reg.c 69.6 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "regdb.h"
44
#include "nl80211.h"
45

46
#ifdef CONFIG_CFG80211_REG_DEBUG
47
#define REG_DBG_PRINT(format, args...) \
48
	do { \
49
		printk(KERN_DEBUG format , ## args); \
50 51
	} while (0)
#else
52
#define REG_DBG_PRINT(args...)
53 54
#endif

55
/* Receipt of information from last regulatory request */
56
static struct regulatory_request *last_request;
57

58 59
/* To trigger userspace events */
static struct platform_device *reg_pdev;
60

61 62
/*
 * Central wireless core regulatory domains, we only need two,
63
 * the current one and a world regulatory domain in case we have no
64 65
 * information to give us an alpha2
 */
66
const struct ieee80211_regdomain *cfg80211_regdomain;
67

68 69
/*
 * We use this as a place for the rd structure built from the
70
 * last parsed country IE to rest until CRDA gets back to us with
71 72
 * what it thinks should apply for the same country
 */
73 74
static const struct ieee80211_regdomain *country_ie_regdomain;

75 76 77 78 79 80 81 82 83 84
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

85
/* Used to queue up regulatory hints */
86 87 88
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

89 90 91 92 93 94 95 96 97 98 99 100
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

101 102
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
103
	.n_reg_rules = 5,
104 105
	.alpha2 =  "00",
	.reg_rules = {
106 107
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108 109 110
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
111 112
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
113 114 115 116 117 118 119
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
120
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
121 122
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
123 124 125 126

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
127
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
128 129
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
130 131 132
	}
};

133 134
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
135

136
static char *ieee80211_regdom = "00";
137
static char user_alpha2[2];
138

139 140 141 142 143
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
144 145 146 147 148 149 150 151 152 153
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
154

155
	cfg80211_world_regdom = &world_regdom;
156 157 158
	cfg80211_regdomain = NULL;
}

159 160 161 162
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
163
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
164
{
165
	BUG_ON(!last_request);
166 167 168 169 170 171 172

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

173
bool is_world_regdom(const char *alpha2)
174 175 176 177 178 179 180
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
181

182
static bool is_alpha2_set(const char *alpha2)
183 184 185 186 187 188 189
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
190

191 192 193 194 195 196 197
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
198

199
static bool is_unknown_alpha2(const char *alpha2)
200 201 202
{
	if (!alpha2)
		return false;
203 204 205 206
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
207 208 209 210
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
211

212 213 214 215
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
216 217
	/*
	 * Special case where regulatory domain is the
218
	 * result of an intersection between two regulatory domain
219 220
	 * structures
	 */
221 222 223 224 225
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

226
static bool is_an_alpha2(const char *alpha2)
227 228 229 230 231 232 233
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
234

235
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
236 237 238 239 240 241 242 243 244
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

245
static bool regdom_changes(const char *alpha2)
246
{
247 248
	assert_cfg80211_lock();

249 250 251 252 253 254 255
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
327
static DEFINE_MUTEX(reg_regdb_search_mutex);
328 329 330 331 332 333 334

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

335
	mutex_lock(&reg_regdb_search_mutex);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
358
	mutex_unlock(&reg_regdb_search_mutex);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

376
	mutex_lock(&reg_regdb_search_mutex);
377
	list_add_tail(&request->list, &reg_regdb_search_list);
378
	mutex_unlock(&reg_regdb_search_mutex);
379 380 381 382 383 384 385

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

386 387 388 389
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

405 406 407
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

408 409 410 411 412 413 414
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
415
bool reg_is_valid_request(const char *alpha2)
416
{
417 418
	assert_cfg80211_lock();

419 420 421 422
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
423
}
424

425
/* Sanity check on a regulatory rule */
426
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427
{
428
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
429 430
	u32 freq_diff;

431
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
432 433 434 435 436 437 438
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

439 440
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
441 442 443 444 445
		return false;

	return true;
}

446
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447
{
448
	const struct ieee80211_reg_rule *reg_rule = NULL;
449
	unsigned int i;
450

