amba-pl08x.c 58.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 * Documentation: S3C6410 User's Manual == PL080S
28
 *
29 30
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
31 32 33 34 35 36 37 38 39
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
40 41 42 43 44 45 46 47
 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
 * It differs in following aspects:
 * - CH_CONFIG register at different offset,
 * - separate CH_CONTROL2 register for transfer size,
 * - bigger maximum transfer size,
 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
 * - no support for peripheral flow control.
 *
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
65 66 67 68 69 70 71 72 73 74 75
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
76
 *    will then move to the next LLI entry. Unsupported by PL080S.
77
 */
78
#include <linux/amba/bus.h>
79 80
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
81 82 83 84
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
85
#include <linux/dma-mapping.h>
86 87 88
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
89
#include <linux/pm_runtime.h>
90
#include <linux/seq_file.h>
91
#include <linux/slab.h>
92
#include <linux/amba/pl080.h>
93

94
#include "dmaengine.h"
95
#include "virt-dma.h"
96

97 98
#define DRIVER_NAME	"pl08xdmac"

99
static struct amba_driver pl08x_amba_driver;
100
struct pl08x_driver_data;
101

102
/**
103
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
104
 * @channels: the number of channels available in this variant
105
 * @dualmaster: whether this version supports dual AHB masters or not.
106 107 108
 * @nomadik: whether the channels have Nomadik security extension bits
 *	that need to be checked for permission before use and some registers are
 *	missing
109 110
 * @pl080s: whether this version is a PL080S, which has separate register and
 *	LLI word for transfer size.
111 112
 */
struct vendor_data {
113
	u8 config_offset;
114 115
	u8 channels;
	bool dualmaster;
116
	bool nomadik;
117
	bool pl080s;
118
	u32 max_transfer_size;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/**
 * struct pl08x_bus_data - information of source or destination
 * busses for a transfer
 * @addr: current address
 * @maxwidth: the maximum width of a transfer on this bus
 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 */
struct pl08x_bus_data {
	dma_addr_t addr;
	u8 maxwidth;
	u8 buswidth;
};

/**
 * struct pl08x_phy_chan - holder for the physical channels
 * @id: physical index to this channel
 * @lock: a lock to use when altering an instance of this struct
 * @serving: the virtual channel currently being served by this physical
 * channel
140 141
 * @locked: channel unavailable for the system, e.g. dedicated to secure
 * world
142 143 144 145
 */
struct pl08x_phy_chan {
	unsigned int id;
	void __iomem *base;
146
	void __iomem *reg_config;
147 148
	spinlock_t lock;
	struct pl08x_dma_chan *serving;
149
	bool locked;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

/**
 * struct pl08x_sg - structure containing data per sg
 * @src_addr: src address of sg
 * @dst_addr: dst address of sg
 * @len: transfer len in bytes
 * @node: node for txd's dsg_list
 */
struct pl08x_sg {
	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	size_t len;
	struct list_head node;
};

/**
 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
168
 * @vd: virtual DMA descriptor
169 170 171 172 173
 * @dsg_list: list of children sg's
 * @llis_bus: DMA memory address (physical) start for the LLIs
 * @llis_va: virtual memory address start for the LLIs
 * @cctl: control reg values for current txd
 * @ccfg: config reg values for current txd
174 175
 * @done: this marks completed descriptors, which should not have their
 *   mux released.
176 177
 */
struct pl08x_txd {
178
	struct virt_dma_desc vd;
179 180
	struct list_head dsg_list;
	dma_addr_t llis_bus;
181
	u32 *llis_va;
182 183 184 185 186 187 188
	/* Default cctl value for LLIs */
	u32 cctl;
	/*
	 * Settings to be put into the physical channel when we
	 * trigger this txd.  Other registers are in llis_va[0].
	 */
	u32 ccfg;
189
	bool done;
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
};

/**
 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 * states
 * @PL08X_CHAN_IDLE: the channel is idle
 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 * channel and is running a transfer on it
 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 * channel, but the transfer is currently paused
 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 * channel to become available (only pertains to memcpy channels)
 */
enum pl08x_dma_chan_state {
	PL08X_CHAN_IDLE,
	PL08X_CHAN_RUNNING,
	PL08X_CHAN_PAUSED,
	PL08X_CHAN_WAITING,
};

