amba-pl08x.c 54.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
 * Only the former works sanely with scatter lists, so we only implement
 * the DMAC flow control method.  However, peripherals which use the LBREQ
 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
 * these hardware restrictions prevents them from using scatter DMA.
73 74 75 76 77 78 79 80 81
 *
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
#include <linux/device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
82
#include <linux/delay.h>
83 84
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
85
#include <linux/amba/bus.h>
86 87 88 89 90 91 92 93 94
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>

#include <asm/hardware/pl080.h>

#define DRIVER_NAME	"pl08xdmac"

/**
95
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96
 * @channels: the number of channels available in this variant
97
 * @dualmaster: whether this version supports dual AHB masters or not.
98 99 100 101 102 103 104 105
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
};

/*
 * PL08X private data structures
106
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
107 108
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
109
 */
110
struct pl08x_lli {
111 112
	u32 src;
	u32 dst;
113
	u32 lli;
114 115 116 117 118 119 120 121 122 123 124 125 126 127
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
128 129
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
 * @mem_buses: set to indicate memory transfers on AHB2.
130 131 132 133 134 135 136
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
137
	const struct vendor_data *vd;
138 139 140 141
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
142 143
	u8 lli_buses;
	u8 mem_buses;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/*
 * Memory boundaries: the manual for PL08x says that the controller
 * cannot read past a 1KiB boundary, so these defines are used to
 * create transfer LLIs that do not cross such boundaries.
 */
#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

162
/* Maximum times we call dma_pool_alloc on this pool without freeing */
163
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
164 165 166 167 168 169 170
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

171 172 173 174 175
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
191
 * The next LLI pointer and the configuration interrupt bit have
192 193
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
194
 */
195 196
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
197
{
198
	struct pl08x_driver_data *pl08x = plchan->host;
199
	struct pl08x_phy_chan *phychan = plchan->phychan;
200
	struct pl08x_lli *lli = &txd->llis_va[0];
201
	u32 val;
202 203

	plchan->at = txd;
204

205 206 207
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
208

209 210
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
211 212
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
213
		txd->ccfg);
214 215 216 217 218

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
219
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
220 221 222 223

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
224
		cpu_relax();
225

226 227
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
228
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
229
		val = readl(phychan->base + PL080_CH_CONFIG);
230

231
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
232 233 234
}

/*
235
 * Pause the channel by setting the HALT bit.
236
 *
237 238 239
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
240
 *
241 242
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
243 244 245 246
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
247
	int timeout;
248 249 250 251 252 253 254

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
255 256 257 258 259 260 261
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
262 263 264 265 266 267 268 269 270 271 272 273 274
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}


275 276 277 278 279 280 281 282
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
283
{
284
	u32 val = readl(ch->base + PL080_CH_CONFIG);
285

286 287
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
288 289

	writel(val, ch->base + PL080_CH_CONFIG);
290 291 292

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
319
	size_t bytes = 0;
320 321 322 323 324 325

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
326 327
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
328 329
	 */
	if (ch && txd) {
330
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
331

332
		/* First get the remaining bytes in the active transfer */
333 334 335
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
336 337 338 339 340 341
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
342

343 344 345 346 347 348 349 350
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
351 352

				/*
353
				 * A LLI pointer of 0 terminates the LLI list
354
				 */
355 356
				if (!llis_va[index].lli)
					break;
357 358 359 360 361
			}
		}
	}

	/* Sum up all queued transactions */
362
	if (!list_empty(&plchan->pend_list)) {
363
		struct pl08x_txd *txdi;
364
		list_for_each_entry(txdi, &plchan->pend_list, node) {
365 366 367 368 369 370 371 372 373 374 375
			bytes += txdi->len;
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
376 377 378 379
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

		if (!ch->serving) {
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

417 418
	spin_lock_irqsave(&ch->lock, flags);

