amba-pl08x.c 57.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
69 70 71
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
72
#include <linux/amba/bus.h>
73 74
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
75 76 77 78
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
79
#include <linux/dma-mapping.h>
80 81 82
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
83
#include <linux/pm_runtime.h>
84
#include <linux/seq_file.h>
85
#include <linux/slab.h>
86 87
#include <asm/hardware/pl080.h>

88 89
#include "dmaengine.h"

90 91
#define DRIVER_NAME	"pl08xdmac"

92
static struct amba_driver pl08x_amba_driver;
93
struct pl08x_driver_data;
94

95
/**
96
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97
 * @channels: the number of channels available in this variant
98
 * @dualmaster: whether this version supports dual AHB masters or not.
99 100 101
 * @nomadik: whether the channels have Nomadik security extension bits
 *	that need to be checked for permission before use and some registers are
 *	missing
102 103 104 105
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
106
	bool nomadik;
107 108 109 110
};

/*
 * PL08X private data structures
111
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
112 113
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
114
 */
115
struct pl08x_lli {
116 117
	u32 src;
	u32 dst;
118
	u32 lli;
119 120 121
	u32 cctl;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/**
 * struct pl08x_bus_data - information of source or destination
 * busses for a transfer
 * @addr: current address
 * @maxwidth: the maximum width of a transfer on this bus
 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 */
struct pl08x_bus_data {
	dma_addr_t addr;
	u8 maxwidth;
	u8 buswidth;
};

/**
 * struct pl08x_phy_chan - holder for the physical channels
 * @id: physical index to this channel
 * @lock: a lock to use when altering an instance of this struct
 * @serving: the virtual channel currently being served by this physical
 * channel
141 142
 * @locked: channel unavailable for the system, e.g. dedicated to secure
 * world
143 144 145 146 147 148
 */
struct pl08x_phy_chan {
	unsigned int id;
	void __iomem *base;
	spinlock_t lock;
	struct pl08x_dma_chan *serving;
149
	bool locked;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
};

/**
 * struct pl08x_sg - structure containing data per sg
 * @src_addr: src address of sg
 * @dst_addr: dst address of sg
 * @len: transfer len in bytes
 * @node: node for txd's dsg_list
 */
struct pl08x_sg {
	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	size_t len;
	struct list_head node;
};

/**
 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 * @tx: async tx descriptor
 * @node: node for txd list for channels
 * @dsg_list: list of children sg's
 * @llis_bus: DMA memory address (physical) start for the LLIs
 * @llis_va: virtual memory address start for the LLIs
 * @cctl: control reg values for current txd
 * @ccfg: config reg values for current txd
 */
struct pl08x_txd {
	struct dma_async_tx_descriptor tx;
	struct list_head node;
	struct list_head dsg_list;
	dma_addr_t llis_bus;
	struct pl08x_lli *llis_va;
	/* Default cctl value for LLIs */
	u32 cctl;
	/*
	 * Settings to be put into the physical channel when we
	 * trigger this txd.  Other registers are in llis_va[0].
	 */
	u32 ccfg;
};

/**
 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 * states
 * @PL08X_CHAN_IDLE: the channel is idle
 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 * channel and is running a transfer on it
 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 * channel, but the transfer is currently paused
 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 * channel to become available (only pertains to memcpy channels)
 */
enum pl08x_dma_chan_state {
	PL08X_CHAN_IDLE,
	PL08X_CHAN_RUNNING,
	PL08X_CHAN_PAUSED,
	PL08X_CHAN_WAITING,
};

