amba-pl08x.c 54.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
 * Only the former works sanely with scatter lists, so we only implement
 * the DMAC flow control method.  However, peripherals which use the LBREQ
 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
 * these hardware restrictions prevents them from using scatter DMA.
73 74 75 76 77 78 79 80 81
 *
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
#include <linux/device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
82
#include <linux/delay.h>
83 84
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
85
#include <linux/amba/bus.h>
86 87 88 89 90 91 92 93 94
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>

#include <asm/hardware/pl080.h>

#define DRIVER_NAME	"pl08xdmac"

/**
95
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96
 * @channels: the number of channels available in this variant
97
 * @dualmaster: whether this version supports dual AHB masters or not.
98 99 100 101 102 103 104 105
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
};

/*
 * PL08X private data structures
106
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
107 108
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
109
 */
110
struct pl08x_lli {
111 112
	u32 src;
	u32 dst;
113
	u32 lli;
114 115 116 117 118 119 120 121 122 123 124 125 126 127
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
128 129
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
 * @mem_buses: set to indicate memory transfers on AHB2.
130 131 132 133 134 135 136
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
137
	const struct vendor_data *vd;
138 139 140 141
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
142 143
	u8 lli_buses;
	u8 mem_buses;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/*
 * Memory boundaries: the manual for PL08x says that the controller
 * cannot read past a 1KiB boundary, so these defines are used to
 * create transfer LLIs that do not cross such boundaries.
 */
#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

162
/* Maximum times we call dma_pool_alloc on this pool without freeing */
163
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
164 165 166 167 168 169 170
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

171 172 173 174 175
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
191
 * The next LLI pointer and the configuration interrupt bit have
192 193
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
194
 */
195 196
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
197
{
198
	struct pl08x_driver_data *pl08x = plchan->host;
199
	struct pl08x_phy_chan *phychan = plchan->phychan;
200
	struct pl08x_lli *lli = &txd->llis_va[0];
201
	u32 val;
202 203

	plchan->at = txd;
204

205 206 207
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
208

209 210
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
211 212
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
213
		txd->ccfg);
214 215 216 217 218

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
219
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
220 221 222 223

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
224
		cpu_relax();
225

226 227
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
228
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
229
		val = readl(phychan->base + PL080_CH_CONFIG);
230

231
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
232 233 234
}

/*
235
 * Pause the channel by setting the HALT bit.
236
 *
237 238 239
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
240
 *
241 242
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
243 244 245 246
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
247
	int timeout;
248 249 250 251 252 253 254

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
255 256 257 258 259 260 261
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
262 263 264 265 266 267 268 269 270 271 272 273 274
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}


275 276 277 278 279 280 281 282
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
283
{
284
	u32 val = readl(ch->base + PL080_CH_CONFIG);
285

286 287
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
288 289

	writel(val, ch->base + PL080_CH_CONFIG);
290 291 292

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
319
	size_t bytes = 0;
320 321 322 323 324 325

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
326 327
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
328 329
	 */
	if (ch && txd) {
330
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
331

332
		/* First get the remaining bytes in the active transfer */
333 334 335
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
336 337 338 339 340 341
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
342

343 344 345 346 347 348 349 350
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
351 352

				/*
353
				 * A LLI pointer of 0 terminates the LLI list
354
				 */
355 356
				if (!llis_va[index].lli)
					break;
357 358 359 360 361
			}
		}
	}

	/* Sum up all queued transactions */
362
	if (!list_empty(&plchan->pend_list)) {
363
		struct pl08x_txd *txdi;
364
		list_for_each_entry(txdi, &plchan->pend_list, node) {
365 366 367 368 369 370 371 372 373 374 375
			bytes += txdi->len;
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
376 377 378 379
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

		if (!ch->serving) {
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

417 418
	spin_lock_irqsave(&ch->lock, flags);

419
	/* Stop the channel and clear its interrupts */
420
	pl08x_terminate_phy_chan(pl08x, ch);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
448
				  size_t tsize)
449 450 451
{
	u32 retbits = cctl;

452
	/* Remove all src, dst and transfer size bits */
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

492 493 494 495 496
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
497
	u32 lli_bus;
498 499
};

500
/*
501 502 503
 * Autoselect a master bus to use for the transfer this prefers the
 * destination bus if both available if fixed address on one bus the
 * other will be chosen
504
 */
505 506
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
507 508
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
509 510
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
511
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
512 513
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
514
	} else {
515 516 517 518 519 520 521 522 523 524 525 526
		if (bd->dstbus.buswidth == 4) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 4) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
		} else if (bd->dstbus.buswidth == 2) {
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
		} else if (bd->srcbus.buswidth == 2) {
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
527
		} else {
528 529 530
			/* bd->srcbus.buswidth == 1 */
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
531 532 533 534 535
		}
	}
}