419
	/* Stop the channel and clear its interrupts */
420
	pl08x_terminate_phy_chan(pl08x, ch);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
448
				  size_t tsize)
449 450 451
{
	u32 retbits = cctl;

452
	/* Remove all src, dst and transfer size bits */
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

492 493 494 495 496 497 498 499
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_driver_data *pl08x;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
};

500
/*
501 502 503
 * Autoselect a master bus to use for the transfer this prefers the
 * destination bus if both available if fixed address on one bus the
 * other will be chosen
504
 */
505 506
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
507 508
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
509 510
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
511
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
512 513
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
514
	} else {
515 516 517 518 519 520 521 522 523 524 525 526
		if (bd->dstbus.buswidth == 4) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 4) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
		} else if (bd->dstbus.buswidth == 2) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 2) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
527
		} else {
528 529 530
			/* bd->srcbus.buswidth == 1 */
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
531 532 533 534 535
		}
	}
}

/*
536
 * Fills in one LLI for a certain transfer descriptor and advance the counter
537
 */
538 539
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
540
{
541 542
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
543 544 545

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

546
	llis_va[num_llis].cctl = cctl;
547 548
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
549
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
550
	if (bd->pl08x->lli_buses & PL08X_AHB2)
551
		llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
552 553

	if (cctl & PL080_CONTROL_SRC_INCR)
554
		bd->srcbus.addr += len;
555
	if (cctl & PL080_CONTROL_DST_INCR)
556
		bd->dstbus.addr += len;
557

558
	BUG_ON(bd->remainder < len);
559

560
	bd->remainder -= len;
561 562 563
}

/*
564 565
 * Return number of bytes to fill to boundary, or len.
 * This calculation works for any value of addr.
566
 */
567
static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
568
{
569 570
	size_t boundary_len = PL08X_BOUNDARY_SIZE -
			(addr & (PL08X_BOUNDARY_SIZE - 1));
571

572
	return min(boundary_len, len);
573 574 575 576 577 578 579 580 581 582 583
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
584
	struct pl08x_lli_build_data bd;
585 586
	int num_llis = 0;
	u32 cctl;
587 588
	size_t max_bytes_per_lli;
	size_t total_bytes = 0;
589
	struct pl08x_lli *llis_va;
590 591 592 593 594 595 596 597 598 599

	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
				      &txd->llis_bus);
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

600 601
	/* Get the default CCTL */
	cctl = txd->cctl;
602

603 604
	bd.txd = txd;
	bd.pl08x = pl08x;
605 606
	bd.srcbus.addr = txd->src_addr;
	bd.dstbus.addr = txd->dst_addr;
607

608
	/* Find maximum width of the source bus */
609
	bd.srcbus.maxwidth =
610 611 612 613
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
614
	bd.dstbus.maxwidth =
615 616 617 618
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

	/* Set up the bus widths to the maximum */
619 620
	bd.srcbus.buswidth = bd.srcbus.maxwidth;
	bd.dstbus.buswidth = bd.dstbus.maxwidth;
621 622
	dev_vdbg(&pl08x->adev->dev,
		 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
623
		 __func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
624 625 626 627 628


	/*
	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
	 */
629
	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
630 631
		PL080_CONTROL_TRANSFER_SIZE_MASK;
	dev_vdbg(&pl08x->adev->dev,
632
		 "%s max bytes per lli = %zu\n",
633 634 635
		 __func__, max_bytes_per_lli);

	/* We need to count this down to zero */
636
	bd.remainder = txd->len;
637
	dev_vdbg(&pl08x->adev->dev,
638
		 "%s remainder = %zu\n",
639
		 __func__, bd.remainder);
640 641 642 643 644 645

