amba-pl08x.c 52.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
69 70 71
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
72
#include <linux/amba/bus.h>
73 74
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
75 76 77 78
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
79
#include <linux/dma-mapping.h>
80 81 82
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
83
#include <linux/pm_runtime.h>
84
#include <linux/seq_file.h>
85
#include <linux/slab.h>
86 87 88 89 90
#include <asm/hardware/pl080.h>

#define DRIVER_NAME	"pl08xdmac"

/**
91
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
92
 * @channels: the number of channels available in this variant
93
 * @dualmaster: whether this version supports dual AHB masters or not.
94 95 96 97 98 99 100 101
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
};

/*
 * PL08X private data structures
102
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
103 104
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
105
 */
106
struct pl08x_lli {
107 108
	u32 src;
	u32 dst;
109
	u32 lli;
110 111 112 113 114 115 116 117 118 119 120 121 122 123
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
124 125
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
126
 * @mem_buses: set to indicate memory transfers on AHB2.
127 128 129 130 131 132 133
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
134
	const struct vendor_data *vd;
135 136 137 138
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
139 140
	u8 lli_buses;
	u8 mem_buses;
141 142 143 144 145 146 147 148 149 150
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

151
/* Maximum times we call dma_pool_alloc on this pool without freeing */
152
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
153 154 155 156 157 158 159
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

160 161 162 163 164
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
180
 * The next LLI pointer and the configuration interrupt bit have
181 182
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
183
 */
184 185
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
186
{
187
	struct pl08x_driver_data *pl08x = plchan->host;
188
	struct pl08x_phy_chan *phychan = plchan->phychan;
189
	struct pl08x_lli *lli = &txd->llis_va[0];
190
	u32 val;
191 192

	plchan->at = txd;
193

194 195 196
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
197

198 199
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
200 201
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
202
		txd->ccfg);
203 204 205 206 207

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
208
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
209 210 211 212

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
213
		cpu_relax();
214

215 216
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
217
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
218
		val = readl(phychan->base + PL080_CH_CONFIG);
219

220
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
221 222 223
}

/*
224
 * Pause the channel by setting the HALT bit.
225
 *
226 227 228
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
229
 *
230 231
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
232 233 234 235
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
236
	int timeout;
237 238 239 240 241 242 243

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
244 245 246 247 248 249 250
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
251 252 253 254 255 256 257 258 259 260 261 262
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

263 264 265 266 267 268 269 270
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
271
{
272
	u32 val = readl(ch->base + PL080_CH_CONFIG);
273

274 275
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
276 277

	writel(val, ch->base + PL080_CH_CONFIG);
278 279 280

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
307
	size_t bytes = 0;
308 309 310 311 312 313

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
314 315
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
316 317
	 */
	if (ch && txd) {
318
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
319

320
		/* First get the remaining bytes in the active transfer */
321 322 323
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
324 325 326 327 328 329
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
330

331 332 333 334 335 336 337 338
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
339 340

				/*
341
				 * A LLI pointer of 0 terminates the LLI list
342
				 */
343 344
				if (!llis_va[index].lli)
					break;
345 346 347 348 349
			}
		}
	}

	/* Sum up all queued transactions */
350
	if (!list_empty(&plchan->pend_list)) {
351
		struct pl08x_txd *txdi;
352
		list_for_each_entry(txdi, &plchan->pend_list, node) {
353 354 355 356 357 358 359 360 361 362 363
			bytes += txdi->len;
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
364 365 366 367
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

		if (!ch->serving) {
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

397
	pm_runtime_get_sync(&pl08x->adev->dev);
398 399 400 401 402 403 404 405
	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

406 407
	spin_lock_irqsave(&ch->lock, flags);

408
	/* Stop the channel and clear its interrupts */
409
	pl08x_terminate_phy_chan(pl08x, ch);
410

411 412
	pm_runtime_put(&pl08x->adev->dev);

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
439
				  size_t tsize)
440 441 442
{
	u32 retbits = cctl;

443
	/* Remove all src, dst and transfer size bits */
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

483 484 485 486 487
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
488
	u32 lli_bus;
489 490
};