/**
 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
212
 * @vc: wrappped virtual channel
213 214 215 216 217 218 219 220 221
 * @phychan: the physical channel utilized by this channel, if there is one
 * @name: name of channel
 * @cd: channel platform data
 * @runtime_addr: address for RX/TX according to the runtime config
 * @at: active transaction on this channel
 * @lock: a lock for this channel data
 * @host: a pointer to the host (internal use)
 * @state: whether the channel is idle, paused, running etc
 * @slave: whether this channel is a device (slave) or for memcpy
222
 * @signal: the physical DMA request signal which this channel is using
223
 * @mux_use: count of descriptors using this DMA request signal setting
224 225
 */
struct pl08x_dma_chan {
226
	struct virt_dma_chan vc;
227
	struct pl08x_phy_chan *phychan;
228
	const char *name;
229
	const struct pl08x_channel_data *cd;
230
	struct dma_slave_config cfg;
231 232 233 234
	struct pl08x_txd *at;
	struct pl08x_driver_data *host;
	enum pl08x_dma_chan_state state;
	bool slave;
235
	int signal;
236
	unsigned mux_use;
237 238
};

239 240 241 242 243 244 245 246 247 248
/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
249 250
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
251
 * @mem_buses: set to indicate memory transfers on AHB2.
252 253 254 255 256 257 258
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
259
	const struct vendor_data *vd;
260 261 262
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
263 264
	u8 lli_buses;
	u8 mem_buses;
265
	u8 lli_words;
266 267 268 269 270 271
};

/*
 * PL08X specific defines
 */

272 273 274 275 276
/* The order of words in an LLI. */
#define PL080_LLI_SRC		0
#define PL080_LLI_DST		1
#define PL080_LLI_LLI		2
#define PL080_LLI_CCTL		3
277
#define PL080S_LLI_CCTL2	4
278 279 280

/* Total words in an LLI. */
#define PL080_LLI_WORDS		4
281
#define PL080S_LLI_WORDS	8
282

283 284 285 286 287
/*
 * Number of LLIs in each LLI buffer allocated for one transfer
 * (maximum times we call dma_pool_alloc on this pool without freeing)
 */
#define MAX_NUM_TSFR_LLIS	512
288 289 290 291
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
292
	return container_of(chan, struct pl08x_dma_chan, vc.chan);
293 294
}

295 296
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
297
	return container_of(tx, struct pl08x_txd, vd.tx);
298 299
}

300 301 302 303 304 305 306 307
/*
 * Mux handling.
 *
 * This gives us the DMA request input to the PL08x primecell which the
 * peripheral described by the channel data will be routed to, possibly
 * via a board/SoC specific external MUX.  One important point to note
 * here is that this does not depend on the physical channel.
 */
308
static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
309 310 311 312
{
	const struct pl08x_platform_data *pd = plchan->host->pd;
	int ret;

313 314
	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
		ret = pd->get_xfer_signal(plchan->cd);
315 316
		if (ret < 0) {
			plchan->mux_use = 0;
317
			return ret;
318
		}
319

320
		plchan->signal = ret;
321 322 323 324 325 326 327 328
	}
	return 0;
}

static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
{
	const struct pl08x_platform_data *pd = plchan->host->pd;

329 330 331
	if (plchan->signal >= 0) {
		WARN_ON(plchan->mux_use == 0);

332 333
		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
			pd->put_xfer_signal(plchan->cd, plchan->signal);
334 335
			plchan->signal = -1;
		}
336 337 338
	}
}

339 340 341 342 343 344 345 346 347
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

348
	val = readl(ch->reg_config);
349 350 351
	return val & PL080_CONFIG_ACTIVE;
}

352 353 354
static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
{
355 356 357 358 359 360 361 362 363 364 365 366 367
	if (pl08x->vd->pl080s)
		dev_vdbg(&pl08x->adev->dev,
			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
			lli[PL080S_LLI_CCTL2], ccfg);
	else
		dev_vdbg(&pl08x->adev->dev,
			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
368 369 370 371 372 373

	writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
	writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
	writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
	writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);

374 375 376 377
	if (pl08x->vd->pl080s)
		writel_relaxed(lli[PL080S_LLI_CCTL2],
				phychan->base + PL080S_CH_CONTROL2);

378 379 380
	writel(ccfg, phychan->reg_config);
}

381 382
/*
 * Set the initial DMA register values i.e. those for the first LLI
383
 * The next LLI pointer and the configuration interrupt bit have
384 385
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
386
 */
387
static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
388
{
389
	struct pl08x_driver_data *pl08x = plchan->host;
390
	struct pl08x_phy_chan *phychan = plchan->phychan;
391 392
	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
393
	u32 val;
394

395
	list_del(&txd->vd.node);
396

397
	plchan->at = txd;
398

399 400 401
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
402

403
	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
404 405 406 407

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
408
		cpu_relax();
409

410
	/* Do not access config register until channel shows as inactive */
411
	val = readl(phychan->reg_config);
412
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
413
		val = readl(phychan->reg_config);
414