	/*
	 * Choose bus to align to
	 * - prefers destination bus if both available
	 * - if fixed address on one bus chooses other
	 */
646
	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
647 648

	if (txd->len < mbus->buswidth) {
649
		/* Less than a bus width available - send as single bytes */
650
		while (bd.remainder) {
651 652
			dev_vdbg(&pl08x->adev->dev,
				 "%s single byte LLIs for a transfer of "
653
				 "less than a bus width (remain 0x%08x)\n",
654
				 __func__, bd.remainder);
655
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
656
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
657 658 659
			total_bytes++;
		}
	} else {
660
		/* Make one byte LLIs until master bus is aligned */
661 662 663
		while ((mbus->addr) % (mbus->buswidth)) {
			dev_vdbg(&pl08x->adev->dev,
				"%s adjustment lli for less than bus width "
664
				 "(remain 0x%08x)\n",
665
				 __func__, bd.remainder);
666
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
667
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
668 669 670 671
			total_bytes++;
		}

		/*
672
		 * Master now aligned
673 674 675 676 677 678 679 680 681 682 683 684 685 686
		 * - if slave is not then we must set its width down
		 */
		if (sbus->addr % sbus->buswidth) {
			dev_dbg(&pl08x->adev->dev,
				"%s set down bus width to one byte\n",
				 __func__);

			sbus->buswidth = 1;
		}

		/*
		 * Make largest possible LLIs until less than one bus
		 * width left
		 */
687
		while (bd.remainder > (mbus->buswidth - 1)) {
688
			size_t lli_len, target_len, tsize, odd_bytes;
689 690 691 692 693

			/*
			 * If enough left try to send max possible,
			 * otherwise try to send the remainder
			 */
694
			target_len = min(bd.remainder, max_bytes_per_lli);
695 696

			/*
697 698 699
			 * Set bus lengths for incrementing buses to the
			 * number of bytes which fill to next memory boundary,
			 * limiting on the target length calculated above.
700 701
			 */
			if (cctl & PL080_CONTROL_SRC_INCR)
702 703
				bd.srcbus.fill_bytes =
					pl08x_pre_boundary(bd.srcbus.addr,
704
						target_len);
705
			else
706
				bd.srcbus.fill_bytes = target_len;
707 708

			if (cctl & PL080_CONTROL_DST_INCR)
709 710
				bd.dstbus.fill_bytes =
					pl08x_pre_boundary(bd.dstbus.addr,
711
						target_len);
712
			else
713
				bd.dstbus.fill_bytes = target_len;
714

715
			/* Find the nearest */
716 717
			lli_len	= min(bd.srcbus.fill_bytes,
				      bd.dstbus.fill_bytes);
718

719
			BUG_ON(lli_len > bd.remainder);
720 721 722

			if (lli_len <= 0) {
				dev_err(&pl08x->adev->dev,
723
					"%s lli_len is %zu, <= 0\n",
724 725 726 727 728 729
						__func__, lli_len);
				return 0;
			}

			if (lli_len == target_len) {
				/*
730 731
				 * Can send what we wanted.
				 * Maintain alignment
732 733 734 735 736 737 738
				 */
				lli_len	= (lli_len/mbus->buswidth) *
							mbus->buswidth;
				odd_bytes = 0;
			} else {
				/*
				 * So now we know how many bytes to transfer
739 740 741 742 743 744
				 * to get to the nearest boundary.  The next
				 * LLI will past the boundary.  However, we
				 * may be working to a boundary on the slave
				 * bus.  We need to ensure the master stays
				 * aligned, and that we are working in
				 * multiples of the bus widths.
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
				 */
				odd_bytes = lli_len % mbus->buswidth;
				lli_len -= odd_bytes;