/*
536
 * Fills in one LLI for a certain transfer descriptor and advance the counter
537
 */
538 539
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
540
{
541 542
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
543 544 545

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

546
	llis_va[num_llis].cctl = cctl;
547 548
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
549
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
550
	llis_va[num_llis].lli |= bd->lli_bus;
551 552

	if (cctl & PL080_CONTROL_SRC_INCR)
553
		bd->srcbus.addr += len;
554
	if (cctl & PL080_CONTROL_DST_INCR)
555
		bd->dstbus.addr += len;
556

557
	BUG_ON(bd->remainder < len);
558

559
	bd->remainder -= len;
560 561 562
}

/*
563 564
 * Return number of bytes to fill to boundary, or len.
 * This calculation works for any value of addr.
565
 */
566
static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
567
{
568 569
	size_t boundary_len = PL08X_BOUNDARY_SIZE -
			(addr & (PL08X_BOUNDARY_SIZE - 1));
570

571
	return min(boundary_len, len);
572 573 574 575 576 577 578 579 580 581 582
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
583
	struct pl08x_lli_build_data bd;
584 585
	int num_llis = 0;
	u32 cctl;
586 587
	size_t max_bytes_per_lli;
	size_t total_bytes = 0;
588
	struct pl08x_lli *llis_va;
589 590 591 592 593 594 595 596 597 598

	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
				      &txd->llis_bus);
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

599 600
	/* Get the default CCTL */
	cctl = txd->cctl;
601

602
	bd.txd = txd;
603 604
	bd.srcbus.addr = txd->src_addr;
	bd.dstbus.addr = txd->dst_addr;
605
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
606

607
	/* Find maximum width of the source bus */
608
	bd.srcbus.maxwidth =
609 610 611 612
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
613
	bd.dstbus.maxwidth =
614 615 616 617
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

	/* Set up the bus widths to the maximum */
618 619
	bd.srcbus.buswidth = bd.srcbus.maxwidth;
	bd.dstbus.buswidth = bd.dstbus.maxwidth;
620 621 622 623

	/*
	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
	 */
624
	max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
625 626 627
		PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* We need to count this down to zero */
628
	bd.remainder = txd->len;
629 630 631 632 633 634

	/*
	 * Choose bus to align to
	 * - prefers destination bus if both available
	 * - if fixed address on one bus chooses other
	 */
635
	pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
636

637 638 639 640 641 642 643 644 645 646
	dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu llimax=%zu\n",
		 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
		 bd.srcbus.buswidth,
		 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
		 bd.dstbus.buswidth,
		 bd.remainder, max_bytes_per_lli);
	dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
		 mbus == &bd.srcbus ? "src" : "dst",
		 sbus == &bd.srcbus ? "src" : "dst");

647
	if (txd->len < mbus->buswidth) {
648
		/* Less than a bus width available - send as single bytes */
649
		while (bd.remainder) {
650 651
			dev_vdbg(&pl08x->adev->dev,
				 "%s single byte LLIs for a transfer of "
652
				 "less than a bus width (remain 0x%08x)\n",
653
				 __func__, bd.remainder);
654
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
655
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
656 657 658
			total_bytes++;
		}
	} else {
659
		/* Make one byte LLIs until master bus is aligned */
660 661 662
		while ((mbus->addr) % (mbus->buswidth)) {
			dev_vdbg(&pl08x->adev->dev,
				"%s adjustment lli for less than bus width "
663
				 "(remain 0x%08x)\n",
664
				 __func__, bd.remainder);
665
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
666
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
667 668 669 670
			total_bytes++;
		}

		/*
671
		 * Master now aligned
672 673 674 675 676 677 678 679 680 681 682 683 684 685
		 * - if slave is not then we must set its width down
		 */
		if (sbus->addr % sbus->buswidth) {
			dev_dbg(&pl08x->adev->dev,
				"%s set down bus width to one byte\n",
				 __func__);

			sbus->buswidth = 1;
		}

		/*
		 * Make largest possible LLIs until less than one bus
		 * width left
		 */
686
		while (bd.remainder > (mbus->buswidth - 1)) {
687
			size_t lli_len, target_len, tsize, odd_bytes;
688 689 690 691 692