415
	writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
416 417 418
}

/*
419
 * Pause the channel by setting the HALT bit.
420
 *
421 422 423
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
424
 *
425 426
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
427 428 429 430
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
431
	int timeout;
432 433

	/* Set the HALT bit and wait for the FIFO to drain */
434
	val = readl(ch->reg_config);
435
	val |= PL080_CONFIG_HALT;
436
	writel(val, ch->reg_config);
437 438

	/* Wait for channel inactive */
439 440 441 442 443 444 445
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
446 447 448 449 450 451 452
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
453
	val = readl(ch->reg_config);
454
	val &= ~PL080_CONFIG_HALT;
455
	writel(val, ch->reg_config);
456 457
}

458 459 460 461 462 463 464 465
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
466
{
467
	u32 val = readl(ch->reg_config);
468

469 470
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
471

472
	writel(val, ch->reg_config);
473 474 475

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

514 515 516
/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
517 518
	struct pl08x_driver_data *pl08x = plchan->host;
	const u32 *llis_va, *llis_va_limit;
519
	struct pl08x_phy_chan *ch;
520
	dma_addr_t llis_bus;
521
	struct pl08x_txd *txd;
522
	u32 llis_max_words;
523 524
	size_t bytes;
	u32 clli;
525 526 527 528

	ch = plchan->phychan;
	txd = plchan->at;

529 530 531
	if (!ch || !txd)
		return 0;

532
	/*
533 534
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
535
	 */
536
	clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
537

538
	/* First get the remaining bytes in the active transfer */
539 540 541 542 543 544
	if (pl08x->vd->pl080s)
		bytes = get_bytes_in_cctl_pl080s(
				readl(ch->base + PL080_CH_CONTROL),
				readl(ch->base + PL080S_CH_CONTROL2));
	else
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
545

546 547
	if (!clli)
		return bytes;
548

549 550 551
	llis_va = txd->llis_va;
	llis_bus = txd->llis_bus;

552
	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
553
	BUG_ON(clli < llis_bus || clli >= llis_bus +
554
						sizeof(u32) * llis_max_words);
555

556 557 558 559
	/*
	 * Locate the next LLI - as this is an array,
	 * it's simple maths to find.
	 */
560
	llis_va += (clli - llis_bus) / sizeof(u32);
561

562 563 564
	llis_va_limit = llis_va + llis_max_words;

	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
565 566 567 568 569 570
		if (pl08x->vd->pl080s)
			bytes += get_bytes_in_cctl_pl080s(
						llis_va[PL080_LLI_CCTL],
						llis_va[PL080S_LLI_CCTL2]);
		else
			bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
571 572 573 574

		/*
		 * A LLI pointer of 0 terminates the LLI list
		 */
575
		if (!llis_va[PL080_LLI_LLI])
576
			break;
577 578 579 580 581 582 583
	}

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
584 585 586 587
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
588 589 590 591 592 593 594 595 596 597 598 599 600 601
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

602
		if (!ch->locked && !ch->serving) {
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
			ch->serving = virt_chan;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

619
/* Mark the physical channel as free.  Note, this write is atomic. */
620 621 622
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
623 624
	ch->serving = NULL;
}
625

626 627 628 629 630 631 632 633 634
/*
 * Try to allocate a physical channel.  When successful, assign it to
 * this virtual channel, and initiate the next descriptor.  The
 * virtual channel lock must be held at this point.
 */
static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
635

636 637 638 639 640 641
	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		plchan->state = PL08X_CHAN_WAITING;
		return;
	}
642

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
		ch->id, plchan->name);

	plchan->phychan = ch;
	plchan->state = PL08X_CHAN_RUNNING;
	pl08x_start_next_txd(plchan);
}

static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
	struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
		ch->id, plchan->name);

	/*
	 * We do this without taking the lock; we're really only concerned
	 * about whether this pointer is NULL or not, and we're guaranteed
	 * that this will only be called when it _already_ is non-NULL.
	 */
	ch->serving = plchan;
	plchan->phychan = ch;
	plchan->state = PL08X_CHAN_RUNNING;
	pl08x_start_next_txd(plchan);
}

/*
 * Free a physical DMA channel, potentially reallocating it to another
 * virtual channel if we have any pending.
 */
static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_dma_chan *p, *next;

 retry:
	next = NULL;

	/* Find a waiting virtual channel for the next transfer. */
683
	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
684 685 686 687 688 689
		if (p->state == PL08X_CHAN_WAITING) {
			next = p;
			break;
		}

	if (!next) {
690
		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
			if (p->state == PL08X_CHAN_WAITING) {
				next = p;
				break;
			}
	}