			}

			if (lli_len) {
				/*
				 * Check against minimum bus alignment:
				 * Calculate actual transfer size in relation
				 * to bus width an get a maximum remainder of
				 * the smallest bus width - 1
				 */
				/* FIXME: use round_down()? */
				tsize = lli_len / min(mbus->buswidth,
						      sbus->buswidth);
				lli_len	= tsize * min(mbus->buswidth,
						      sbus->buswidth);

				if (target_len != lli_len) {
					dev_vdbg(&pl08x->adev->dev,
766
					"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
767 768 769 770
					__func__, target_len, lli_len, txd->len);
				}

				cctl = pl08x_cctl_bits(cctl,
771 772
						       bd.srcbus.buswidth,
						       bd.dstbus.buswidth,
773 774 775
						       tsize);

				dev_vdbg(&pl08x->adev->dev,
776
					"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
777 778 779
					__func__, lli_len, bd.remainder);
				pl08x_fill_lli_for_desc(&bd, num_llis++,
					lli_len, cctl);
780 781 782 783 784 785
				total_bytes += lli_len;
			}


			if (odd_bytes) {
				/*
786 787
				 * Creep past the boundary, maintaining
				 * master alignment
788 789 790
				 */
				int j;
				for (j = 0; (j < mbus->buswidth)
791
						&& (bd.remainder); j++) {
792 793
					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
					dev_vdbg(&pl08x->adev->dev,
794
						"%s align with boundary, single byte (remain 0x%08zx)\n",
795 796 797
						__func__, bd.remainder);
					pl08x_fill_lli_for_desc(&bd,
						num_llis++, 1, cctl);
798 799 800 801 802 803 804 805
					total_bytes++;
				}
			}
		}

		/*
		 * Send any odd bytes
		 */
806
		while (bd.remainder) {
807 808
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
			dev_vdbg(&pl08x->adev->dev,
809
				"%s align with boundary, single odd byte (remain %zu)\n",
810 811
				__func__, bd.remainder);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
812 813 814 815 816
			total_bytes++;
		}
	}
	if (total_bytes != txd->len) {
		dev_err(&pl08x->adev->dev,
817
			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
818 819 820 821 822 823 824 825 826 827
			__func__, total_bytes, txd->len);
		return 0;
	}

	if (num_llis >= MAX_NUM_TSFR_LLIS) {
		dev_err(&pl08x->adev->dev,
			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
			__func__, (u32) MAX_NUM_TSFR_LLIS);
		return 0;
	}
828 829

	llis_va = txd->llis_va;
830
	/* The final LLI terminates the LLI. */
831
	llis_va[num_llis - 1].lli = 0;
832
	/* The final LLI element shall also fire an interrupt. */
833
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
834 835 836 837 838 839 840

#ifdef VERBOSE_DEBUG
	{
		int i;

		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
841
				 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
842 843 844 845 846
				 i,
				 &llis_va[i],
				 llis_va[i].src,
				 llis_va[i].dst,
				 llis_va[i].cctl,
847
				 llis_va[i].lli
848 849 850 851 852 853 854 855 856 857 858 859 860
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
	/* Free the LLI */
861
	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
862 863 864 865 866 867 868 869 870 871 872 873

	pl08x->pool_ctr--;

	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

874
	if (!list_empty(&plchan->pend_list)) {
875
		list_for_each_entry_safe(txdi,
876
					 next, &plchan->pend_list, node) {
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
	if (plchan->phychan)
		return 0;

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
	if (plchan->slave &&
	    ch->signal < 0 &&
	    pl08x->pd->get_signal) {
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
934 935 936 937 938 939

		/* Assign the flow control signal to this channel */
		if (txd->direction == DMA_TO_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
		else if (txd->direction == DMA_FROM_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
940 941 942 943 944 945 946
	}

	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

947
	plchan->phychan_hold++;
948 949 950 951 952
	plchan->phychan = ch;

	return 0;
}

953 954 955 956 957 958 959 960 961 962 963 964
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
		pl08x->pd->put_signal(plchan);
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

965 966 967
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
968
	struct pl08x_txd *txd = to_pl08x_txd(tx);
969 970 971
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
972

973 974 975 976
	plchan->chan.cookie += 1;
	if (plchan->chan.cookie < 0)
		plchan->chan.cookie = 1;
	tx->cookie = plchan->chan.cookie;
977 978 979 980 981 982 983 984 985 986 987 988 989