451 452
	if (!rd->n_reg_rules)
		return false;
453

454 455 456
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

457 458 459 460 461 462 463
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
464 465
}

466 467 468
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
469
{
470 471 472 473 474 475 476 477 478 479
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
480
}
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/*
 * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
 * work. ieee80211_channel_to_frequency() can for example currently provide a
 * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
 * an AP providing channel 8 on a country IE triplet when it sent this on the
 * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
 * channel.
 *
 * This can be removed once ieee80211_channel_to_frequency() takes in a band.
 */
static bool chan_in_band(int chan, enum ieee80211_band band)
{
	int center_freq = ieee80211_channel_to_frequency(chan);

	switch (band) {
	case IEEE80211_BAND_2GHZ:
		if (center_freq <= 2484)
			return true;
		return false;
	case IEEE80211_BAND_5GHZ:
		if (center_freq >= 5005)
			return true;
		return false;
	default:
		return false;
	}
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * Some APs may send a country IE triplet for each channel they
 * support and while this is completely overkill and silly we still
 * need to support it. We avoid making a single rule for each channel
 * though and to help us with this we use this helper to find the
 * actual subband end channel. These type of country IE triplet
 * scenerios are handled then, all yielding two regulaotry rules from
 * parsing a country IE:
 *
 * [1]
 * [2]
 * [36]
 * [40]
 *
 * [1]
 * [2-4]
 * [5-12]
 * [36]
 * [40-44]
 *
 * [1-4]
 * [5-7]
 * [36-44]
 * [48-64]
 *
 * [36-36]
 * [40-40]
 * [44-44]
 * [48-48]
 * [52-52]
 * [56-56]
 * [60-60]
 * [64-64]
 * [100-100]
 * [104-104]
 * [108-108]
 * [112-112]
 * [116-116]
 * [120-120]
 * [124-124]
 * [128-128]
 * [132-132]
 * [136-136]
 * [140-140]
 *
 * Returns 0 if the IE has been found to be invalid in the middle
 * somewhere.
 */
583 584
static int max_subband_chan(enum ieee80211_band band,
			    int orig_cur_chan,
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
			    int orig_end_channel,
			    s8 orig_max_power,
			    u8 **country_ie,
			    u8 *country_ie_len)
{
	u8 *triplets_start = *country_ie;
	u8 len_at_triplet = *country_ie_len;
	int end_subband_chan = orig_end_channel;

	/*
	 * We'll deal with padding for the caller unless
	 * its not immediate and we don't process any channels
	 */
	if (*country_ie_len == 1) {
		*country_ie += 1;
		*country_ie_len -= 1;
		return orig_end_channel;
	}

	/* Move to the next triplet and then start search */
	*country_ie += 3;
	*country_ie_len -= 3;

608 609
	if (!chan_in_band(orig_cur_chan, band))
		return 0;
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	while (*country_ie_len >= 3) {
		int end_channel = 0;
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) *country_ie;
		int cur_channel = 0, next_expected_chan;

		/* means last triplet is completely unrelated to this one */
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		if (triplet->chans.first_channel == 0) {
			*country_ie += 1;
			*country_ie_len -= 1;
			if (*country_ie_len != 0)
				return 0;
			break;
		}

633 634 635
		if (triplet->chans.num_channels == 0)
			return 0;

636 637 638 639
		/* Monitonically increasing channel order */
		if (triplet->chans.first_channel <= end_subband_chan)
			return 0;

640 641 642
		if (!chan_in_band(triplet->chans.first_channel, band))
			return 0;

643 644 645 646 647 648 649 650 651 652
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14) {
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels - 1;
		}
		else {
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));
		}

653 654
		if (!chan_in_band(end_channel, band))
			return 0;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

		if (orig_max_power != triplet->chans.max_power) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		cur_channel = triplet->chans.first_channel;