	/* Ensure that the physical channel is stopped */
	pl08x_terminate_phy_chan(pl08x, plchan->phychan);

	if (next) {
		bool success;

		/*
		 * Eww.  We know this isn't going to deadlock
		 * but lockdep probably doesn't.
		 */
707
		spin_lock(&next->vc.lock);
708 709 710 711
		/* Re-check the state now that we have the lock */
		success = next->state == PL08X_CHAN_WAITING;
		if (success)
			pl08x_phy_reassign_start(plchan->phychan, next);
712
		spin_unlock(&next->vc.lock);
713 714 715 716 717 718 719 720 721 722 723

		/* If the state changed, try to find another channel */
		if (!success)
			goto retry;
	} else {
		/* No more jobs, so free up the physical channel */
		pl08x_put_phy_channel(pl08x, plchan->phychan);
	}

	plchan->phychan = NULL;
	plchan->state = PL08X_CHAN_IDLE;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
747
				  size_t tsize)
748 749 750
{
	u32 retbits = cctl;

751
	/* Remove all src, dst and transfer size bits */
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

787
	tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
788 789 790 791
	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

792 793 794 795 796
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
797
	u32 lli_bus;
798 799
};

800
/*
801 802 803 804 805 806
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
807
 * - prefers bus with fixed address (i.e. peripheral)
808
 */
809 810
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
811 812
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
813 814
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
815 816 817
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
818
	} else {
819
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
820 821
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
822
		} else {
823 824
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
825 826 827 828 829
		}
	}
}

/*
830
 * Fills in one LLI for a certain transfer descriptor and advance the counter
831
 */
832 833
static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
				    struct pl08x_lli_build_data *bd,
834
				    int num_llis, int len, u32 cctl, u32 cctl2)
835
{
836 837
	u32 offset = num_llis * pl08x->lli_words;
	u32 *llis_va = bd->txd->llis_va + offset;
838
	dma_addr_t llis_bus = bd->txd->llis_bus;
839 840 841

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

842 843 844 845 846 847 848 849
	/* Advance the offset to next LLI. */
	offset += pl08x->lli_words;

	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
	llis_va[PL080_LLI_CCTL] = cctl;
850 851
	if (pl08x->vd->pl080s)
		llis_va[PL080S_LLI_CCTL2] = cctl2;
852 853

	if (cctl & PL080_CONTROL_SRC_INCR)
854
		bd->srcbus.addr += len;
855
	if (cctl & PL080_CONTROL_DST_INCR)
856
		bd->dstbus.addr += len;
857

858
	BUG_ON(bd->remainder < len);
859

860
	bd->remainder -= len;
861 862
}

863 864 865
static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
			int num_llis, size_t *total_bytes)
866
{
867
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
868
	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
869
	(*total_bytes) += len;
870 871
}

872 873 874 875 876 877
#ifdef VERBOSE_DEBUG
static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
			   const u32 *llis_va, int num_llis)
{
	int i;

878
	if (pl08x->vd->pl080s) {
879
		dev_vdbg(&pl08x->adev->dev,
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
				i, llis_va, llis_va[PL080_LLI_SRC],
				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
				llis_va[PL080_LLI_CCTL],
				llis_va[PL080S_LLI_CCTL2]);
			llis_va += pl08x->lli_words;
		}
	} else {
		dev_vdbg(&pl08x->adev->dev,
			"%-3s %-9s  %-10s %-10s %-10s %s\n",
			"lli", "", "csrc", "cdst", "clli", "cctl");
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				i, llis_va, llis_va[PL080_LLI_SRC],
				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
				llis_va[PL080_LLI_CCTL]);
			llis_va += pl08x->lli_words;
		}
903 904 905 906 907 908 909
	}
}
#else
static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
				  const u32 *llis_va, int num_llis) {}
#endif

910 911 912 913 914 915 916 917 918
/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
919
	struct pl08x_lli_build_data bd;
920
	int num_llis = 0;
921
	u32 cctl, early_bytes = 0;
922
	size_t max_bytes_per_lli, total_bytes;
923
	u32 *llis_va, *last_lli;
924
	struct pl08x_sg *dsg;
925

926
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
927 928 929 930 931
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

932
	bd.txd = txd;
933
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
934
	cctl = txd->cctl;
935

936
	/* Find maximum width of the source bus */
937
	bd.srcbus.maxwidth =
938 939 940 941
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
942
	bd.dstbus.maxwidth =
943 944 945
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