/**
 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 * @chan: wrappped abstract channel
 * @phychan: the physical channel utilized by this channel, if there is one
 * @phychan_hold: if non-zero, hold on to the physical channel even if we
 * have no pending entries
 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
 * @name: name of channel
 * @cd: channel platform data
 * @runtime_addr: address for RX/TX according to the runtime config
 * @pend_list: queued transactions pending on this channel
220
 * @done_list: list of completed transactions
221 222 223 224 225
 * @at: active transaction on this channel
 * @lock: a lock for this channel data
 * @host: a pointer to the host (internal use)
 * @state: whether the channel is idle, paused, running etc
 * @slave: whether this channel is a device (slave) or for memcpy
226
 * @signal: the physical DMA request signal which this channel is using
227
 * @mux_use: count of descriptors using this DMA request signal setting
228 229 230 231 232 233
 */
struct pl08x_dma_chan {
	struct dma_chan chan;
	struct pl08x_phy_chan *phychan;
	int phychan_hold;
	struct tasklet_struct tasklet;
234
	const char *name;
235
	const struct pl08x_channel_data *cd;
236
	struct dma_slave_config cfg;
237
	struct list_head pend_list;
238
	struct list_head done_list;
239 240 241 242 243
	struct pl08x_txd *at;
	spinlock_t lock;
	struct pl08x_driver_data *host;
	enum pl08x_dma_chan_state state;
	bool slave;
244
	int signal;
245
	unsigned mux_use;
246 247
};

248 249 250 251 252 253 254 255 256 257 258
/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
259 260
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
261
 * @mem_buses: set to indicate memory transfers on AHB2.
262 263 264 265 266 267 268
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
269
	const struct vendor_data *vd;
270 271 272 273
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
274 275
	u8 lli_buses;
	u8 mem_buses;
276 277 278 279 280 281 282 283 284
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

285
/* Maximum times we call dma_pool_alloc on this pool without freeing */
286
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
287 288 289 290 291 292 293
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

294 295 296 297 298
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

299 300 301 302 303 304 305 306
/*
 * Mux handling.
 *
 * This gives us the DMA request input to the PL08x primecell which the
 * peripheral described by the channel data will be routed to, possibly
 * via a board/SoC specific external MUX.  One important point to note
 * here is that this does not depend on the physical channel.
 */
307
static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
308 309 310 311
{
	const struct pl08x_platform_data *pd = plchan->host->pd;
	int ret;

312
	if (plchan->mux_use++ == 0 && pd->get_signal) {
313
		ret = pd->get_signal(plchan->cd);
314 315
		if (ret < 0) {
			plchan->mux_use = 0;
316
			return ret;
317
		}
318

319
		plchan->signal = ret;
320 321 322 323 324 325 326 327
	}
	return 0;
}

static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
{
	const struct pl08x_platform_data *pd = plchan->host->pd;

328 329 330 331 332 333 334
	if (plchan->signal >= 0) {
		WARN_ON(plchan->mux_use == 0);

		if (--plchan->mux_use == 0 && pd->put_signal) {
			pd->put_signal(plchan->cd, plchan->signal);
			plchan->signal = -1;
		}
335 336 337
	}
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
353
 * The next LLI pointer and the configuration interrupt bit have
354 355
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
356
 */
357
static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
358
{
359
	struct pl08x_driver_data *pl08x = plchan->host;
360
	struct pl08x_phy_chan *phychan = plchan->phychan;
361 362
	struct pl08x_lli *lli;
	struct pl08x_txd *txd;
363
	u32 val;
364

365 366 367
	txd = list_first_entry(&plchan->pend_list, struct pl08x_txd, node);
	list_del(&txd->node);

368
	plchan->at = txd;
369

370 371 372
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
373

374 375
	lli = &txd->llis_va[0];

376 377
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
378 379
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
380
		txd->ccfg);
381 382 383 384 385

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
386
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
387 388 389 390

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
391
		cpu_relax();
392

393 394
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
395
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
396
		val = readl(phychan->base + PL080_CH_CONFIG);
397

398
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
399 400 401
}

/*
402
 * Pause the channel by setting the HALT bit.
403
 *
404 405 406
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
407
 *
408 409
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
410 411 412 413
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
414
	int timeout;
415 416 417 418 419 420 421

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
422 423 424 425 426 427 428
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
429 430 431 432 433 434 435 436 437 438 439 440
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

441 442 443 444 445 446 447 448
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
449
{
450
	u32 val = readl(ch->base + PL080_CH_CONFIG);
451

452 453
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
454 455

	writel(val, ch->base + PL080_CH_CONFIG);
456 457 458

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
485
	size_t bytes = 0;
486 487 488 489 490 491

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
492 493
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
494 495
	 */
	if (ch && txd) {
496
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
497

498
		/* First get the remaining bytes in the active transfer */
499 500 501
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
502 503 504 505 506 507
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
508