			/*
			 * If enough left try to send max possible,
			 * otherwise try to send the remainder
			 */
693
			target_len = min(bd.remainder, max_bytes_per_lli);
694 695

			/*
696 697 698
			 * Set bus lengths for incrementing buses to the
			 * number of bytes which fill to next memory boundary,
			 * limiting on the target length calculated above.
699 700
			 */
			if (cctl & PL080_CONTROL_SRC_INCR)
701 702
				bd.srcbus.fill_bytes =
					pl08x_pre_boundary(bd.srcbus.addr,
703
						target_len);
704
			else
705
				bd.srcbus.fill_bytes = target_len;
706 707

			if (cctl & PL080_CONTROL_DST_INCR)
708 709
				bd.dstbus.fill_bytes =
					pl08x_pre_boundary(bd.dstbus.addr,
710
						target_len);
711
			else
712
				bd.dstbus.fill_bytes = target_len;
713

714
			/* Find the nearest */
715 716
			lli_len	= min(bd.srcbus.fill_bytes,
				      bd.dstbus.fill_bytes);
717

718
			BUG_ON(lli_len > bd.remainder);
719 720 721

			if (lli_len <= 0) {
				dev_err(&pl08x->adev->dev,
722
					"%s lli_len is %zu, <= 0\n",
723 724 725 726 727 728
						__func__, lli_len);
				return 0;
			}

			if (lli_len == target_len) {
				/*
729 730
				 * Can send what we wanted.
				 * Maintain alignment
731 732 733 734 735 736 737
				 */
				lli_len	= (lli_len/mbus->buswidth) *
							mbus->buswidth;
				odd_bytes = 0;
			} else {
				/*
				 * So now we know how many bytes to transfer
738 739 740 741 742 743
				 * to get to the nearest boundary.  The next
				 * LLI will past the boundary.  However, we
				 * may be working to a boundary on the slave
				 * bus.  We need to ensure the master stays
				 * aligned, and that we are working in
				 * multiples of the bus widths.
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
				 */
				odd_bytes = lli_len % mbus->buswidth;
				lli_len -= odd_bytes;

			}

			if (lli_len) {
				/*
				 * Check against minimum bus alignment:
				 * Calculate actual transfer size in relation
				 * to bus width an get a maximum remainder of
				 * the smallest bus width - 1
				 */
				/* FIXME: use round_down()? */
				tsize = lli_len / min(mbus->buswidth,
						      sbus->buswidth);
				lli_len	= tsize * min(mbus->buswidth,
						      sbus->buswidth);

				if (target_len != lli_len) {
					dev_vdbg(&pl08x->adev->dev,
765
					"%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
766 767 768 769
					__func__, target_len, lli_len, txd->len);
				}

				cctl = pl08x_cctl_bits(cctl,
770 771
						       bd.srcbus.buswidth,
						       bd.dstbus.buswidth,
772 773 774
						       tsize);

				dev_vdbg(&pl08x->adev->dev,
775
					"%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
776 777 778
					__func__, lli_len, bd.remainder);
				pl08x_fill_lli_for_desc(&bd, num_llis++,
					lli_len, cctl);
779 780 781 782 783 784
				total_bytes += lli_len;
			}


			if (odd_bytes) {
				/*
785 786
				 * Creep past the boundary, maintaining
				 * master alignment
787 788 789
				 */
				int j;
				for (j = 0; (j < mbus->buswidth)
790
						&& (bd.remainder); j++) {
791 792
					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
					dev_vdbg(&pl08x->adev->dev,
793
						"%s align with boundary, single byte (remain 0x%08zx)\n",
794 795 796
						__func__, bd.remainder);
					pl08x_fill_lli_for_desc(&bd,
						num_llis++, 1, cctl);
797 798 799 800 801 802 803 804
					total_bytes++;
				}
			}
		}

		/*
		 * Send any odd bytes
		 */
805
		while (bd.remainder) {
806 807
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
			dev_vdbg(&pl08x->adev->dev,
808
				"%s align with boundary, single odd byte (remain %zu)\n",
809 810
				__func__, bd.remainder);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
811 812 813 814 815
			total_bytes++;
		}
	}
	if (total_bytes != txd->len) {
		dev_err(&pl08x->adev->dev,
816
			"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
817 818 819 820 821 822 823 824 825 826
			__func__, total_bytes, txd->len);
		return 0;
	}

	if (num_llis >= MAX_NUM_TSFR_LLIS) {
		dev_err(&pl08x->adev->dev,
			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
			__func__, (u32) MAX_NUM_TSFR_LLIS);
		return 0;
	}
827 828

	llis_va = txd->llis_va;
829
	/* The final LLI terminates the LLI. */
830
	llis_va[num_llis - 1].lli = 0;
831
	/* The final LLI element shall also fire an interrupt. */
832
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
833 834 835 836 837