491
/*
492 493 494 495 496 497
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
498
 * - prefers bus with fixed address (i.e. peripheral)
499
 */
500 501
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
502 503
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
504 505
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
506 507 508
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
509
	} else {
510
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
511 512
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
513
		} else {
514 515
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
516 517 518 519 520
		}
	}
}

/*
521
 * Fills in one LLI for a certain transfer descriptor and advance the counter
522
 */
523 524
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
525
{
526 527
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
528 529 530

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

531
	llis_va[num_llis].cctl = cctl;
532 533
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
534 535
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
536
	llis_va[num_llis].lli |= bd->lli_bus;
537 538

	if (cctl & PL080_CONTROL_SRC_INCR)
539
		bd->srcbus.addr += len;
540
	if (cctl & PL080_CONTROL_DST_INCR)
541
		bd->dstbus.addr += len;
542

543
	BUG_ON(bd->remainder < len);
544

545
	bd->remainder -= len;
546 547
}

548 549
static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
550
{
551 552 553
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
	(*total_bytes) += len;
554 555 556 557 558 559 560 561 562 563 564
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
565
	struct pl08x_lli_build_data bd;
566
	int num_llis = 0;
567
	u32 cctl, early_bytes = 0;
568
	size_t max_bytes_per_lli, total_bytes = 0;
569
	struct pl08x_lli *llis_va;
570

571
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
572 573 574 575 576 577 578
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

579 580
	/* Get the default CCTL */
	cctl = txd->cctl;
581

582
	bd.txd = txd;
583 584
	bd.srcbus.addr = txd->src_addr;
	bd.dstbus.addr = txd->dst_addr;
585
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
586

587
	/* Find maximum width of the source bus */
588
	bd.srcbus.maxwidth =
589 590 591 592
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
593
	bd.dstbus.maxwidth =
594 595 596 597
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

	/* Set up the bus widths to the maximum */
598 599
	bd.srcbus.buswidth = bd.srcbus.maxwidth;
	bd.dstbus.buswidth = bd.dstbus.maxwidth;
600 601

	/* We need to count this down to zero */
602
	bd.remainder = txd->len;
603

604
	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
605

606
	dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
607 608 609 610
		 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
		 bd.srcbus.buswidth,
		 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
		 bd.dstbus.buswidth,
611
		 bd.remainder);
612 613 614 615
	dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
		 mbus == &bd.srcbus ? "src" : "dst",
		 sbus == &bd.srcbus ? "src" : "dst");

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	/*
	 * Zero length is only allowed if all these requirements are met:
	 * - flow controller is peripheral.
	 * - src.addr is aligned to src.width
	 * - dst.addr is aligned to dst.width
	 *
	 * sg_len == 1 should be true, as there can be two cases here:
	 * - Memory addresses are contiguous and are not scattered. Here, Only
	 * one sg will be passed by user driver, with memory address and zero
	 * length. We pass this to controller and after the transfer it will
	 * receive the last burst request from peripheral and so transfer
	 * finishes.
	 *
	 * - Memory addresses are scattered and are not contiguous. Here,
	 * Obviously as DMA controller doesn't know when a lli's transfer gets
	 * over, it can't load next lli. So in this case, there has to be an
	 * assumption that only one lli is supported. Thus, we can't have
	 * scattered addresses.
	 */
	if (!bd.remainder) {
		u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
			PL080_CONFIG_FLOW_CONTROL_SHIFT;
		if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
			dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
				__func__);
			return 0;
643
		}
644 645 646 647 648 649 650 651

		if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
				(bd.srcbus.addr % bd.srcbus.buswidth)) {
			dev_err(&pl08x->adev->dev,
				"%s src & dst address must be aligned to src"
				" & dst width if peripheral is flow controller",
				__func__);
			return 0;
652 653
		}