509 510 511 512 513 514 515 516
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
517 518

				/*
519
				 * A LLI pointer of 0 terminates the LLI list
520
				 */
521 522
				if (!llis_va[index].lli)
					break;
523 524 525 526 527
			}
		}
	}

	/* Sum up all queued transactions */
528
	if (!list_empty(&plchan->pend_list)) {
529
		struct pl08x_txd *txdi;
530
		list_for_each_entry(txdi, &plchan->pend_list, node) {
531 532 533
			struct pl08x_sg *dsg;
			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
534 535 536 537 538 539 540 541 542 543
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
544 545 546 547
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
548 549 550 551 552 553 554 555 556 557 558 559 560 561
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

562
		if (!ch->locked && !ch->serving) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
			ch->serving = virt_chan;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

584 585
	spin_lock_irqsave(&ch->lock, flags);

586
	/* Stop the channel and clear its interrupts */
587
	pl08x_terminate_phy_chan(pl08x, ch);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
615
				  size_t tsize)
616 617 618
{
	u32 retbits = cctl;

619
	/* Remove all src, dst and transfer size bits */
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

659 660 661 662 663
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
664
	u32 lli_bus;
665 666
};

667
/*
668 669 670 671 672 673
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
674
 * - prefers bus with fixed address (i.e. peripheral)
675
 */
676 677
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
678 679
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
680 681
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
682 683 684
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
685
	} else {
686
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
687 688
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
689
		} else {
690 691
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
692 693 694 695 696
		}
	}
}

/*
697
 * Fills in one LLI for a certain transfer descriptor and advance the counter
698
 */
699 700
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
701
{
702 703
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
704 705 706

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

707
	llis_va[num_llis].cctl = cctl;
708 709
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
710 711
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
712
	llis_va[num_llis].lli |= bd->lli_bus;
713 714

	if (cctl & PL080_CONTROL_SRC_INCR)
715
		bd->srcbus.addr += len;
716
	if (cctl & PL080_CONTROL_DST_INCR)
717
		bd->dstbus.addr += len;
718

719
	BUG_ON(bd->remainder < len);
720

721
	bd->remainder -= len;
722 723
}

724 725
static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
726
{
727 728 729
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
	(*total_bytes) += len;
730 731 732 733 734 735 736 737 738 739 740
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
741
	struct pl08x_lli_build_data bd;
742
	int num_llis = 0;
743
	u32 cctl, early_bytes = 0;
744
	size_t max_bytes_per_lli, total_bytes;
745
	struct pl08x_lli *llis_va;
746
	struct pl08x_sg *dsg;
747

748
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
749 750 751 752 753 754 755
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

756
	bd.txd = txd;
757
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
758
	cctl = txd->cctl;
759

760
	/* Find maximum width of the source bus */
761
	bd.srcbus.maxwidth =
762 763 764 765
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
766
	bd.dstbus.maxwidth =
767 768 769
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

770 771 772
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
773

774 775 776 777 778
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
779

780
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
781

782 783 784 785 786 787 788 789 790
		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
			bd.srcbus.buswidth,
			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
817
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
818 819 820 821
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
822

823
			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
824
					(bd.dstbus.addr % bd.dstbus.buswidth)) {
825 826 827 828 829 830
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
831

832 833 834 835 836
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
			break;
		}
837 838

		/*
839 840 841
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
842
		 */
843 844 845 846 847 848 849 850
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
		else if ((mbus->addr) % (mbus->buswidth)) {
			early_bytes = mbus->buswidth - (mbus->addr) %
				(mbus->buswidth);
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
851

852 853 854 855 856 857
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
				"%s byte width LLIs (remain 0x%08x)\n",
				__func__, bd.remainder);
			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
				&total_bytes);
858 859
		}

860 861 862 863 864 865 866 867 868
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
			if (sbus->addr % sbus->buswidth) {
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
869

870 871
				sbus->buswidth = 1;
			}
872 873

			/*
874 875
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
876
			 */
877 878 879 880 881
			max_bytes_per_lli = bd.srcbus.buswidth *
				PL080_CONTROL_TRANSFER_SIZE_MASK;
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
882 883