946 947 948
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
949

950 951 952 953 954
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
955

956
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
957

958 959 960 961 962 963 964 965 966
		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
			bd.srcbus.buswidth,
			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
967

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
993
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
994 995 996 997
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
998

999
			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
1000
					(bd.dstbus.addr % bd.dstbus.buswidth)) {
1001 1002 1003 1004 1005 1006
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
1007

1008 1009
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
1010
			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1011
					0, cctl, 0);
1012 1013
			break;
		}
1014 1015

		/*
1016 1017 1018
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
1019
		 */
1020 1021 1022 1023 1024 1025 1026 1027
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
		else if ((mbus->addr) % (mbus->buswidth)) {
			early_bytes = mbus->buswidth - (mbus->addr) %
				(mbus->buswidth);
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
1028

1029 1030 1031 1032
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
				"%s byte width LLIs (remain 0x%08x)\n",
				__func__, bd.remainder);
1033 1034
			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
				num_llis++, &total_bytes);
1035 1036
		}

1037 1038 1039 1040 1041 1042 1043 1044 1045
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
			if (sbus->addr % sbus->buswidth) {
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
1046

1047 1048
				sbus->buswidth = 1;
			}
1049 1050

			/*
1051 1052
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
1053
			 */
1054
			max_bytes_per_lli = bd.srcbus.buswidth *
1055
						pl08x->vd->max_transfer_size;
1056 1057 1058
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
1059 1060

			/*
1061 1062
			 * Make largest possible LLIs until less than one bus
			 * width left
1063
			 */
1064 1065
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
1066

1067 1068 1069 1070 1071
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1089
					bd.dstbus.buswidth, tsize);
1090
				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1091
						lli_len, cctl, tsize);
1092 1093
				total_bytes += lli_len;
			}
1094

1095 1096 1097 1098 1099 1100 1101
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
1102 1103
				prep_byte_width_lli(pl08x, &bd, &cctl,
					bd.remainder, num_llis++, &total_bytes);
1104
			}
1105
		}
1106

1107 1108 1109 1110 1111 1112
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
1113

1114 1115 1116
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1117
				__func__, MAX_NUM_TSFR_LLIS);
1118 1119
			return 0;
		}
1120
	}
1121 1122

	llis_va = txd->llis_va;
1123
	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1124
	/* The final LLI terminates the LLI. */
1125
	last_lli[PL080_LLI_LLI] = 0;
1126
	/* The final LLI element shall also fire an interrupt. */
1127
	last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1128

1129
	pl08x_dump_lli(pl08x, llis_va, num_llis);
1130 1131 1132 1133 1134 1135 1136

	return num_llis;
}

static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
1137 1138
	struct pl08x_sg *dsg, *_dsg;

1139 1140
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1141

1142 1143 1144 1145 1146
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

1147 1148 1149
	kfree(txd);
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->vd.tx.chan->device->dev;
	struct pl08x_sg *dsg;

	if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		else {
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		}
	}
	if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
		else
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
	}
}

static void pl08x_desc_free(struct virt_dma_desc *vd)
{
	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);

	if (!plchan->slave)
		pl08x_unmap_buffers(txd);

	if (!txd->done)
		pl08x_release_mux(plchan);

	pl08x_free_txd(plchan->host, txd);
}

1192 1193 1194
static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
1195
	LIST_HEAD(head);
1196

1197
	vchan_get_all_descriptors(&plchan->vc, &head);
1198
	vchan_dma_desc_free_list(&plchan->vc, &head);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
1211 1212
	/* Ensure all queued descriptors are freed */
	vchan_free_chan_resources(to_virt_chan(chan));
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1224 1225 1226
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1227
 */
1228 1229
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
1230 1231
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1232 1233
	struct virt_dma_desc *vd;
	unsigned long flags;
1234
	enum dma_status ret;
1235
	size_t bytes = 0;
1236

1237 1238
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_SUCCESS)
1239 1240
		return ret;

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	/*
	 * There's no point calculating the residue if there's
	 * no txstate to store the value.
	 */
	if (!txstate) {
		if (plchan->state == PL08X_CHAN_PAUSED)
			ret = DMA_PAUSED;
		return ret;
	}

	spin_lock_irqsave(&plchan->vc.lock, flags);
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret != DMA_SUCCESS) {
		vd = vchan_find_desc(&plchan->vc, cookie);
		if (vd) {
			/* On the issued list, so hasn't been processed yet */
			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
			struct pl08x_sg *dsg;

			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
		} else {
			bytes = pl08x_getbytes_chan(plchan);
		}
	}
	spin_unlock_irqrestore(&plchan->vc.lock, flags);