654 655 656 657 658
		cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
				bd.dstbus.buswidth, 0);
		pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
	}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	/*
	 * Send byte by byte for following cases
	 * - Less than a bus width available
	 * - until master bus is aligned
	 */
	if (bd.remainder < mbus->buswidth)
		early_bytes = bd.remainder;
	else if ((mbus->addr) % (mbus->buswidth)) {
		early_bytes = mbus->buswidth - (mbus->addr) % (mbus->buswidth);
		if ((bd.remainder - early_bytes) < mbus->buswidth)
			early_bytes = bd.remainder;
	}

	if (early_bytes) {
		dev_vdbg(&pl08x->adev->dev, "%s byte width LLIs "
				"(remain 0x%08x)\n", __func__, bd.remainder);
		prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
				&total_bytes);
	}
678

679
	if (bd.remainder) {
680
		/*
681
		 * Master now aligned
682 683 684 685 686 687 688 689 690 691
		 * - if slave is not then we must set its width down
		 */
		if (sbus->addr % sbus->buswidth) {
			dev_dbg(&pl08x->adev->dev,
				"%s set down bus width to one byte\n",
				 __func__);

			sbus->buswidth = 1;
		}

692 693 694 695
		/* Bytes transferred = tsize * src width, not MIN(buswidths) */
		max_bytes_per_lli = bd.srcbus.buswidth *
			PL080_CONTROL_TRANSFER_SIZE_MASK;

696 697 698 699
		/*
		 * Make largest possible LLIs until less than one bus
		 * width left
		 */
700
		while (bd.remainder > (mbus->buswidth - 1)) {
701
			size_t lli_len, tsize, width;
702 703 704 705 706

			/*
			 * If enough left try to send max possible,
			 * otherwise try to send the remainder
			 */
707
			lli_len = min(bd.remainder, max_bytes_per_lli);
708 709

			/*
710
			 * Check against maximum bus alignment: Calculate actual
711
			 * transfer size in relation to bus width and get a
712
			 * maximum remainder of the highest bus width - 1
713
			 */
714 715 716
			width = max(mbus->buswidth, sbus->buswidth);
			lli_len = (lli_len / width) * width;
			tsize = lli_len / bd.srcbus.buswidth;
717

718 719 720 721 722 723 724 725 726
			dev_vdbg(&pl08x->adev->dev,
				"%s fill lli with single lli chunk of "
				"size 0x%08zx (remainder 0x%08zx)\n",
				__func__, lli_len, bd.remainder);

			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, tsize);
			pl08x_fill_lli_for_desc(&bd, num_llis++, lli_len, cctl);
			total_bytes += lli_len;
727 728 729 730 731
		}

		/*
		 * Send any odd bytes
		 */
732
		if (bd.remainder) {
733
			dev_vdbg(&pl08x->adev->dev,
734
				"%s align with boundary, send odd bytes (remain %zu)\n",
735
				__func__, bd.remainder);
736 737
			prep_byte_width_lli(&bd, &cctl, bd.remainder,
					num_llis++, &total_bytes);
738 739
		}
	}
740

741 742
	if (total_bytes != txd->len) {
		dev_err(&pl08x->adev->dev,
743
			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
744 745 746 747 748 749 750 751 752 753
			__func__, total_bytes, txd->len);
		return 0;
	}

	if (num_llis >= MAX_NUM_TSFR_LLIS) {
		dev_err(&pl08x->adev->dev,
			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
			__func__, (u32) MAX_NUM_TSFR_LLIS);
		return 0;
	}
754 755

	llis_va = txd->llis_va;
756
	/* The final LLI terminates the LLI. */
757
	llis_va[num_llis - 1].lli = 0;
758
	/* The final LLI element shall also fire an interrupt. */
759
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
760 761 762 763 764

#ifdef VERBOSE_DEBUG
	{
		int i;

765 766 767
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
768 769
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
770 771 772
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
773 774 775 776 777 778 779 780 781 782 783 784 785
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
	/* Free the LLI */
786
	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
787 788 789 790 791 792 793 794 795 796 797 798

	pl08x->pool_ctr--;

	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

799
	if (!list_empty(&plchan->pend_list)) {
800
		list_for_each_entry_safe(txdi,
801
					 next, &plchan->pend_list, node) {
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
	if (plchan->phychan)
		return 0;

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
846
	if (plchan->slave && pl08x->pd->get_signal) {
847 848 849 850 851 852 853 854 855 856
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
857 858 859 860 861 862