#ifdef VERBOSE_DEBUG
	{
		int i;

838 839 840
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
841 842
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
843 844 845
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
846 847 848 849 850 851 852 853 854 855 856 857 858
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
	/* Free the LLI */
859
	dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
860 861 862 863 864 865 866 867 868 869 870 871

	pl08x->pool_ctr--;

	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

872
	if (!list_empty(&plchan->pend_list)) {
873
		list_for_each_entry_safe(txdi,
874
					 next, &plchan->pend_list, node) {
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
	if (plchan->phychan)
		return 0;

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
	if (plchan->slave &&
	    ch->signal < 0 &&
	    pl08x->pd->get_signal) {
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
932 933 934 935 936 937

		/* Assign the flow control signal to this channel */
		if (txd->direction == DMA_TO_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
		else if (txd->direction == DMA_FROM_DEVICE)
			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
938 939 940 941 942 943 944
	}

	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

945
	plchan->phychan_hold++;
946 947 948 949 950
	plchan->phychan = ch;

	return 0;
}

951 952 953 954 955 956 957 958 959 960 961 962
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
		pl08x->pd->put_signal(plchan);
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

963 964 965
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
966
	struct pl08x_txd *txd = to_pl08x_txd(tx);
967 968 969
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
970

971 972 973 974
	plchan->chan.cookie += 1;
	if (plchan->chan.cookie < 0)
		plchan->chan.cookie = 1;
	tx->cookie = plchan->chan.cookie;
975 976 977 978 979 980 981 982 983 984 985 986 987

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
988 989
	} else {
		plchan->phychan_hold--;
990 991
	}

992
	spin_unlock_irqrestore(&plchan->lock, flags);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	return tx->cookie;
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1006 1007 1008
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
 */
static enum dma_status
pl08x_dma_tx_status(struct dma_chan *chan,
		    dma_cookie_t cookie,
		    struct dma_tx_state *txstate)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	enum dma_status ret;
	u32 bytesleft = 0;

1021
	last_used = plchan->chan.cookie;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	last_complete = plchan->lc;

	ret = dma_async_is_complete(cookie, last_complete, last_used);
	if (ret == DMA_SUCCESS) {
		dma_set_tx_state(txstate, last_complete, last_used, 0);
		return ret;
	}

	/*
	 * This cookie not complete yet
	 */
1033
	last_used = plchan->chan.cookie;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	last_complete = plchan->lc;

	/* Get number of bytes left in the active transactions and queue */
	bytesleft = pl08x_getbytes_chan(plchan);

	dma_set_tx_state(txstate, last_complete, last_used,
			 bytesleft);

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
1051
	u32 burstwords;
1052 1053 1054 1055 1056 1057
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1058
		.reg = PL080_BSIZE_256,
1059 1060 1061
	},
	{
		.burstwords = 128,
1062
		.reg = PL080_BSIZE_128,
1063 1064 1065
	},
	{
		.burstwords = 64,
1066
		.reg = PL080_BSIZE_64,
1067 1068 1069
	},
	{
		.burstwords = 32,
1070
		.reg = PL080_BSIZE_32,
1071 1072 1073
	},
	{
		.burstwords = 16,
1074
		.reg = PL080_BSIZE_16,
1075 1076 1077
	},
	{
		.burstwords = 8,
1078
		.reg = PL080_BSIZE_8,
1079 1080 1081
	},
	{
		.burstwords = 4,
1082
		.reg = PL080_BSIZE_4,
1083 1084
	},
	{
1085 1086
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1087 1088 1089
	},
};

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1126 1127
	default:
		return ~0;
1128 1129 1130
	}
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1142 1143
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1144 1145 1146 1147
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	enum dma_slave_buswidth addr_width;
1148
	u32 width, burst, maxburst;
1149
	u32 cctl = 0;
1150 1151 1152

	if (!plchan->slave)
		return -EINVAL;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
	if (config->direction == DMA_TO_DEVICE) {
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
	} else if (config->direction == DMA_FROM_DEVICE) {
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1165
		return -EINVAL;
1166 1167
	}

1168 1169
	width = pl08x_width(addr_width);
	if (width == ~0) {
1170 1171
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1172
		return -EINVAL;
1173 1174
	}