			/*
884 885
			 * Make largest possible LLIs until less than one bus
			 * width left
886
			 */
887 888
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
889

890 891 892 893 894
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
912
					bd.dstbus.buswidth, tsize);
913 914 915 916
				pl08x_fill_lli_for_desc(&bd, num_llis++,
						lli_len, cctl);
				total_bytes += lli_len;
			}
917

918 919 920 921 922 923 924 925 926 927
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
				prep_byte_width_lli(&bd, &cctl, bd.remainder,
						num_llis++, &total_bytes);
			}
928
		}
929

930 931 932 933 934 935
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
936

937 938 939 940 941 942
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
				__func__, (u32) MAX_NUM_TSFR_LLIS);
			return 0;
		}
943
	}
944 945

	llis_va = txd->llis_va;
946
	/* The final LLI terminates the LLI. */
947
	llis_va[num_llis - 1].lli = 0;
948
	/* The final LLI element shall also fire an interrupt. */
949
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
950 951 952 953 954

#ifdef VERBOSE_DEBUG
	{
		int i;

955 956 957
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
958 959
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
960 961 962
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
963 964 965 966 967 968 969 970 971 972 973 974
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
975 976
	struct pl08x_sg *dsg, *_dsg;

977
	/* Free the LLI */
978 979
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
980 981 982

	pl08x->pool_ctr--;

983 984 985 986 987
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

988 989 990 991 992 993 994 995 996
	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

997
	if (!list_empty(&plchan->pend_list)) {
998
		list_for_each_entry_safe(txdi,
999
					 next, &plchan->pend_list, node) {
1000
			pl08x_release_mux(plchan);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
1022
static int prep_phy_channel(struct pl08x_dma_chan *plchan)
1023 1024 1025 1026 1027
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;

	/* Check if we already have a channel */
1028 1029 1030 1031
	if (plchan->phychan) {
		ch = plchan->phychan;
		goto got_channel;
	}
1032 1033 1034 1035 1036 1037 1038 1039

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

1040
	plchan->phychan = ch;
1041 1042
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
		 ch->id, plchan->name);
1043

1044
got_channel:
1045
	plchan->phychan_hold++;
1046 1047 1048 1049

	return 0;
}

1050 1051 1052 1053 1054 1055 1056 1057
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

1058 1059 1060
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1061
	struct pl08x_txd *txd = to_pl08x_txd(tx);
1062
	unsigned long flags;
1063
	dma_cookie_t cookie;
1064 1065

	spin_lock_irqsave(&plchan->lock, flags);
1066
	cookie = dma_cookie_assign(tx);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
1079 1080
	} else {
		plchan->phychan_hold--;
1081 1082
	}

1083
	spin_unlock_irqrestore(&plchan->lock, flags);
1084

1085
	return cookie;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1097 1098 1099
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1100
 */
1101 1102
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
1103 1104 1105 1106
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	enum dma_status ret;

1107 1108
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_SUCCESS)
1109 1110 1111 1112
		return ret;

	/*
	 * This cookie not complete yet
1113
	 * Get number of bytes left in the active transactions and queue
1114
	 */
1115
	dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
1126
	u32 burstwords;
1127 1128 1129 1130 1131 1132
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1133
		.reg = PL080_BSIZE_256,
1134 1135 1136
	},
	{
		.burstwords = 128,
1137
		.reg = PL080_BSIZE_128,
1138 1139 1140
	},
	{
		.burstwords = 64,
1141
		.reg = PL080_BSIZE_64,
1142 1143 1144
	},
	{
		.burstwords = 32,
1145
		.reg = PL080_BSIZE_32,
1146 1147 1148
	},
	{
		.burstwords = 16,
1149
		.reg = PL080_BSIZE_16,
1150 1151 1152
	},
	{
		.burstwords = 8,
1153
		.reg = PL080_BSIZE_8,
1154 1155 1156
	},
	{
		.burstwords = 4,
1157
		.reg = PL080_BSIZE_4,
1158 1159
	},
	{
1160 1161
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1162 1163 1164
	},
};

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1201 1202
	default:
		return ~0;
1203 1204 1205
	}
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
	enum dma_slave_buswidth addr_width, u32 maxburst)
{
	u32 width, burst, cctl = 0;

	width = pl08x_width(addr_width);
	if (width == ~0)
		return ~0;