		/* Assign the flow control signal to this channel */
		if (txd->direction == DMA_TO_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
		else if (txd->direction == DMA_FROM_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
863 864 865 866 867 868 869
	}

	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

870
	plchan->phychan_hold++;
871 872 873 874 875
	plchan->phychan = ch;

	return 0;
}

876 877 878 879 880 881 882 883 884 885 886 887
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
		pl08x->pd->put_signal(plchan);
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

888 889 890
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
891
	struct pl08x_txd *txd = to_pl08x_txd(tx);
892 893 894
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
895

896 897 898 899
	plchan->chan.cookie += 1;
	if (plchan->chan.cookie < 0)
		plchan->chan.cookie = 1;
	tx->cookie = plchan->chan.cookie;
900 901 902 903 904 905 906 907 908 909 910 911 912

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
913 914
	} else {
		plchan->phychan_hold--;
915 916
	}

917
	spin_unlock_irqrestore(&plchan->lock, flags);
918 919 920 921 922 923 924 925 926 927 928 929 930

	return tx->cookie;
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
931 932 933
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
934
 */
935 936
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
937 938 939 940 941 942 943
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	enum dma_status ret;
	u32 bytesleft = 0;

944
	last_used = plchan->chan.cookie;
945 946 947 948 949 950 951 952 953 954 955
	last_complete = plchan->lc;

	ret = dma_async_is_complete(cookie, last_complete, last_used);
	if (ret == DMA_SUCCESS) {
		dma_set_tx_state(txstate, last_complete, last_used, 0);
		return ret;
	}

	/*
	 * This cookie not complete yet
	 */
956
	last_used = plchan->chan.cookie;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	last_complete = plchan->lc;

	/* Get number of bytes left in the active transactions and queue */
	bytesleft = pl08x_getbytes_chan(plchan);

	dma_set_tx_state(txstate, last_complete, last_used,
			 bytesleft);

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
974
	u32 burstwords;
975 976 977 978 979 980
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
981
		.reg = PL080_BSIZE_256,
982 983 984
	},
	{
		.burstwords = 128,
985
		.reg = PL080_BSIZE_128,
986 987 988
	},
	{
		.burstwords = 64,
989
		.reg = PL080_BSIZE_64,
990 991 992
	},
	{
		.burstwords = 32,
993
		.reg = PL080_BSIZE_32,
994 995 996
	},
	{
		.burstwords = 16,
997
		.reg = PL080_BSIZE_16,
998 999 1000
	},
	{
		.burstwords = 8,
1001
		.reg = PL080_BSIZE_8,
1002 1003 1004
	},
	{
		.burstwords = 4,
1005
		.reg = PL080_BSIZE_4,
1006 1007
	},
	{
1008 1009
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1010 1011 1012
	},
};

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1040 1041 1042 1043 1044 1045 1046 1047 1048
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1049 1050
	default:
		return ~0;
1051 1052 1053
	}
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1065 1066
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1067 1068 1069 1070
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	enum dma_slave_buswidth addr_width;
1071
	u32 width, burst, maxburst;
1072
	u32 cctl = 0;
1073 1074 1075

	if (!plchan->slave)
		return -EINVAL;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
	if (config->direction == DMA_TO_DEVICE) {
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
	} else if (config->direction == DMA_FROM_DEVICE) {
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1088
		return -EINVAL;
1089 1090
	}

1091 1092
	width = pl08x_width(addr_width);
	if (width == ~0) {
1093 1094
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1095
		return -EINVAL;
1096 1097
	}

1098 1099 1100
	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

1101
	/*
1102 1103 1104
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1105
	 */
1106 1107 1108 1109 1110 1111
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1112

1113 1114
	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
		plchan->src_addr = config->src_addr;
1115 1116 1117
		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
			pl08x_select_bus(plchan->cd->periph_buses,
					 pl08x->mem_buses);
1118 1119
	} else {
		plchan->dst_addr = config->dst_addr;
1120 1121 1122
		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
			pl08x_select_bus(pl08x->mem_buses,
					 plchan->cd->periph_buses);
1123
	}
1124