1175 1176 1177
	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

1178
	/*
1179 1180 1181
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1182
	 */
1183 1184 1185 1186 1187 1188
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1189

1190 1191
	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
		plchan->src_addr = config->src_addr;
1192 1193 1194
		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
			pl08x_select_bus(plchan->cd->periph_buses,
					 pl08x->mem_buses);
1195 1196
	} else {
		plchan->dst_addr = config->dst_addr;
1197 1198 1199
		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
			pl08x_select_bus(pl08x->mem_buses,
					 plchan->cd->periph_buses);
1200
	}
1201

1202 1203
	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1204
		"maxburst %d words, LE, CCTL=0x%08x\n",
1205 1206 1207 1208
		dma_chan_name(chan), plchan->name,
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		addr_width,
		maxburst,
1209
		cctl);
1210 1211

	return 0;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1224 1225 1226
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1227
		return;
1228
	}
1229 1230

	/* Take the first element in the queue and execute it */
1231
	if (!list_empty(&plchan->pend_list)) {
1232 1233
		struct pl08x_txd *next;

1234
		next = list_first_entry(&plchan->pend_list,
1235 1236 1237 1238 1239
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1240
		pl08x_start_txd(plchan, next);
1241 1242 1243 1244 1245 1246 1247 1248 1249
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1250 1251
	unsigned long flags;
	int num_llis, ret;
1252 1253

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1254 1255
	if (!num_llis) {
		kfree(txd);
1256
		return -EINVAL;
1257
	}
1258

1259
	spin_lock_irqsave(&plchan->lock, flags);
1260 1261 1262 1263 1264 1265 1266 1267

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1278 1279 1280
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1281
			pl08x_free_txd(pl08x, txd);
1282
			spin_unlock_irqrestore(&plchan->lock, flags);
1283 1284 1285 1286
			return -EBUSY;
		}
	} else
		/*
1287 1288 1289 1290
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1291 1292 1293 1294
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1295
	spin_unlock_irqrestore(&plchan->lock, flags);
1296 1297 1298 1299

	return 0;
}

1300 1301
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1302 1303 1304 1305 1306
{
	struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1307
		txd->tx.flags = flags;
1308 1309
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1310 1311 1312 1313

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1314 1315 1316 1317
	}
	return txd;
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

1330
	txd = pl08x_get_txd(plchan, flags);
1331 1332 1333 1334 1335 1336 1337
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

	txd->direction = DMA_NONE;
1338 1339
	txd->src_addr = src;
	txd->dst_addr = dest;
1340
	txd->len = len;
1341 1342

	/* Set platform data for m2m */
1343
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1344 1345
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1346

1347
	/* Both to be incremented or the code will break */
1348
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1349 1350

	if (pl08x->vd->dualmaster)
1351 1352
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1353 1354 1355 1356 1357 1358 1359 1360

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1361
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_data_direction direction,
		unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

	/*
	 * Current implementation ASSUMES only one sg
	 */
	if (sg_len != 1) {
		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
			__func__);
		BUG();
	}

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
		__func__, sgl->length, plchan->name);

1383
	txd = pl08x_get_txd(plchan, flags);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1400 1401
	txd->len = sgl->length;

1402
	if (direction == DMA_TO_DEVICE) {
1403
		txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1404
		txd->cctl = plchan->dst_cctl;
1405
		txd->src_addr = sgl->dma_address;
1406
		txd->dst_addr = plchan->dst_addr;
1407
	} else if (direction == DMA_FROM_DEVICE) {
1408
		txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1409
		txd->cctl = plchan->src_cctl;
1410
		txd->src_addr = plchan->src_addr;
1411
		txd->dst_addr = sgl->dma_address;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	} else {
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1435 1436
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1454
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1455 1456 1457 1458 1459

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1460
			release_phy_channel(plchan);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	char *name = chan_id;

	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1503 1504 1505
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1506 1507 1508 1509 1510 1511 1512
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
	u32 val;

	val = readl(pl08x->base + PL080_CONFIG);
	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1513
	/* We implicitly clear bit 1 and that means little-endian mode */
1514 1515 1516 1517
	val |= PL080_CONFIG_ENABLE;
	writel(val, pl08x->base + PL080_CONFIG);
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
		else
			dma_unmap_page(dev, txd->src_addr, txd->len,
				DMA_TO_DEVICE);
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
			dma_unmap_single(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
		else
			dma_unmap_page(dev, txd->dst_addr, txd->len,
				DMA_FROM_DEVICE);
	}
}