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
990 991
	} else {
		plchan->phychan_hold--;
992 993
	}

994
	spin_unlock_irqrestore(&plchan->lock, flags);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

	return tx->cookie;
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1008 1009 1010
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
 */
static enum dma_status
pl08x_dma_tx_status(struct dma_chan *chan,
		    dma_cookie_t cookie,
		    struct dma_tx_state *txstate)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	enum dma_status ret;
	u32 bytesleft = 0;

1023
	last_used = plchan->chan.cookie;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	last_complete = plchan->lc;

	ret = dma_async_is_complete(cookie, last_complete, last_used);
	if (ret == DMA_SUCCESS) {
		dma_set_tx_state(txstate, last_complete, last_used, 0);
		return ret;
	}

	/*
	 * This cookie not complete yet
	 */
1035
	last_used = plchan->chan.cookie;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	last_complete = plchan->lc;

	/* Get number of bytes left in the active transactions and queue */
	bytesleft = pl08x_getbytes_chan(plchan);

	dma_set_tx_state(txstate, last_complete, last_used,
			 bytesleft);

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
	int burstwords;
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
		.reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 128,
		.reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 64,
		.reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 32,
		.reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 16,
		.reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 8,
		.reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 4,
		.reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 1,
		.reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
};

1100 1101
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1102 1103 1104 1105 1106
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_channel_data *cd = plchan->cd;
	enum dma_slave_buswidth addr_width;
1107
	dma_addr_t addr;
1108 1109
	u32 maxburst;
	u32 cctl = 0;
1110
	int i;
1111 1112 1113

	if (!plchan->slave)
		return -EINVAL;
1114 1115 1116 1117

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
	if (config->direction == DMA_TO_DEVICE) {
1118
		addr = config->dst_addr;
1119 1120 1121
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
	} else if (config->direction == DMA_FROM_DEVICE) {
1122
		addr = config->src_addr;
1123 1124 1125 1126 1127
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1128
		return -EINVAL;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	}

	switch (addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	default:
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1147
		return -EINVAL;
1148 1149 1150 1151
	}

	/*
	 * Now decide on a maxburst:
1152 1153 1154
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1155
	 */
1156
	if (plchan->cd->single || maxburst == 0) {
1157 1158 1159
		cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
	} else {
1160
		for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1161 1162 1163 1164 1165
			if (burst_sizes[i].burstwords <= maxburst)
				break;
		cctl |= burst_sizes[i].reg;
	}

1166 1167
	plchan->runtime_addr = addr;

1168 1169 1170 1171 1172
	/* Modify the default channel data to fit PrimeCell request */
	cd->cctl = cctl;

	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1173
		"maxburst %d words, LE, CCTL=0x%08x\n",
1174 1175 1176 1177
		dma_chan_name(chan), plchan->name,
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		addr_width,
		maxburst,
1178
		cctl);
1179 1180

	return 0;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1193 1194 1195
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1196
		return;
1197
	}
1198 1199

	/* Take the first element in the queue and execute it */
1200
	if (!list_empty(&plchan->pend_list)) {
1201 1202
		struct pl08x_txd *next;

1203
		next = list_first_entry(&plchan->pend_list,
1204 1205 1206 1207 1208
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1209
		pl08x_start_txd(plchan, next);
1210 1211 1212 1213 1214 1215 1216 1217 1218
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1219 1220
	unsigned long flags;
	int num_llis, ret;
1221 1222

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1223 1224
	if (!num_llis) {
		kfree(txd);
1225
		return -EINVAL;
1226
	}
1227

1228
	spin_lock_irqsave(&plchan->lock, flags);
1229 1230 1231 1232 1233 1234 1235 1236