	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

	/*
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
	 */
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;

	return pl08x_cctl(cctl);
}

1244 1245
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1246 1247
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1248 1249 1250

	if (!plchan->slave)
		return -EINVAL;
1251

1252 1253 1254
	/* Reject definitely invalid configurations */
	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1255
		return -EINVAL;
1256

1257 1258
	plchan->cfg = *config;

1259
	return 0;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1272 1273 1274
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1275
		return;
1276
	}
1277 1278

	/* Take the first element in the queue and execute it */
1279
	if (!list_empty(&plchan->pend_list)) {
1280
		plchan->state = PL08X_CHAN_RUNNING;
1281
		pl08x_start_next_txd(plchan);
1282 1283 1284 1285 1286 1287 1288 1289 1290
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1291 1292
	unsigned long flags;
	int num_llis, ret;
1293 1294

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1295
	if (!num_llis) {
1296 1297 1298
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);
1299
		return -EINVAL;
1300
	}
1301

1302
	spin_lock_irqsave(&plchan->lock, flags);
1303 1304 1305 1306 1307

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
1308
	ret = prep_phy_channel(plchan);
1309 1310
	if (ret) {
		/*
1311 1312 1313
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
1314 1315 1316
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1317
			pl08x_free_txd(pl08x, txd);
1318
			spin_unlock_irqrestore(&plchan->lock, flags);
1319 1320 1321 1322
			return -EBUSY;
		}
	} else
		/*
1323 1324 1325 1326
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1327 1328 1329 1330
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1331
	spin_unlock_irqrestore(&plchan->lock, flags);
1332 1333 1334 1335

	return 0;
}

1336 1337
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1338
{
1339
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1340 1341 1342

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1343
		txd->tx.flags = flags;
1344 1345
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1346
		INIT_LIST_HEAD(&txd->dsg_list);
1347 1348 1349 1350

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1351 1352 1353 1354
	}
	return txd;
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1365
	struct pl08x_sg *dsg;
1366 1367
	int ret;

1368
	txd = pl08x_get_txd(plchan, flags);
1369 1370 1371 1372 1373 1374
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1387 1388

	/* Set platform data for m2m */
1389
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1390
	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1391
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1392

1393
	/* Both to be incremented or the code will break */
1394
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1395 1396

	if (pl08x->vd->dualmaster)
1397 1398
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1399 1400 1401 1402 1403 1404 1405 1406

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1407
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1408
		struct dma_chan *chan, struct scatterlist *sgl,
1409
		unsigned int sg_len, enum dma_transfer_direction direction,
1410
		unsigned long flags, void *context)
1411 1412 1413 1414
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1415 1416
	struct pl08x_sg *dsg;
	struct scatterlist *sg;
1417
	enum dma_slave_buswidth addr_width;
1418
	dma_addr_t slave_addr;
1419
	int ret, tmp;
1420
	u8 src_buses, dst_buses;
1421
	u32 maxburst, cctl;
1422 1423

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1424
			__func__, sg_dma_len(sgl), plchan->name);
1425

1426
	txd = pl08x_get_txd(plchan, flags);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
1437
	if (direction == DMA_MEM_TO_DEV) {
1438
		cctl = PL080_CONTROL_SRC_INCR;
1439
		slave_addr = plchan->cfg.dst_addr;
1440 1441
		addr_width = plchan->cfg.dst_addr_width;
		maxburst = plchan->cfg.dst_maxburst;
1442 1443
		src_buses = pl08x->mem_buses;
		dst_buses = plchan->cd->periph_buses;
1444
	} else if (direction == DMA_DEV_TO_MEM) {
1445
		cctl = PL080_CONTROL_DST_INCR;
1446
		slave_addr = plchan->cfg.src_addr;
1447 1448
		addr_width = plchan->cfg.src_addr_width;
		maxburst = plchan->cfg.src_maxburst;
1449 1450
		src_buses = plchan->cd->periph_buses;
		dst_buses = pl08x->mem_buses;
1451
	} else {
1452
		pl08x_free_txd(pl08x, txd);
1453 1454 1455 1456 1457
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1458
	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1459 1460 1461 1462 1463 1464 1465
	if (cctl == ~0) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev,
			"DMA slave configuration botched?\n");
		return NULL;
	}