1540 1541 1542 1543
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1544
	struct pl08x_txd *txd;
1545
	unsigned long flags;
1546

1547
	spin_lock_irqsave(&plchan->lock, flags);
1548

1549 1550
	txd = plchan->at;
	plchan->at = NULL;
1551

1552
	if (txd) {
1553
		/* Update last completed */
1554
		plchan->lc = txd->tx.cookie;
1555
	}
1556

1557
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1558
	if (!list_empty(&plchan->pend_list)) {
1559 1560
		struct pl08x_txd *next;

1561
		next = list_first_entry(&plchan->pend_list,
1562 1563 1564
					struct pl08x_txd,
					node);
		list_del(&next->node);
1565 1566

		pl08x_start_txd(plchan, next);
1567 1568 1569 1570 1571 1572
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1573 1574 1575 1576 1577 1578 1579
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1580
		release_phy_channel(plchan);
1581 1582 1583
		plchan->state = PL08X_CHAN_IDLE;

		/*
1584 1585 1586 1587
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
		  if (waiting->state == PL08X_CHAN_WAITING &&
			    waiting->waiting != NULL) {
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1599
				waiting->phychan_hold--;
1600 1601 1602 1603 1604 1605 1606 1607
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1608
	spin_unlock_irqrestore(&plchan->lock, flags);
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
	u32 mask = 0;
	u32 val;
	int i;

	val = readl(pl08x->base + PL080_ERR_STATUS);
	if (val) {
1638
		/* An error interrupt (on one or more channels) */
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		dev_err(&pl08x->adev->dev,
			"%s error interrupt, register value 0x%08x\n",
				__func__, val);
		/*
		 * Simply clear ALL PL08X error interrupts,
		 * regardless of channel and cause
		 * FIXME: should be 0x00000003 on PL081 really.
		 */
		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	}
	val = readl(pl08x->base + PL080_INT_STATUS);
	for (i = 0; i < pl08x->vd->channels; i++) {
		if ((1 << i) & val) {
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);

			mask |= (1 << i);
		}
	}
1662
	/* Clear only the terminal interrupts on channels we processed */
1663 1664 1665 1666 1667
	writel(mask, pl08x->base + PL080_TC_CLEAR);

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	u32 cctl = pl08x_cctl(chan->cd->cctl);

	chan->slave = true;
	chan->name = chan->cd->bus_id;
	chan->src_addr = chan->cd->addr;
	chan->dst_addr = chan->cd->addr;
	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
					   struct dma_device *dmadev,
					   unsigned int channels,
					   bool slave)
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1714
			pl08x_dma_slave_init(chan);
1715 1716 1717 1718 1719 1720 1721 1722
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1723 1724 1725 1726 1727 1728 1729
		if (chan->cd->circular_buffer) {
			dev_err(&pl08x->adev->dev,
				"channel %s: circular buffers not supported\n",
				chan->name);
			kfree(chan);
			continue;
		}
1730 1731 1732 1733 1734
		dev_info(&pl08x->adev->dev,
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1735 1736
		chan->chan.cookie = 0;
		chan->lc = 0;
1737 1738

		spin_lock_init(&chan->lock);
1739
		INIT_LIST_HEAD(&chan->pend_list);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

		seq_printf(s, "%d\t\t%s\n",
			   ch->id, virt_chan ? virt_chan->name : "(none)");

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1809
		seq_printf(s, "%s\t\t%s\n", chan->name,
1810 1811 1812 1813 1814 1815 1816
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1817
		seq_printf(s, "%s\t\t%s\n", chan->name,
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
				   NULL, pl08x,
				   &pl08x_debugfs_operations);
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1850
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1851 1852
{
	struct pl08x_driver_data *pl08x;
1853
	const struct vendor_data *vd = id->data;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1901 1902 1903 1904 1905 1906 1907 1908
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

1928
	/* Attach the interrupt handler */
1929 1930 1931 1932
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1933
			  DRIVER_NAME, pl08x);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->serving = NULL;
		ch->signal = -1;
		dev_info(&adev->dev,
			 "physical channel %d is %s\n", i,
			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
					      pl08x->pd->num_slave_channels,
					      true);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2004 2005 2006
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
		.id	= 0x00280880,
		.mask	= 0x00ffffff,
		.data	= &vendor_pl080,
	},
	{ 0, 0 },
};

static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2076
		       "failed to register as an AMBA device (%d)\n",
2077 2078 2079 2080
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);