		/* The key is finding the right next expected channel */
		if (band == IEEE80211_BAND_2GHZ)
			next_expected_chan = end_subband_chan + 1;
		 else
			next_expected_chan = end_subband_chan + 4;

		if (cur_channel != next_expected_chan) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		end_subband_chan = end_channel;

		/* Move to the next one */
		*country_ie += 3;
		*country_ie_len -= 3;

		/*
		 * Padding needs to be dealt with if we processed
		 * some channels.
		 */
		if (*country_ie_len == 1) {
			*country_ie += 1;
			*country_ie_len -= 1;
			break;
		}

		/* If seen, the IE is invalid */
		if (*country_ie_len == 2)
			return 0;
	}

	if (end_subband_chan == orig_end_channel) {
		*country_ie = triplets_start;
		*country_ie_len = len_at_triplet;
		return orig_end_channel;
	}

	return end_subband_chan;
}

706 707
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
708 709
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
710 711
 * with our userspace regulatory agent to get lower bounds.
 */
712
static struct ieee80211_regdomain *country_ie_2_rd(
713
				enum ieee80211_band band,
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

757 758
	/*
	 * We need to build a reg rule for each triplet, but first we must
759
	 * calculate the number of reg rules we will need. We will need one
760 761
	 * for each channel subband
	 */
762
	while (country_ie_len >= 3) {
763
		int end_channel = 0;
764 765 766 767 768 769 770 771 772 773 774
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

775 776 777 778 779 780 781 782 783 784 785 786 787
		/*
		 * APs can add padding to make length divisible
		 * by two, required by the spec.
		 */
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			/* This is expected to be at the very end only */
			if (country_ie_len != 0)
				return NULL;
			break;
		}

788 789 790
		if (triplet->chans.num_channels == 0)
			return NULL;

791 792 793
		if (!chan_in_band(triplet->chans.first_channel, band))
			return NULL;

794
		/* 2 GHz */
795
		if (band == IEEE80211_BAND_2GHZ)
796
			end_channel = triplet->chans.first_channel +
797
				triplet->chans.num_channels - 1;
798 799 800 801 802 803 804 805 806 807 808 809 810
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

811
		cur_channel = triplet->chans.first_channel;
812 813 814 815 816 817

		/*
		 * Enhancement for APs that send a triplet for every channel
		 * or for whatever reason sends triplets with multiple channels
		 * separated when in fact they should be together.
		 */
818 819
		end_channel = max_subband_chan(band,
					       cur_channel,
820 821 822 823 824 825 826
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);
		if (!end_channel)
			return NULL;

827 828 829
		if (!chan_in_band(end_channel, band))
			return NULL;

830
		cur_sub_max_channel = end_channel;
831 832 833 834 835

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

836 837
		/*
		 * Do not allow overlapping channels. Also channels
838
		 * passed in each subband must be monotonically
839 840
		 * increasing
		 */
841 842 843 844 845 846 847
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

848 849
		/*
		 * When dot11RegulatoryClassesRequired is supported
850 851
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
852 853
		 * don't support them
		 */
854 855 856 857 858 859 860 861
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		num_rules++;

862 863 864 865 866
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

867 868 869 870
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
891
		int end_channel = 0;
892 893 894 895 896 897
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

898 899 900 901
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
902 903 904 905 906 907 908
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

909 910 911 912 913 914
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			break;
		}

915 916 917 918 919 920
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

921
		/* 2 GHz */
922
		if (band == IEEE80211_BAND_2GHZ)
923
			end_channel = triplet->chans.first_channel +
924
				triplet->chans.num_channels -1;
925 926 927 928
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

929 930
		end_channel = max_subband_chan(band,
					       triplet->chans.first_channel,
931 932 933 934 935
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);

936 937
		/*
		 * The +10 is since the regulatory domain expects
938 939
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
940 941
		 * the channels passed
		 */
942 943 944 945 946
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
947
				end_channel) + 10);
948

949 950 951 952 953
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
954 955
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
956
		power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
957 958 959

		i++;

960 961 962 963 964
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

965 966 967 968 969 970 971
		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