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1247 1248 1249
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1250
			pl08x_free_txd(pl08x, txd);
1251
			spin_unlock_irqrestore(&plchan->lock, flags);
1252 1253 1254 1255
			return -EBUSY;
		}
	} else
		/*
1256 1257 1258 1259
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1260 1261 1262 1263
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1264
	spin_unlock_irqrestore(&plchan->lock, flags);
1265 1266 1267 1268

	return 0;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1286 1287
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1288 1289 1290 1291 1292
{
	struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1293
		txd->tx.flags = flags;
1294 1295
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1296 1297 1298 1299

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1300 1301 1302 1303
	}
	return txd;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

1316
	txd = pl08x_get_txd(plchan, flags);
1317 1318 1319 1320 1321 1322 1323
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

	txd->direction = DMA_NONE;
1324 1325
	txd->src_addr = src;
	txd->dst_addr = dest;
1326
	txd->len = len;
1327 1328

	/* Set platform data for m2m */
1329
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1330 1331
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1332

1333
	/* Both to be incremented or the code will break */
1334
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1335 1336

	if (pl08x->vd->dualmaster)
1337 1338
		txd->cctl |= pl08x_select_bus(pl08x,
					pl08x->mem_buses, pl08x->mem_buses);
1339 1340 1341 1342 1343 1344 1345 1346

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1347
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1348 1349 1350 1351 1352 1353 1354
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_data_direction direction,
		unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1355
	u8 src_buses, dst_buses;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	int ret;

	/*
	 * Current implementation ASSUMES only one sg
	 */
	if (sg_len != 1) {
		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
			__func__);
		BUG();
	}

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
		__func__, sgl->length, plchan->name);

1370
	txd = pl08x_get_txd(plchan, flags);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1387 1388
	txd->len = sgl->length;

1389
	txd->cctl = plchan->cd->cctl &
1390 1391
			~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
			  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1392 1393 1394 1395
			  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	txd->cctl |= PL080_CONTROL_PROT_SYS;
1396

1397
	if (direction == DMA_TO_DEVICE) {
1398
		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1399
		txd->cctl |= PL080_CONTROL_SRC_INCR;
1400
		txd->src_addr = sgl->dma_address;
1401
		if (plchan->runtime_addr)
1402
			txd->dst_addr = plchan->runtime_addr;
1403
		else
1404
			txd->dst_addr = plchan->cd->addr;
1405 1406
		src_buses = pl08x->mem_buses;
		dst_buses = plchan->cd->periph_buses;
1407
	} else if (direction == DMA_FROM_DEVICE) {
1408
		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1409
		txd->cctl |= PL080_CONTROL_DST_INCR;
1410
		if (plchan->runtime_addr)
1411
			txd->src_addr = plchan->runtime_addr;
1412
		else
1413 1414
			txd->src_addr = plchan->cd->addr;
		txd->dst_addr = sgl->dma_address;
1415 1416
		src_buses = plchan->cd->periph_buses;
		dst_buses = pl08x->mem_buses;
1417 1418 1419 1420 1421 1422
	} else {
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1423 1424
	txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1442 1443
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1461
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1462 1463 1464 1465 1466

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1467
			release_phy_channel(plchan);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	char *name = chan_id;

	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1510 1511 1512
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1513 1514 1515 1516 1517 1518 1519
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
	u32 val;

	val = readl(pl08x->base + PL080_CONFIG);
	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1520
	/* We implicitly clear bit 1 and that means little-endian mode */
1521 1522 1523 1524
	val |= PL080_CONFIG_ENABLE;
	writel(val, pl08x->base + PL080_CONFIG);
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
		else
			dma_unmap_page(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
	}
}

1547 1548 1549 1550
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1551
	struct pl08x_txd *txd;
1552
	unsigned long flags;
1553

1554
	spin_lock_irqsave(&plchan->lock, flags);
1555

1556 1557
	txd = plchan->at;
	plchan->at = NULL;
1558

1559
	if (txd) {
1560
		/* Update last completed */
1561
		plchan->lc = txd->tx.cookie;
1562
	}
1563