1268 1269
	/*
	 * This cookie not complete yet
1270
	 * Get number of bytes left in the active transactions and queue
1271
	 */
1272
	dma_set_residue(txstate, bytes);
1273

1274 1275
	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
		ret = DMA_PAUSED;
1276 1277

	/* Whether waiting or running, we're in progress */
1278
	return ret;
1279 1280 1281 1282
}

/* PrimeCell DMA extension */
struct burst_table {
1283
	u32 burstwords;
1284 1285 1286 1287 1288 1289
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1290
		.reg = PL080_BSIZE_256,
1291 1292 1293
	},
	{
		.burstwords = 128,
1294
		.reg = PL080_BSIZE_128,
1295 1296 1297
	},
	{
		.burstwords = 64,
1298
		.reg = PL080_BSIZE_64,
1299 1300 1301
	},
	{
		.burstwords = 32,
1302
		.reg = PL080_BSIZE_32,
1303 1304 1305
	},
	{
		.burstwords = 16,
1306
		.reg = PL080_BSIZE_16,
1307 1308 1309
	},
	{
		.burstwords = 8,
1310
		.reg = PL080_BSIZE_8,
1311 1312 1313
	},
	{
		.burstwords = 4,
1314
		.reg = PL080_BSIZE_4,
1315 1316
	},
	{
1317 1318
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1319 1320 1321
	},
};

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1358 1359
	default:
		return ~0;
1360 1361 1362
	}
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
	enum dma_slave_buswidth addr_width, u32 maxburst)
{
	u32 width, burst, cctl = 0;

	width = pl08x_width(addr_width);
	if (width == ~0)
		return ~0;

	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

	/*
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
	 */
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;

	return pl08x_cctl(cctl);
}

1401 1402
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1403 1404
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1405
	struct pl08x_driver_data *pl08x = plchan->host;
1406 1407 1408

	if (!plchan->slave)
		return -EINVAL;
1409

1410 1411 1412
	/* Reject definitely invalid configurations */
	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1413
		return -EINVAL;
1414

1415 1416 1417 1418 1419 1420 1421
	if (config->device_fc && pl08x->vd->pl080s) {
		dev_err(&pl08x->adev->dev,
			"%s: PL080S does not support peripheral flow control\n",
			__func__);
		return -EINVAL;
	}

1422 1423
	plchan->cfg = *config;

1424
	return 0;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

1436
	spin_lock_irqsave(&plchan->vc.lock, flags);
1437
	if (vchan_issue_pending(&plchan->vc)) {
1438 1439
		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
			pl08x_phy_alloc_and_start(plchan);
1440
	}
1441
	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1442 1443
}

1444
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1445
{
1446
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1447 1448

	if (txd) {
1449
		INIT_LIST_HEAD(&txd->dsg_list);
1450 1451 1452 1453

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1454 1455 1456 1457
	}
	return txd;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1468
	struct pl08x_sg *dsg;
1469 1470
	int ret;

1471
	txd = pl08x_get_txd(plchan);
1472 1473 1474 1475 1476 1477
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1490 1491

	/* Set platform data for m2m */
1492
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1493
	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1494
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1495

1496
	/* Both to be incremented or the code will break */
1497
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1498 1499

	if (pl08x->vd->dualmaster)
1500 1501
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1502

1503 1504 1505
	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
	if (!ret) {
		pl08x_free_txd(pl08x, txd);
1506
		return NULL;
1507
	}
1508

1509
	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1510 1511
}

1512
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1513
		struct dma_chan *chan, struct scatterlist *sgl,
1514
		unsigned int sg_len, enum dma_transfer_direction direction,
1515
		unsigned long flags, void *context)
1516 1517 1518 1519
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1520 1521
	struct pl08x_sg *dsg;
	struct scatterlist *sg;
1522
	enum dma_slave_buswidth addr_width;
1523
	dma_addr_t slave_addr;
1524
	int ret, tmp;
1525
	u8 src_buses, dst_buses;
1526
	u32 maxburst, cctl;
1527 1528

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1529
			__func__, sg_dma_len(sgl), plchan->name);
1530