972 973 974 975
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

1053 1054
	/*
	 * First we get a count of the rules we'll need, then we actually
1055 1056 1057
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
1058 1059
	 * All rules that do check out OK are valid.
	 */
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
1087 1088
			/*
			 * This time around instead of using the stack lets
1089
			 * write to the target rule directly saving ourselves
1090 1091
			 * a memcpy()
			 */
1092 1093 1094
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
1095 1096 1097 1098
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

1117 1118 1119 1120
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

1133 1134
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
1135
			      u32 desired_bw_khz,
1136 1137
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
1138 1139
{
	int i;
1140
	bool band_rule_found = false;
1141
	const struct ieee80211_regdomain *regd;
1142 1143 1144 1145
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
1146

1147
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
1148

1149 1150 1151 1152
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
1153 1154
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1155 1156 1157 1158
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
1159 1160
		return -EINVAL;

1161
	for (i = 0; i < regd->n_reg_rules; i++) {
1162 1163 1164 1165
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

1166
		rr = &regd->reg_rules[i];
1167 1168
		fr = &rr->freq_range;
		pr = &rr->power_rule;
1169

1170 1171
		/*
		 * We only need to know if one frequency rule was
1172
		 * was in center_freq's band, that's enough, so lets
1173 1174
		 * not overwrite it once found
		 */
1175 1176 1177
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

1178 1179 1180
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
1181

1182
		if (band_rule_found && bw_fits) {
1183
			*reg_rule = rr;
1184
			return 0;
1185 1186 1187
		}
	}

1188 1189 1190
	if (!band_rule_found)
		return -ERANGE;

1191
	return -EINVAL;
1192
}
1193
EXPORT_SYMBOL(freq_reg_info);
1194

1195 1196 1197 1198
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
1199
{
1200
	assert_cfg80211_lock();
1201 1202 1203 1204 1205
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
1206
}
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
1217 1218
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
1219 1220
{
	int r;
1221 1222
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1223 1224
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1225
	const struct ieee80211_freq_range *freq_range = NULL;
1226 1227
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1228
	struct wiphy *request_wiphy = NULL;
1229

1230 1231
	assert_cfg80211_lock();

1232 1233
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1234 1235 1236 1237 1238
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
1239

1240 1241 1242 1243
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
1244 1245

	if (r) {
1246 1247
		/*
		 * This means no regulatory rule was found in the country IE
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
1258 1259
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1260
			REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1261 1262
				"intact on %s - no rule found in band on "
				"Country IE\n",
1263
			chan->center_freq, wiphy_name(wiphy));
1264
		} else {
1265 1266 1267 1268
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
1269 1270
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
1271
				REG_DBG_PRINT("cfg80211: Disabling "
1272 1273 1274 1275 1276 1277
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
1278 1279 1280
		return;
	}

1281
	power_rule = &reg_rule->power_rule;
1282 1283 1284 1285
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1286

1287
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1288
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
1289
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1290 1291
		/*
		 * This gaurantees the driver's requested regulatory domain
1292
		 * will always be used as a base for further regulatory
1293 1294
		 * settings
		 */
1295
		chan->flags = chan->orig_flags =
1296
			map_regdom_flags(reg_rule->flags) | bw_flags;
1297 1298 1299 1300 1301 1302 1303
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1304
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1305
	chan->max_antenna_gain = min(chan->orig_mag,
1306
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1307
	if (chan->orig_mpwr)
1308 1309
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1310
	else
1311
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1312 1313
}

1314
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1315
{
1316 1317 1318 1319 1320
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1321 1322

	for (i = 0; i < sband->n_channels; i++)
1323
		handle_channel(wiphy, band, i);
1324 1325
}

1326 1327
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1328 1329 1330
{
	if (!last_request)
		return true;
1331
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1332
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1333
		return true;
1334 1335 1336 1337
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1338
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1339
	    !is_world_regdom(last_request->alpha2))
1340 1341 1342 1343
		return true;
	return false;
}

1344
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1345
{
1346
	struct cfg80211_registered_device *rdev;
1347

