available - send as single bytes */
630
		while (bd.remainder) {
631 632
			dev_vdbg(&pl08x->adev->dev,
				 "%s single byte LLIs for a transfer of "
633
				 "less than a bus width (remain 0x%08x)\n",
634
				 __func__, bd.remainder);
635
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
636
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
637 638 639
			total_bytes++;
		}
	} else {
640
		/* Make one byte LLIs until master bus is aligned */
641 642 643
		while ((mbus->addr) % (mbus->buswidth)) {
			dev_vdbg(&pl08x->adev->dev,
				"%s adjustment lli for less than bus width "
644
				 "(remain 0x%08x)\n",
645
				 __func__, bd.remainder);
646
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
647
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
648 649 650 651
			total_bytes++;
		}

		/*
652
		 * Master now aligned
653 654 655 656 657 658 659 660 661 662 663 664 665 666
		 * - if slave is not then we must set its width down
		 */
		if (sbus->addr % sbus->buswidth) {
			dev_dbg(&pl08x->adev->dev,
				"%s set down bus width to one byte\n",
				 __func__);

			sbus->buswidth = 1;
		}

		/*
		 * Make largest possible LLIs until less than one bus
		 * width left
		 */
667
		while (bd.remainder > (mbus->buswidth - 1)) {
668
			size_t lli_len, tsize;
669 670 671 672 673

			/*
			 * If enough left try to send max possible,
			 * otherwise try to send the remainder
			 */
674
			lli_len = min(bd.remainder, max_bytes_per_lli);
675
			/*
676 677 678
			 * Check against minimum bus alignment: Calculate actual
			 * transfer size in relation to bus width and get a
			 * maximum remainder of the smallest bus width - 1
679
			 */
680 681
			tsize = lli_len / min(mbus->buswidth, sbus->buswidth);
			lli_len	= tsize * min(mbus->buswidth, sbus->buswidth);
682

683 684 685 686 687 688 689 690 691
			dev_vdbg(&pl08x->adev->dev,
				"%s fill lli with single lli chunk of "
				"size 0x%08zx (remainder 0x%08zx)\n",
				__func__, lli_len, bd.remainder);

			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, tsize);
			pl08x_fill_lli_for_desc(&bd, num_llis++, lli_len, cctl);
			total_bytes += lli_len;
692 693 694 695 696
		}

		/*
		 * Send any odd bytes
		 */
697
		while (bd.remainder) {
698 699
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
			dev_vdbg(&pl08x->adev->dev,
700
				"%s align with boundary, single odd byte (remain %zu)\n",
701 702
				__func__, bd.remainder);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
703 704 705
			total_bytes++;
		}
	}
706

707 708
	if (total_bytes != txd->len) {
		dev_err(&pl08x->adev->dev,
709
			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
710 711 712 713 714 715 716 717 718 719
			__func__, total_bytes, txd->len);
		return 0;
	}

	if (num_llis >= MAX_NUM_TSFR_LLIS) {
		dev_err(&pl08x->adev->dev,
			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
			__func__, (u32) MAX_NUM_TSFR_LLIS);
		return 0;
	}
720 721

	llis_va = txd->llis_va;
722
	/* The final LLI terminates the LLI. */
723
	llis_va[num_llis - 1].lli = 0;
724
	/* The final LLI element shall also fire an interrupt. */
725
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
726 727 728 729 730

#ifdef VERBOSE_DEBUG
	{
		int i;

731 732 733
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
734 735
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
736 737 738
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
739 740 741 742 743 744 745 746 747 748 749 750 751
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
	/* Free the LLI */
752
	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
753 754 755 756 757 758 759 760 761 762 763 764

	pl08x->pool_ctr--;

	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

765
	if (!list_empty(&plchan->pend_list)) {
766
		list_for_each_entry_safe(txdi,
767
					 next, &plchan->pend_list, node) {
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
	if (plchan->phychan)
		return 0;

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
812
	if (plchan->slave && pl08x->pd->get_signal) {
813 814 815 816 817 818 819 820 821 822
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
823 824 825 826 827 828