1466 1467
	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);

1468
	if (plchan->cfg.device_fc)
1469
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1470 1471
			PL080_FLOW_PER2MEM_PER;
	else
1472
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1473 1474 1475 1476
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	ret = pl08x_request_mux(plchan);
	if (ret < 0) {
		pl08x_free_txd(pl08x, txd);
		dev_dbg(&pl08x->adev->dev,
			"unable to mux for transfer on %s due to platform restrictions\n",
			plchan->name);
		return NULL;
	}

	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
		 plchan->signal, plchan->name);

	/* Assign the flow control signal to this channel */
	if (direction == DMA_MEM_TO_DEV)
		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else
		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;

1495 1496 1497
	for_each_sg(sgl, sg, sg_len, tmp) {
		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
		if (!dsg) {
1498
			pl08x_release_mux(plchan);
1499 1500 1501 1502 1503 1504 1505 1506
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
		list_add_tail(&dsg->node, &txd->dsg_list);

		dsg->len = sg_dma_len(sg);
1507
		if (direction == DMA_MEM_TO_DEV) {
1508
			dsg->src_addr = sg_dma_address(sg);
1509 1510 1511
			dsg->dst_addr = slave_addr;
		} else {
			dsg->src_addr = slave_addr;
1512
			dsg->dst_addr = sg_dma_address(sg);
1513 1514 1515
		}
	}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1533 1534
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1552
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1553 1554 1555 1556 1557

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1558
			release_phy_channel(plchan);
1559
			plchan->phychan_hold = 0;
1560 1561 1562
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
1563 1564
			/* Killing this one off, release its mux */
			pl08x_release_mux(plchan);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1592
	struct pl08x_dma_chan *plchan;
1593 1594
	char *name = chan_id;

1595 1596 1597 1598 1599 1600
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1601 1602 1603 1604 1605 1606 1607 1608 1609
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1610 1611 1612
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1613 1614 1615
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1616 1617 1618
	/* The Nomadik variant does not have the config register */
	if (pl08x->vd->nomadik)
		return;
1619
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1620 1621
}

1622 1623 1624
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;
1625
	struct pl08x_sg *dsg;
1626 1627 1628

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1629 1630 1631 1632 1633 1634 1635 1636
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		else {
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		}
1637 1638 1639
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1640 1641 1642
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1643
		else
1644 1645 1646
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1647 1648 1649
	}
}

1650 1651 1652 1653
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1654
	unsigned long flags;
1655
	LIST_HEAD(head);
1656

1657
	spin_lock_irqsave(&plchan->lock, flags);
1658
	list_splice_tail_init(&plchan->done_list, &head);
1659

1660
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1661
	if (!list_empty(&plchan->pend_list)) {
1662
		pl08x_start_next_txd(plchan);
1663 1664 1665 1666 1667 1668
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1669 1670 1671 1672 1673 1674
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 */
1675
		release_phy_channel(plchan);
1676 1677 1678
		plchan->state = PL08X_CHAN_IDLE;

		/*
1679 1680 1681 1682
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1683 1684 1685
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
1686
			if (waiting->state == PL08X_CHAN_WAITING) {
1687 1688 1689
				int ret;

				/* This should REALLY not fail now */
1690
				ret = prep_phy_channel(waiting);
1691
				BUG_ON(ret);
1692
				waiting->phychan_hold--;
1693
				waiting->state = PL08X_CHAN_RUNNING;
1694 1695 1696 1697 1698 1699 1700
				/*
				 * Eww.  We know this isn't going to deadlock
				 * but lockdep probably doens't.
				 */
				spin_lock(&waiting->lock);
				pl08x_start_next_txd(waiting);
				spin_unlock(&waiting->lock);
1701 1702 1703 1704 1705
				break;
			}
		}
	}

1706
	spin_unlock_irqrestore(&plchan->lock, flags);
1707

1708 1709 1710
	while (!list_empty(&head)) {
		struct pl08x_txd *txd = list_first_entry(&head,
						struct pl08x_txd, node);
1711 1712 1713
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