1348 1349
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1350 1351
}

1352 1353 1354 1355 1356 1357
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1358 1359
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1360 1361 1362 1363 1364 1365 1366 1367 1368

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1369 1370 1371 1372 1373
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1374
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1375 1376
		return;

1377 1378 1379
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1380
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1381
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1382
		channel_changed = true;
1383 1384
	}

1385
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1386
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1387
		channel_changed = true;
1388 1389
	}

1390 1391
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1443 1444
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1445
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1446 1447 1448 1449 1450 1451 1452
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1453 1454 1455 1456 1457 1458
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1459 1460 1461 1462 1463
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1514
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1515
	else
1516
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1517 1518

	if (is_ht40_not_allowed(channel_after))
1519
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1520
	else
1521
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1551 1552
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1553 1554
{
	enum ieee80211_band band;
1555

1556
	if (ignore_reg_update(wiphy, initiator))
1557
		goto out;
1558
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1559
		if (wiphy->bands[band])
1560
			handle_band(wiphy, band);
1561
	}
1562 1563
out:
	reg_process_beacons(wiphy);
1564
	reg_process_ht_flags(wiphy);
1565
	if (wiphy->reg_notifier)
1566
		wiphy->reg_notifier(wiphy, last_request);
1567 1568
}

1569 1570 1571 1572 1573 1574
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1575 1576
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1577 1578
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1579
	const struct ieee80211_freq_range *freq_range = NULL;
1580 1581 1582
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1583
	assert_reg_lock();
1584

1585 1586 1587 1588
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1589 1590 1591 1592 1593
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1594 1595 1596 1597 1598 1599 1600

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1601 1602 1603 1604
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1605

1606
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1629
	unsigned int bands_set = 0;
1630

1631
	mutex_lock(&reg_mutex);
1632
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1633 1634 1635 1636
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1637
	}
1638
	mutex_unlock(&reg_mutex);
1639 1640 1641 1642 1643 1644

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1645
}
1646 1647
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1648 1649 1650 1651
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1652 1653
#define REG_INTERSECT	1

1654 1655
/* This has the logic which determines when a new request
 * should be ignored. */
1656 1657
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1658
{
1659
	struct wiphy *last_wiphy = NULL;
1660 1661 1662

	assert_cfg80211_lock();

1663 1664 1665 1666
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1667
	switch (pending_request->initiator) {
1668
	case NL80211_REGDOM_SET_BY_CORE:
1669
		return 0;
1670
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1671 1672 1673

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1674
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1675
			return -EINVAL;
1676 1677
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1678
			if (last_wiphy != wiphy) {
1679 1680
				/*
				 * Two cards with two APs claiming different
1681
				 * Country IE alpha2s. We could
1682 1683 1684
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1685
				if (regdom_changes(pending_request->alpha2))
1686 1687 1688
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1689 1690 1691 1692
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1693
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1694 1695 1696
				return 0;
			return -EALREADY;
		}
1697
		return REG_INTERSECT;
1698 1699
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1700
			if (regdom_changes(pending_request->alpha2))
1701
				return 0;
1702
			return -EALREADY;
1703
		}
1704 1705 1706 1707 1708 1709

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1710
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1711
		    !regdom_changes(pending_request->alpha2))
1712 1713
			return -EALREADY;

1714
		return REG_INTERSECT;
1715 1716
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1717
			return REG_INTERSECT;
1718 1719 1720 1721
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1722
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1723 1724
			  last_request->intersect)
			return -EOPNOTSUPP;
1725 1726 1727 1728
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1729 1730 1731
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1732
			if (regdom_changes(last_request->alpha2))
1733 1734 1735
				return -EAGAIN;
		}

1736
		if (!regdom_changes(pending_request->alpha2))
1737 1738
			return -EALREADY;

1739 1740 1741 1742 1743 1744
		return 0;
	}

	return -EINVAL;
}

1745 1746 1747 1748
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1749
 * @pending_request: the regulatory request currently being processed
1750 1751
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1752
 * what it believes should be the current regulatory domain.
1753 1754 1755 1756
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1757
 * Caller must hold &cfg80211_mutex and &reg_mutex
1758
 */
1759 1760
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1761
{
1762
	bool intersect = false;
1763 1764
	int r = 0;