1564
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1565
	if (!list_empty(&plchan->pend_list)) {
1566 1567
		struct pl08x_txd *next;

1568
		next = list_first_entry(&plchan->pend_list,
1569 1570 1571
					struct pl08x_txd,
					node);
		list_del(&next->node);
1572 1573

		pl08x_start_txd(plchan, next);
1574 1575 1576 1577 1578 1579
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1580 1581 1582 1583 1584 1585 1586
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1587
		release_phy_channel(plchan);
1588 1589 1590
		plchan->state = PL08X_CHAN_IDLE;

		/*
1591 1592 1593 1594
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
		  if (waiting->state == PL08X_CHAN_WAITING &&
			    waiting->waiting != NULL) {
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1606
				waiting->phychan_hold--;
1607 1608 1609 1610 1611 1612 1613 1614
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1615
	spin_unlock_irqrestore(&plchan->lock, flags);
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
	u32 mask = 0;
	u32 val;
	int i;

	val = readl(pl08x->base + PL080_ERR_STATUS);
	if (val) {
1645
		/* An error interrupt (on one or more channels) */
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
		dev_err(&pl08x->adev->dev,
			"%s error interrupt, register value 0x%08x\n",
				__func__, val);
		/*
		 * Simply clear ALL PL08X error interrupts,
		 * regardless of channel and cause
		 * FIXME: should be 0x00000003 on PL081 really.
		 */
		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	}
	val = readl(pl08x->base + PL080_INT_STATUS);
	for (i = 0; i < pl08x->vd->channels; i++) {
		if ((1 << i) & val) {
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);

			mask |= (1 << i);
		}
	}
1669
	/* Clear only the terminal interrupts on channels we processed */
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	writel(mask, pl08x->base + PL080_TC_CLEAR);

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
					   struct dma_device *dmadev,
					   unsigned int channels,
					   bool slave)
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->slave = true;
			chan->name = pl08x->pd->slave_channels[i].bus_id;
			chan->cd = &pl08x->pd->slave_channels[i];
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1717 1718 1719 1720 1721 1722 1723
		if (chan->cd->circular_buffer) {
			dev_err(&pl08x->adev->dev,
				"channel %s: circular buffers not supported\n",
				chan->name);
			kfree(chan);
			continue;
		}
1724 1725 1726 1727 1728
		dev_info(&pl08x->adev->dev,
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1729 1730
		chan->chan.cookie = 0;
		chan->lc = 0;
1731 1732

		spin_lock_init(&chan->lock);
1733
		INIT_LIST_HEAD(&chan->pend_list);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

		seq_printf(s, "%d\t\t%s\n",
			   ch->id, virt_chan ? virt_chan->name : "(none)");

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1803
		seq_printf(s, "%s\t\t%s\n", chan->name,
1804 1805 1806 1807 1808 1809 1810
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1811
		seq_printf(s, "%s\t\t%s\n", chan->name,
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
				   NULL, pl08x,
				   &pl08x_debugfs_operations);
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1844
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1845 1846
{
	struct pl08x_driver_data *pl08x;
1847
	const struct vendor_data *vd = id->data;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1895 1896 1897 1898 1899 1900 1901 1902
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

1922
	/* Attach the interrupt handler */
1923 1924 1925 1926
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1927
			  DRIVER_NAME, pl08x);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->serving = NULL;
		ch->signal = -1;
		dev_info(&adev->dev,
			 "physical channel %d is %s\n", i,
			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
					      pl08x->pd->num_slave_channels,
					      true);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
1998 1999 2000
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
		.id	= 0x00280880,
		.mask	= 0x00ffffff,
		.data	= &vendor_pl080,
	},
	{ 0, 0 },
};

static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2070
		       "failed to register as an AMBA device (%d)\n",
2071 2072 2073 2074
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);