		/* Assign the flow control signal to this channel */
		if (txd->direction == DMA_TO_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
		else if (txd->direction == DMA_FROM_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
829 830 831 832 833 834 835
	}

	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

836
	plchan->phychan_hold++;
837 838 839 840 841
	plchan->phychan = ch;

	return 0;
}

842 843 844 845 846 847 848 849 850 851 852 853
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
		pl08x->pd->put_signal(plchan);
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

854 855 856
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
857
	struct pl08x_txd *txd = to_pl08x_txd(tx);
858 859 860
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
861

862 863 864 865
	plchan->chan.cookie += 1;
	if (plchan->chan.cookie < 0)
		plchan->chan.cookie = 1;
	tx->cookie = plchan->chan.cookie;
866 867 868 869 870 871 872 873 874 875 876 877 878

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
879 880
	} else {
		plchan->phychan_hold--;
881 882
	}

883
	spin_unlock_irqrestore(&plchan->lock, flags);
884 885 886 887 888 889 890 891 892 893 894 895 896

	return tx->cookie;
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
897 898 899
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
900
 */
901 902
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
903 904 905 906 907 908 909
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	enum dma_status ret;
	u32 bytesleft = 0;

910
	last_used = plchan->chan.cookie;
911 912 913 914 915 916 917 918 919 920 921
	last_complete = plchan->lc;

	ret = dma_async_is_complete(cookie, last_complete, last_used);
	if (ret == DMA_SUCCESS) {
		dma_set_tx_state(txstate, last_complete, last_used, 0);
		return ret;
	}

	/*
	 * This cookie not complete yet
	 */
922
	last_used = plchan->chan.cookie;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	last_complete = plchan->lc;

	/* Get number of bytes left in the active transactions and queue */
	bytesleft = pl08x_getbytes_chan(plchan);

	dma_set_tx_state(txstate, last_complete, last_used,
			 bytesleft);

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
940
	u32 burstwords;
941 942 943 944 945 946
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
947
		.reg = PL080_BSIZE_256,
948 949 950
	},
	{
		.burstwords = 128,
951
		.reg = PL080_BSIZE_128,
952 953 954
	},
	{
		.burstwords = 64,
955
		.reg = PL080_BSIZE_64,
956 957 958
	},
	{
		.burstwords = 32,
959
		.reg = PL080_BSIZE_32,
960 961 962
	},
	{
		.burstwords = 16,
963
		.reg = PL080_BSIZE_16,
964 965 966
	},
	{
		.burstwords = 8,
967
		.reg = PL080_BSIZE_8,
968 969 970
	},
	{
		.burstwords = 4,
971
		.reg = PL080_BSIZE_4,
972 973
	},
	{
974 975
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
976 977 978
	},
};

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

996 997 998 999 1000 1001 1002 1003 1004 1005
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1015 1016
	default:
		return ~0;
1017 1018 1019
	}
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1031 1032
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1033 1034 1035 1036
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	enum dma_slave_buswidth addr_width;
1037
	u32 width, burst, maxburst;
1038
	u32 cctl = 0;
1039 1040 1041

	if (!plchan->slave)
		return -EINVAL;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
	if (config->direction == DMA_TO_DEVICE) {
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
	} else if (config->direction == DMA_FROM_DEVICE) {
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1054
		return -EINVAL;
1055 1056
	}

1057 1058
	width = pl08x_width(addr_width);
	if (width == ~0) {
1059 1060
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1061
		return -EINVAL;
1062 1063
	}

1064 1065 1066
	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

1067
	/*
1068 1069 1070
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1071
	 */
1072 1073 1074 1075 1076 1077
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1078

1079 1080
	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
		plchan->src_addr = config->src_addr;
1081 1082 1083
		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
			pl08x_select_bus(plchan->cd->periph_buses,
					 pl08x->mem_buses);
1084 1085
	} else {
		plchan->dst_addr = config->dst_addr;
1086 1087 1088
		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
			pl08x_select_bus(pl08x->mem_buses,
					 plchan->cd->periph_buses);
1089
	}
1090