1765 1766
	assert_cfg80211_lock();

1767
	r = ignore_request(wiphy, pending_request);
1768

1769
	if (r == REG_INTERSECT) {
1770 1771
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1772
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1773 1774
			if (r) {
				kfree(pending_request);
1775
				return r;
1776
			}
1777
		}
1778
		intersect = true;
1779
	} else if (r) {
1780 1781
		/*
		 * If the regulatory domain being requested by the
1782
		 * driver has already been set just copy it to the
1783 1784
		 * wiphy
		 */
1785
		if (r == -EALREADY &&
1786 1787
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1788
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1789 1790
			if (r) {
				kfree(pending_request);
1791
				return r;
1792
			}
1793 1794 1795
			r = -EALREADY;
			goto new_request;
		}
1796
		kfree(pending_request);
1797
		return r;
1798
	}
1799

1800
new_request:
1801
	kfree(last_request);
1802

1803 1804
	last_request = pending_request;
	last_request->intersect = intersect;
1805

1806
	pending_request = NULL;
1807

1808 1809 1810 1811 1812
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1813
	/* When r == REG_INTERSECT we do need to call CRDA */
1814 1815 1816 1817 1818 1819 1820 1821
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1822
		return r;
1823
	}
1824

1825
	return call_crda(last_request->alpha2);
1826 1827
}

1828
/* This processes *all* regulatory hints */
1829
static void reg_process_hint(struct regulatory_request *reg_request)
1830 1831 1832 1833 1834 1835 1836
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1837
	mutex_lock(&reg_mutex);
1838 1839 1840 1841

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1842
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1843
	    !wiphy) {
1844
		kfree(reg_request);
1845 1846 1847
		goto out;
	}

1848
	r = __regulatory_hint(wiphy, reg_request);
1849
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1850 1851
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1852 1853
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1854
	mutex_unlock(&reg_mutex);
1855 1856 1857
	mutex_unlock(&cfg80211_mutex);
}

1858
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1870 1871
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1872 1873 1874 1875 1876
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1877 1878 1879
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1880
	struct cfg80211_registered_device *rdev;
1881 1882
	struct reg_beacon *pending_beacon, *tmp;

1883 1884 1885 1886
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1903 1904
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1915 1916 1917
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1918
	reg_process_pending_beacon_hints();
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1932 1933 1934 1935
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1936 1937 1938 1939
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1940 1941
	kfree(last_request);
	last_request = NULL;
1942 1943 1944 1945 1946 1947 1948 1949

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1950
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1951

1952 1953 1954 1955 1956
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1957
	reg_process_hint(request);
1958

1959
	return 0;
1960 1961
}

1962 1963
/* User hints */
int regulatory_hint_user(const char *alpha2)
1964
{
1965 1966
	struct regulatory_request *request;

1967
	BUG_ON(!alpha2);
1968

1969 1970 1971 1972 1973 1974 1975
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1976
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
2002
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2003 2004 2005 2006

	queue_regulatory_request(request);

	return 0;
2007 2008 2009
}
EXPORT_SYMBOL(regulatory_hint);

2010
/* Caller must hold reg_mutex */
2011 2012 2013
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
2014 2015
	struct wiphy *request_wiphy;

2016
	assert_reg_lock();
2017

2018 2019 2020 2021
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

2022 2023 2024
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
2025
		return false;
2026 2027

	if (likely(request_wiphy != wiphy))
2028
		return !country_ie_integrity_changes(country_ie_checksum);
2029 2030
	/*
	 * We should not have let these through at this point, they
2031
	 * should have been picked up earlier by the first alpha2 check
2032 2033
	 * on the device
	 */
2034 2035 2036 2037 2038
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