1125 1126
	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1127
		"maxburst %d words, LE, CCTL=0x%08x\n",
1128 1129 1130 1131
		dma_chan_name(chan), plchan->name,
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		addr_width,
		maxburst,
1132
		cctl);
1133 1134

	return 0;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1147 1148 1149
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1150
		return;
1151
	}
1152 1153

	/* Take the first element in the queue and execute it */
1154
	if (!list_empty(&plchan->pend_list)) {
1155 1156
		struct pl08x_txd *next;

1157
		next = list_first_entry(&plchan->pend_list,
1158 1159 1160 1161 1162
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1163
		pl08x_start_txd(plchan, next);
1164 1165 1166 1167 1168 1169 1170 1171 1172
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1173 1174
	unsigned long flags;
	int num_llis, ret;
1175 1176

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1177
	if (!num_llis) {
1178 1179 1180
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);
1181
		return -EINVAL;
1182
	}
1183

1184
	spin_lock_irqsave(&plchan->lock, flags);
1185 1186 1187 1188 1189 1190 1191 1192

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1203 1204 1205
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1206
			pl08x_free_txd(pl08x, txd);
1207
			spin_unlock_irqrestore(&plchan->lock, flags);
1208 1209 1210 1211
			return -EBUSY;
		}
	} else
		/*
1212 1213 1214 1215
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1216 1217 1218 1219
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1220
	spin_unlock_irqrestore(&plchan->lock, flags);
1221 1222 1223 1224

	return 0;
}

1225 1226
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1227
{
1228
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1229 1230 1231

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1232
		txd->tx.flags = flags;
1233 1234
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1235 1236 1237 1238

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1239 1240 1241 1242
	}
	return txd;
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

1255
	txd = pl08x_get_txd(plchan, flags);
1256 1257 1258 1259 1260 1261 1262
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

	txd->direction = DMA_NONE;
1263 1264
	txd->src_addr = src;
	txd->dst_addr = dest;
1265
	txd->len = len;
1266 1267

	/* Set platform data for m2m */
1268
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1269 1270
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1271

1272
	/* Both to be incremented or the code will break */
1273
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1274 1275

	if (pl08x->vd->dualmaster)
1276 1277
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1278 1279 1280 1281 1282 1283 1284 1285

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1286
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1287 1288 1289 1290 1291 1292 1293
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_data_direction direction,
		unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1294
	int ret, tmp;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	/*
	 * Current implementation ASSUMES only one sg
	 */
	if (sg_len != 1) {
		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
			__func__);
		BUG();
	}

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
		__func__, sgl->length, plchan->name);

1308
	txd = pl08x_get_txd(plchan, flags);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1325 1326
	txd->len = sgl->length;

1327
	if (direction == DMA_TO_DEVICE) {
1328
		txd->cctl = plchan->dst_cctl;
1329
		txd->src_addr = sgl->dma_address;
1330
		txd->dst_addr = plchan->dst_addr;
1331
	} else if (direction == DMA_FROM_DEVICE) {
1332
		txd->cctl = plchan->src_cctl;
1333
		txd->src_addr = plchan->src_addr;
1334
		txd->dst_addr = sgl->dma_address;
1335 1336 1337 1338 1339 1340
	} else {
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1341 1342 1343 1344 1345 1346 1347 1348 1349
	if (plchan->cd->device_fc)
		tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER_PER :
			PL080_FLOW_PER2MEM_PER;
	else
		tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER :
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1367 1368
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1386
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1387 1388 1389 1390 1391

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1392
			release_phy_channel(plchan);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	char *name = chan_id;

	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1435 1436 1437
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1438 1439 1440
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1441
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
		else
			dma_unmap_page(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
	}
}

1466 1467 1468 1469
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1470
	struct pl08x_txd *txd;
1471
	unsigned long flags;
1472

1473
	spin_lock_irqsave(&plchan->lock, flags);
1474

1475 1476
	txd = plchan->at;
	plchan->at = NULL;
1477

1478
	if (txd) {
1479
		/* Update last completed */
1480
		plchan->lc = txd->tx.cookie;
1481
	}
1482

1483
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1484
	if (!list_empty(&plchan->pend_list)) {
1485 1486
		struct pl08x_txd *next;