1531
	txd = pl08x_get_txd(plchan);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
1542
	if (direction == DMA_MEM_TO_DEV) {
1543
		cctl = PL080_CONTROL_SRC_INCR;
1544
		slave_addr = plchan->cfg.dst_addr;
1545 1546
		addr_width = plchan->cfg.dst_addr_width;
		maxburst = plchan->cfg.dst_maxburst;
1547 1548
		src_buses = pl08x->mem_buses;
		dst_buses = plchan->cd->periph_buses;
1549
	} else if (direction == DMA_DEV_TO_MEM) {
1550
		cctl = PL080_CONTROL_DST_INCR;
1551
		slave_addr = plchan->cfg.src_addr;
1552 1553
		addr_width = plchan->cfg.src_addr_width;
		maxburst = plchan->cfg.src_maxburst;
1554 1555
		src_buses = plchan->cd->periph_buses;
		dst_buses = pl08x->mem_buses;
1556
	} else {
1557
		pl08x_free_txd(pl08x, txd);
1558 1559 1560 1561 1562
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1563
	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1564 1565 1566 1567 1568 1569 1570
	if (cctl == ~0) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev,
			"DMA slave configuration botched?\n");
		return NULL;
	}

1571 1572
	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);

1573
	if (plchan->cfg.device_fc)
1574
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1575 1576
			PL080_FLOW_PER2MEM_PER;
	else
1577
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1578 1579 1580 1581
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	ret = pl08x_request_mux(plchan);
	if (ret < 0) {
		pl08x_free_txd(pl08x, txd);
		dev_dbg(&pl08x->adev->dev,
			"unable to mux for transfer on %s due to platform restrictions\n",
			plchan->name);
		return NULL;
	}

	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
		 plchan->signal, plchan->name);

	/* Assign the flow control signal to this channel */
	if (direction == DMA_MEM_TO_DEV)
		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else
		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;

1600 1601 1602
	for_each_sg(sgl, sg, sg_len, tmp) {
		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
		if (!dsg) {
1603
			pl08x_release_mux(plchan);
1604 1605 1606 1607 1608 1609 1610 1611
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
		list_add_tail(&dsg->node, &txd->dsg_list);

		dsg->len = sg_dma_len(sg);
1612
		if (direction == DMA_MEM_TO_DEV) {
1613
			dsg->src_addr = sg_dma_address(sg);
1614 1615 1616
			dsg->dst_addr = slave_addr;
		} else {
			dsg->src_addr = slave_addr;
1617
			dsg->dst_addr = sg_dma_address(sg);
1618 1619 1620
		}
	}

1621 1622 1623 1624
	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
	if (!ret) {
		pl08x_release_mux(plchan);
		pl08x_free_txd(pl08x, txd);
1625
		return NULL;
1626
	}
1627

1628
	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1641 1642
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1643 1644 1645 1646 1647 1648
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
1649
	spin_lock_irqsave(&plchan->vc.lock, flags);
1650
	if (!plchan->phychan && !plchan->at) {
1651
		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1664
			pl08x_phy_free(plchan);
1665 1666 1667
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
1668
			pl08x_desc_free(&plchan->at->vd);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

1688
	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1689 1690 1691 1692 1693 1694

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1695
	struct pl08x_dma_chan *plchan;
1696 1697
	char *name = chan_id;

1698 1699 1700 1701 1702 1703
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1704 1705 1706 1707 1708 1709 1710 1711 1712
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1713 1714 1715
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1716 1717 1718
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1719 1720 1721
	/* The Nomadik variant does not have the config register */
	if (pl08x->vd->nomadik)
		return;
1722
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1723 1724 1725 1726 1727
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1728 1729 1730 1731 1732 1733 1734 1735
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1736
	}
1737
	tc = readl(pl08x->base + PL080_TC_STATUS);
1738 1739 1740 1741 1742 1743
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1744
	for (i = 0; i < pl08x->vd->channels; i++) {
1745
		if (((1 << i) & err) || ((1 << i) & tc)) {
1746 1747 1748
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;
1749
			struct pl08x_txd *tx;
1750

1751 1752 1753 1754 1755 1756 1757
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1758
			spin_lock(&plchan->vc.lock);
1759 1760 1761
			tx = plchan->at;
			if (tx) {
				plchan->at = NULL;
1762 1763 1764 1765 1766
				/*
				 * This descriptor is done, release its mux
				 * reservation.
				 */
				pl08x_release_mux(plchan);
1767 1768
				tx->done = true;
				vchan_cookie_complete(&tx->vd);
1769

1770 1771 1772 1773
				/*
				 * And start the next descriptor (if any),
				 * otherwise free this channel.
				 */
1774
				if (vchan_next_desc(&plchan->vc))
1775
					pl08x_start_next_txd(plchan);
1776 1777
				else
					pl08x_phy_free(plchan);
1778
			}
1779
			spin_unlock(&plchan->vc.lock);
1780

1781 1782 1783 1784 1785 1786 1787
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1788 1789 1790 1791
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	chan->slave = true;
	chan->name = chan->cd->bus_id;
1792 1793
	chan->cfg.src_addr = chan->cd->addr;
	chan->cfg.dst_addr = chan->cd->addr;
1794 1795
}