2039 2040 2041 2042
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
2043
void regulatory_hint_11d(struct wiphy *wiphy,
2044 2045 2046
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
2047 2048 2049 2050 2051
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
2052
	struct regulatory_request *request;
2053

2054
	mutex_lock(&reg_mutex);
2055

2056 2057
	if (unlikely(!last_request))
		goto out;
2058

2059 2060 2061 2062 2063 2064 2065
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

2066 2067
	/*
	 * Pending country IE processing, this can happen after we
2068
	 * call CRDA and wait for a response if a beacon was received before
2069 2070
	 * we were able to process the last regulatory_hint_11d() call
	 */
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

2082
	/*
2083
	 * We will run this only upon a successful connection on cfg80211.
2084 2085
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
2086
	 */
2087 2088
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2089 2090
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
2091

2092
	rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2093 2094
	if (!rd) {
		REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2095
		goto out;
2096
	}
2097

2098 2099
	/*
	 * This will not happen right now but we leave it here for the
2100 2101
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
2102 2103 2104 2105 2106 2107
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2108
		goto free_rd_out;
2109

2110 2111 2112 2113
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

2114 2115 2116 2117
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
2118 2119
	country_ie_regdomain = rd;

2120 2121 2122
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
2123
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2124 2125 2126
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

2127
	mutex_unlock(&reg_mutex);
2128

2129 2130 2131
	queue_regulatory_request(request);

	return;
2132 2133 2134

free_rd_out:
	kfree(rd);
2135
out:
2136
	mutex_unlock(&reg_mutex);
2137
}
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
				REG_DBG_PRINT("cfg80211: Keeping preference on "
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
		REG_DBG_PRINT("cfg80211: Keeping preference on "
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2281 2282 2283 2284 2285 2286
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2304
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2305 2306
{
	unsigned int i;
2307 2308 2309
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2310

2311
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2312 2313 2314 2315 2316 2317 2318
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2319 2320 2321 2322
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2323
		if (power_rule->max_antenna_gain)
2324
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2325 2326 2327 2328 2329 2330 2331
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2332
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2333 2334 2335 2336 2337 2338 2339 2340
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2341
static void print_regdomain(const struct ieee80211_regdomain *rd)
2342 2343
{

2344 2345
	if (is_intersected_alpha2(rd->alpha2)) {

2346 2347
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2348 2349
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2350
				last_request->wiphy_idx);
2351
			if (rdev) {
2352 2353
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
2354 2355
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2356 2357 2358 2359 2360
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
2361
					"domain intersected: \n");
2362
	} else if (is_world_regdom(rd->alpha2))
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2378
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2379 2380 2381 2382 2383 2384
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2398
		print_regdomain_info(intersected_rd);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2412
/* Takes ownership of rd only if it doesn't fail */
2413
static int __set_regdom(const struct ieee80211_regdomain *rd)
2414
{
2415
	const struct ieee80211_regdomain *intersected_rd = NULL;
2416
	struct cfg80211_registered_device *rdev = NULL;
2417
	struct wiphy *request_wiphy;
2418 2419 2420
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2421
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2422 2423 2424 2425 2426 2427 2428 2429 2430
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2431
	if (!last_request)
2432 2433
		return -EINVAL;

2434 2435
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2436
	 * rd is non static (it means CRDA was present and was used last)
2437 2438
	 * and the pending request came in from a country IE
	 */
2439
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2440 2441 2442 2443
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2444
		if (!regdom_changes(rd->alpha2))
2445 2446 2447
			return -EINVAL;
	}

2448 2449
	/*
	 * Now lets set the regulatory domain, update all driver channels
2450 2451
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2452 2453
	 * internal EEPROM data
	 */
2454

2455
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2456 2457
		return -EINVAL;

2458 2459 2460 2461 2462
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2463 2464
	}

2465 2466
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2467
	if (!last_request->intersect) {
2468 2469
		int r;

2470
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2471 2472 2473 2474 2475
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2476 2477 2478 2479
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2480

2481 2482 2483 2484 2485 2486
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2487