1091 1092
	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1093
		"maxburst %d words, LE, CCTL=0x%08x\n",
1094 1095 1096 1097
		dma_chan_name(chan), plchan->name,
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		addr_width,
		maxburst,
1098
		cctl);
1099 1100

	return 0;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1113 1114 1115
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1116
		return;
1117
	}
1118 1119

	/* Take the first element in the queue and execute it */
1120
	if (!list_empty(&plchan->pend_list)) {
1121 1122
		struct pl08x_txd *next;

1123
		next = list_first_entry(&plchan->pend_list,
1124 1125 1126 1127 1128
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1129
		pl08x_start_txd(plchan, next);
1130 1131 1132 1133 1134 1135 1136 1137 1138
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1139 1140
	unsigned long flags;
	int num_llis, ret;
1141 1142

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1143 1144
	if (!num_llis) {
		kfree(txd);
1145
		return -EINVAL;
1146
	}
1147

1148
	spin_lock_irqsave(&plchan->lock, flags);
1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1167 1168 1169
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1170
			pl08x_free_txd(pl08x, txd);
1171
			spin_unlock_irqrestore(&plchan->lock, flags);
1172 1173 1174 1175
			return -EBUSY;
		}
	} else
		/*
1176 1177 1178 1179
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1180 1181 1182 1183
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1184
	spin_unlock_irqrestore(&plchan->lock, flags);
1185 1186 1187 1188

	return 0;
}

1189 1190
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1191
{
1192
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1193 1194 1195

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1196
		txd->tx.flags = flags;
1197 1198
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1199 1200 1201 1202

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1203 1204 1205 1206
	}
	return txd;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

1219
	txd = pl08x_get_txd(plchan, flags);
1220 1221 1222 1223 1224 1225 1226
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

	txd->direction = DMA_NONE;
1227 1228
	txd->src_addr = src;
	txd->dst_addr = dest;
1229
	txd->len = len;
1230 1231

	/* Set platform data for m2m */
1232
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1233 1234
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1235

1236
	/* Both to be incremented or the code will break */
1237
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1238 1239

	if (pl08x->vd->dualmaster)
1240 1241
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1242 1243 1244 1245 1246 1247 1248 1249

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1250
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_data_direction direction,
		unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

	/*
	 * Current implementation ASSUMES only one sg
	 */
	if (sg_len != 1) {
		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
			__func__);
		BUG();
	}

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
		__func__, sgl->length, plchan->name);

1272
	txd = pl08x_get_txd(plchan, flags);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1289 1290
	txd->len = sgl->length;

1291
	if (direction == DMA_TO_DEVICE) {
1292
		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1293
		txd->cctl = plchan->dst_cctl;
1294
		txd->src_addr = sgl->dma_address;
1295
		txd->dst_addr = plchan->dst_addr;
1296
	} else if (direction == DMA_FROM_DEVICE) {
1297
		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1298
		txd->cctl = plchan->src_cctl;
1299
		txd->src_addr = plchan->src_addr;
1300
		txd->dst_addr = sgl->dma_address;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	} else {
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1324 1325
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1343
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1344 1345 1346 1347 1348

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1349
			release_phy_channel(plchan);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	char *name = chan_id;

	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1392 1393 1394
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1395 1396 1397
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1398
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1399 1400
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
		else
			dma_unmap_page(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
	}
}

1423 1424 1425 1426
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1427
	struct pl08x_txd *txd;
1428
	unsigned long flags;
1429

1430
	spin_lock_irqsave(&plchan->lock, flags);
1431

1432 1433
	txd = plchan->at;
	plchan->at = NULL;
1434

1435
	if (txd) {
1436
		/* Update last completed */
1437
		plchan->lc = txd->tx.cookie;
1438
	}
1439

1440
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1441
	if (!list_empty(&plchan->pend_list)) {
1442 1443
		struct pl08x_txd *next;