1796 1797 1798 1799 1800
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1801
		struct dma_device *dmadev, unsigned int channels, bool slave)
1802 1803 1804 1805 1806
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1807

1808 1809 1810 1811 1812 1813
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1814
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1815 1816 1817 1818 1819 1820 1821 1822
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;
1823
		chan->signal = -1;
1824 1825 1826

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1827
			pl08x_dma_slave_init(chan);
1828 1829 1830 1831 1832 1833 1834 1835
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1836
		dev_dbg(&pl08x->adev->dev,
1837 1838 1839
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

1840
		chan->vc.desc_free = pl08x_desc_free;
1841
		vchan_init(&chan->vc, dmadev);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
1854 1855
				 next, &dmadev->channels, vc.chan.device_node) {
		list_del(&chan->vc.chan.device_node);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

1897 1898 1899 1900
		seq_printf(s, "%d\t\t%s%s\n",
			   ch->id,
			   virt_chan ? virt_chan->name : "(none)",
			   ch->locked ? " LOCKED" : "");
1901 1902 1903 1904 1905 1906 1907

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
1908
	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1909
		seq_printf(s, "%s\t\t%s\n", chan->name,
1910 1911 1912 1913 1914 1915
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
1916
	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1917
		seq_printf(s, "%s\t\t%s\n", chan->name,
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1939 1940 1941
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1942 1943 1944 1945 1946 1947 1948 1949
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1950
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1951 1952
{
	struct pl08x_driver_data *pl08x;
1953
	const struct vendor_data *vd = id->data;
1954
	u32 tsfr_size;
1955 1956 1957 1958 1959 1960 1961 1962
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1963
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
1995
		ret = -EINVAL;
1996 1997 1998 1999 2000 2001 2002
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

2003 2004 2005 2006 2007 2008 2009 2010
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

2011 2012 2013 2014
	if (vd->pl080s)
		pl08x->lli_words = PL080S_LLI_WORDS;
	else
		pl08x->lli_words = PL080_LLI_WORDS;
2015 2016
	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);

2017 2018
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2019
						tsfr_size, PL08X_ALIGN, 0);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

2034
	/* Attach the interrupt handler */
2035 2036 2037 2038
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2039
			  DRIVER_NAME, pl08x);
2040 2041 2042 2043 2044 2045 2046
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
2047
	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2048 2049 2050 2051 2052
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
2053
		ret = -ENOMEM;
2054 2055 2056 2057 2058 2059 2060 2061
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
2062
		ch->reg_config = ch->base + vd->config_offset;
2063
		spin_lock_init(&ch->lock);
2064 2065 2066 2067 2068 2069 2070 2071 2072

		/*
		 * Nomadik variants can have channels that are locked
		 * down for the secure world only. Lock up these channels
		 * by perpetually serving a dummy virtual channel.
		 */
		if (vd->nomadik) {
			u32 val;

2073
			val = readl(ch->reg_config);
2074 2075 2076 2077 2078 2079
			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
				ch->locked = true;
			}
		}

2080 2081
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2097
			pl08x->pd->num_slave_channels, true);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2124 2125
	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2126
		 (unsigned long long)adev->res.start, adev->irq[0]);
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
2154
	.config_offset = PL080_CH_CONFIG,
2155 2156
	.channels = 8,
	.dualmaster = true,
2157
	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2158 2159
};

2160
static struct vendor_data vendor_nomadik = {
2161
	.config_offset = PL080_CH_CONFIG,
2162 2163 2164
	.channels = 8,
	.dualmaster = true,
	.nomadik = true,
2165
	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2166 2167
};

2168 2169 2170 2171
static struct vendor_data vendor_pl080s = {
	.config_offset = PL080S_CH_CONFIG,
	.channels = 8,
	.pl080s = true,
2172
	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2173 2174
};

2175
static struct vendor_data vendor_pl081 = {
2176
	.config_offset = PL080_CH_CONFIG,
2177 2178
	.channels = 2,
	.dualmaster = false,
2179
	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2180 2181 2182
};

static struct amba_id pl08x_ids[] = {
2183 2184 2185 2186 2187 2188
	/* Samsung PL080S variant */
	{
		.id	= 0x0a141080,
		.mask	= 0xffffffff,
		.data	= &vendor_pl080s,
	},
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
2203
		.id	= 0x00280080,
2204
		.mask	= 0x00ffffff,
2205
		.data	= &vendor_nomadik,
2206 2207 2208 2209
	},
	{ 0, 0 },
};

2210 2211
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2224
		       "failed to register as an AMBA device (%d)\n",
2225 2226 2227 2228
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);