1714 1715
		list_del(&txd->node);

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1729 1730 1731 1732 1733
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1734 1735 1736 1737 1738 1739 1740 1741
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1742
	}
1743
	tc = readl(pl08x->base + PL080_TC_STATUS);
1744 1745 1746 1747 1748 1749
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1750
	for (i = 0; i < pl08x->vd->channels; i++) {
1751
		if (((1 << i) & err) || ((1 << i) & tc)) {
1752 1753 1754
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;
1755
			struct pl08x_txd *tx;
1756

1757 1758 1759 1760 1761 1762 1763
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1764 1765 1766 1767
			spin_lock(&plchan->lock);
			tx = plchan->at;
			if (tx) {
				plchan->at = NULL;
1768 1769 1770 1771 1772
				/*
				 * This descriptor is done, release its mux
				 * reservation.
				 */
				pl08x_release_mux(plchan);
1773 1774 1775 1776 1777
				dma_cookie_complete(&tx->tx);
				list_add_tail(&tx->node, &plchan->done_list);
			}
			spin_unlock(&plchan->lock);

1778 1779 1780 1781 1782 1783 1784 1785 1786
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1787 1788 1789 1790
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	chan->slave = true;
	chan->name = chan->cd->bus_id;
1791 1792
	chan->cfg.src_addr = chan->cd->addr;
	chan->cfg.dst_addr = chan->cd->addr;
1793 1794
}

1795 1796 1797 1798 1799
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1800
		struct dma_device *dmadev, unsigned int channels, bool slave)
1801 1802 1803 1804 1805
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1806

1807 1808 1809 1810 1811 1812
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1813
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1814 1815 1816 1817 1818 1819 1820 1821
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;
1822
		chan->signal = -1;
1823 1824 1825

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1826
			pl08x_dma_slave_init(chan);
1827 1828 1829 1830 1831 1832 1833 1834
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1835
		dev_dbg(&pl08x->adev->dev,
1836 1837 1838 1839
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1840
		dma_cookie_init(&chan->chan);
1841 1842

		spin_lock_init(&chan->lock);
1843
		INIT_LIST_HEAD(&chan->pend_list);
1844
		INIT_LIST_HEAD(&chan->done_list);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

1904 1905 1906 1907
		seq_printf(s, "%d\t\t%s%s\n",
			   ch->id,
			   virt_chan ? virt_chan->name : "(none)",
			   ch->locked ? " LOCKED" : "");
1908 1909 1910 1911 1912 1913 1914 1915

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1916
		seq_printf(s, "%s\t\t%s\n", chan->name,
1917 1918 1919 1920 1921 1922 1923
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1924
		seq_printf(s, "%s\t\t%s\n", chan->name,
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1946 1947 1948
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1949 1950 1951 1952 1953 1954 1955 1956
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1957
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1958 1959
{
	struct pl08x_driver_data *pl08x;
1960
	const struct vendor_data *vd = id->data;
1961 1962 1963 1964 1965 1966 1967 1968
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1969
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

2008 2009 2010 2011 2012 2013 2014 2015
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

2033
	/* Attach the interrupt handler */
2034 2035 2036 2037
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2038
			  DRIVER_NAME, pl08x);
2039 2040 2041 2042 2043 2044 2045
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
2046
	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

		/*
		 * Nomadik variants can have channels that are locked
		 * down for the secure world only. Lock up these channels
		 * by perpetually serving a dummy virtual channel.
		 */
		if (vd->nomadik) {
			u32 val;

			val = readl(ch->base + PL080_CH_CONFIG);
			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
				ch->locked = true;
			}
		}

2077 2078
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2094
			pl08x->pd->num_slave_channels, true);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2121 2122 2123
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

2155 2156 2157 2158 2159 2160
static struct vendor_data vendor_nomadik = {
	.channels = 8,
	.dualmaster = true,
	.nomadik = true,
};

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
2181
		.id	= 0x00280080,
2182
		.mask	= 0x00ffffff,
2183
		.data	= &vendor_nomadik,
2184 2185 2186 2187
	},
	{ 0, 0 },
};

2188 2189
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2202
		       "failed to register as an AMBA device (%d)\n",
2203 2204 2205 2206
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);