1487
		next = list_first_entry(&plchan->pend_list,
1488 1489 1490
					struct pl08x_txd,
					node);
		list_del(&next->node);
1491 1492

		pl08x_start_txd(plchan, next);
1493 1494 1495 1496 1497 1498
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1499 1500 1501 1502 1503 1504 1505
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1506
		release_phy_channel(plchan);
1507 1508 1509
		plchan->state = PL08X_CHAN_IDLE;

		/*
1510 1511 1512 1513
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1514 1515 1516
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
1517 1518
			if (waiting->state == PL08X_CHAN_WAITING &&
				waiting->waiting != NULL) {
1519 1520 1521 1522 1523 1524
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1525
				waiting->phychan_hold--;
1526 1527 1528 1529 1530 1531 1532 1533
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1534
	spin_unlock_irqrestore(&plchan->lock, flags);
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1553 1554 1555 1556 1557
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1558 1559 1560 1561 1562 1563 1564 1565
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1566
	}
1567 1568 1569 1570 1571 1572 1573
	tc = readl(pl08x->base + PL080_INT_STATUS);
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1574
	for (i = 0; i < pl08x->vd->channels; i++) {
1575
		if (((1 << i) & err) || ((1 << i) & tc)) {
1576 1577 1578 1579
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

1580 1581 1582 1583 1584 1585 1586
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1587 1588 1589 1590 1591 1592 1593 1594 1595
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	u32 cctl = pl08x_cctl(chan->cd->cctl);

	chan->slave = true;
	chan->name = chan->cd->bus_id;
	chan->src_addr = chan->cd->addr;
	chan->dst_addr = chan->cd->addr;
	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
}

1610 1611 1612 1613 1614
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1615
		struct dma_device *dmadev, unsigned int channels, bool slave)
1616 1617 1618 1619 1620
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1621

1622 1623 1624 1625 1626 1627
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1628
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1640
			pl08x_dma_slave_init(chan);
1641 1642 1643 1644 1645 1646 1647 1648
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1649 1650 1651 1652 1653 1654 1655
		if (chan->cd->circular_buffer) {
			dev_err(&pl08x->adev->dev,
				"channel %s: circular buffers not supported\n",
				chan->name);
			kfree(chan);
			continue;
		}
1656
		dev_dbg(&pl08x->adev->dev,
1657 1658 1659 1660
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1661 1662
		chan->chan.cookie = 0;
		chan->lc = 0;
1663 1664

		spin_lock_init(&chan->lock);
1665
		INIT_LIST_HEAD(&chan->pend_list);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

		seq_printf(s, "%d\t\t%s\n",
			   ch->id, virt_chan ? virt_chan->name : "(none)");

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1735
		seq_printf(s, "%s\t\t%s\n", chan->name,
1736 1737 1738 1739 1740 1741 1742
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1743
		seq_printf(s, "%s\t\t%s\n", chan->name,
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1765 1766 1767
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1768 1769 1770 1771 1772 1773 1774 1775
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1776
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1777 1778
{
	struct pl08x_driver_data *pl08x;
1779
	const struct vendor_data *vd = id->data;
1780 1781 1782 1783 1784 1785 1786 1787
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1788
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1789 1790 1791 1792 1793
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

1794 1795 1796
	pm_runtime_set_active(&adev->dev);
	pm_runtime_enable(&adev->dev);

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1830 1831 1832 1833 1834 1835 1836 1837
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

1857
	/* Attach the interrupt handler */
1858 1859 1860 1861
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1862
			  DRIVER_NAME, pl08x);
1863 1864 1865 1866 1867 1868 1869
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
1870
	pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->serving = NULL;
		ch->signal = -1;
1887 1888
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1904
			pl08x->pd->num_slave_channels, true);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
1931 1932 1933
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
1934 1935

	pm_runtime_put(&adev->dev);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
1954 1955 1956
	pm_runtime_put(&adev->dev);
	pm_runtime_disable(&adev->dev);

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
		.id	= 0x00280880,
		.mask	= 0x00ffffff,
		.data	= &vendor_pl080,
	},
	{ 0, 0 },
};

static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2008
		       "failed to register as an AMBA device (%d)\n",
2009 2010 2011 2012
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);