1444
		next = list_first_entry(&plchan->pend_list,
1445 1446 1447
					struct pl08x_txd,
					node);
		list_del(&next->node);
1448 1449

		pl08x_start_txd(plchan, next);
1450 1451 1452 1453 1454 1455
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1456 1457 1458 1459 1460 1461 1462
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1463
		release_phy_channel(plchan);
1464 1465 1466
		plchan->state = PL08X_CHAN_IDLE;

		/*
1467 1468 1469 1470
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1471 1472 1473
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
1474 1475
			if (waiting->state == PL08X_CHAN_WAITING &&
				waiting->waiting != NULL) {
1476 1477 1478 1479 1480 1481
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1482
				waiting->phychan_hold--;
1483 1484 1485 1486 1487 1488 1489 1490
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1491
	spin_unlock_irqrestore(&plchan->lock, flags);
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1510 1511 1512 1513 1514
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1515 1516 1517 1518 1519 1520 1521 1522
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1523
	}
1524 1525 1526 1527 1528 1529 1530
	tc = readl(pl08x->base + PL080_INT_STATUS);
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1531
	for (i = 0; i < pl08x->vd->channels; i++) {
1532
		if (((1 << i) & err) || ((1 << i) & tc)) {
1533 1534 1535 1536
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

1537 1538 1539 1540 1541 1542 1543
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1544 1545 1546 1547 1548 1549 1550 1551 1552
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	u32 cctl = pl08x_cctl(chan->cd->cctl);

	chan->slave = true;
	chan->name = chan->cd->bus_id;
	chan->src_addr = chan->cd->addr;
	chan->dst_addr = chan->cd->addr;
	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
}

1567 1568 1569 1570 1571
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1572
		struct dma_device *dmadev, unsigned int channels, bool slave)
1573 1574 1575 1576 1577
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1578

1579 1580 1581 1582 1583 1584
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1585
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1597
			pl08x_dma_slave_init(chan);
1598 1599 1600 1601 1602 1603 1604 1605
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1606 1607 1608 1609 1610 1611 1612
		if (chan->cd->circular_buffer) {
			dev_err(&pl08x->adev->dev,
				"channel %s: circular buffers not supported\n",
				chan->name);
			kfree(chan);
			continue;
		}
1613
		dev_dbg(&pl08x->adev->dev,
1614 1615 1616 1617
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1618 1619
		chan->chan.cookie = 0;
		chan->lc = 0;
1620 1621

		spin_lock_init(&chan->lock);
1622
		INIT_LIST_HEAD(&chan->pend_list);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

		seq_printf(s, "%d\t\t%s\n",
			   ch->id, virt_chan ? virt_chan->name : "(none)");

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1692
		seq_printf(s, "%s\t\t%s\n", chan->name,
1693 1694 1695 1696 1697 1698 1699
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1700
		seq_printf(s, "%s\t\t%s\n", chan->name,
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1722 1723 1724
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1725 1726 1727 1728 1729 1730 1731 1732
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1733
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1734 1735
{
	struct pl08x_driver_data *pl08x;
1736
	const struct vendor_data *vd = id->data;
1737 1738 1739 1740 1741 1742 1743 1744
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1745
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1746 1747 1748 1749 1750
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

1751 1752 1753
	pm_runtime_set_active(&adev->dev);
	pm_runtime_enable(&adev->dev);

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1787 1788 1789 1790 1791 1792 1793 1794
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

1814
	/* Attach the interrupt handler */
1815 1816 1817 1818
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1819
			  DRIVER_NAME, pl08x);
1820 1821 1822 1823 1824 1825 1826
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
1827
	pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->serving = NULL;
		ch->signal = -1;
1844 1845
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1861
			pl08x->pd->num_slave_channels, true);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
1888 1889 1890
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
1891 1892

	pm_runtime_put(&adev->dev);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
1911 1912 1913
	pm_runtime_put(&adev->dev);
	pm_runtime_disable(&adev->dev);

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
		.id	= 0x00280880,
		.mask	= 0x00ffffff,
		.data	= &vendor_pl080,
	},
	{ 0, 0 },
};

static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
1965
		       "failed to register as an AMBA device (%d)\n",
1966 1967 1968 1969
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);