2488
		r = reg_copy_regd(&request_wiphy->regd, rd);
2489 2490 2491
		if (r)
			return r;

2492 2493 2494 2495 2496 2497 2498
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2499
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2500

2501 2502 2503
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2504

2505 2506
		/*
		 * We can trash what CRDA provided now.
2507
		 * However if a driver requested this specific regulatory
2508 2509
		 * domain we keep it for its private use
		 */
2510
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2511
			request_wiphy->regd = rd;
2512 2513 2514
		else
			kfree(rd);

2515 2516 2517 2518 2519 2520
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2521 2522
	}

2523 2524 2525 2526 2527
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2528 2529 2530 2531 2532 2533 2534
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2535
	BUG_ON(rd == country_ie_regdomain);
2536

2537 2538 2539 2540
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2541

2542
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2543

2544 2545 2546
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2547

2548 2549
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2550 2551 2552 2553

	if (!intersected_rd)
		return -EINVAL;

2554
	rdev = wiphy_to_dev(request_wiphy);
2555

2556 2557 2558
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2559 2560 2561 2562 2563 2564

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2565
	reset_regdomains();
2566
	cfg80211_regdomain = intersected_rd;
2567 2568 2569 2570 2571

	return 0;
}


2572 2573
/*
 * Use this call to set the current regulatory domain. Conflicts with
2574
 * multiple drivers can be ironed out later. Caller must've already
2575 2576
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2577
int set_regdom(const struct ieee80211_regdomain *rd)
2578 2579 2580
{
	int r;

2581 2582
	assert_cfg80211_lock();

2583 2584
	mutex_lock(&reg_mutex);

2585 2586
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2587 2588
	if (r) {
		kfree(rd);
2589
		mutex_unlock(&reg_mutex);
2590
		return r;
2591
	}
2592 2593

	/* This would make this whole thing pointless */
2594 2595
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2596 2597

	/* update all wiphys now with the new established regulatory domain */
2598
	update_all_wiphy_regulatory(last_request->initiator);
2599

2600
	print_regdomain(cfg80211_regdomain);
2601

2602 2603
	nl80211_send_reg_change_event(last_request);

2604 2605
	mutex_unlock(&reg_mutex);

2606 2607 2608
	return r;
}

2609
/* Caller must hold cfg80211_mutex */
2610 2611
void reg_device_remove(struct wiphy *wiphy)
{
2612
	struct wiphy *request_wiphy = NULL;
2613

2614 2615
	assert_cfg80211_lock();

2616 2617
	mutex_lock(&reg_mutex);

2618 2619
	kfree(wiphy->regd);

2620 2621
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2622

2623
	if (!request_wiphy || request_wiphy != wiphy)
2624
		goto out;
2625

2626
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2627
	last_request->country_ie_env = ENVIRON_ANY;
2628 2629
out:
	mutex_unlock(&reg_mutex);
2630 2631
}

2632 2633
int regulatory_init(void)
{
2634
	int err = 0;
2635

2636 2637 2638
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2639

2640
	spin_lock_init(&reg_requests_lock);
2641
	spin_lock_init(&reg_pending_beacons_lock);
2642

2643
	cfg80211_regdomain = cfg80211_world_regdom;
2644

2645 2646 2647
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2648 2649
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2650
	if (err) {
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2665
#endif
2666
	}
2667

2668 2669 2670 2671 2672 2673 2674
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2675 2676 2677 2678 2679
	return 0;
}

void regulatory_exit(void)
{
2680
	struct regulatory_request *reg_request, *tmp;
2681
	struct reg_beacon *reg_beacon, *btmp;
2682 2683 2684

	cancel_work_sync(&reg_work);

2685
	mutex_lock(&cfg80211_mutex);
2686
	mutex_lock(&reg_mutex);
2687

2688
	reset_regdomains();
2689

2690 2691 2692
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2693 2694
	kfree(last_request);

2695
	platform_device_unregister(reg_pdev);
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2725
	mutex_unlock(&reg_mutex);
2726
	mutex_unlock(&cfg80211_mutex);
2727
}