rcutree.c 57.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39 40 41 42 43 44 45 46 47 48
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50

51 52
#include "rcutree.h"

53 54
/* Data structures. */

55
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
56

57 58
#define RCU_STATE_INITIALIZER(structname) { \
	.level = { &structname.node[0] }, \
59 60 61 62
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
63 64
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65
	}, \
66
	.signaled = RCU_GP_IDLE, \
67 68
	.gpnum = -300, \
	.completed = -300, \
69 70
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
71 72
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
73
	.name = #structname, \
74 75
}

76 77
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
78

79 80
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
81

82 83 84
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

85 86 87 88 89 90 91 92 93 94
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

95
/*
96
 * Note a quiescent state.  Because we do not need to know
97
 * how many quiescent states passed, just if there was at least
98
 * one since the start of the grace period, this just sets a flag.
99
 */
100
void rcu_sched_qs(int cpu)
101
{
102
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
103

104
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
105 106
	barrier();
	rdp->passed_quiesc = 1;
107 108
}

109
void rcu_bh_qs(int cpu)
110
{
111
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
112

113
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
114 115
	barrier();
	rdp->passed_quiesc = 1;
116
}
117

118 119 120 121 122 123 124 125 126 127
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
 */
void rcu_note_context_switch(int cpu)
{
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
}

128
#ifdef CONFIG_NO_HZ
129 130 131 132
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
	.dynticks = 1,
};
133 134 135 136 137 138
#endif /* #ifdef CONFIG_NO_HZ */

static int blimit = 10;		/* Maximum callbacks per softirq. */
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

139 140 141 142
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

143
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
144
int rcu_cpu_stall_suppress __read_mostly = RCU_CPU_STALL_SUPPRESS_INIT;
145
module_param(rcu_cpu_stall_suppress, int, 0644);
146 147
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

148
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
149
static int rcu_pending(int cpu);
150 151

/*
152
 * Return the number of RCU-sched batches processed thus far for debug & stats.
153
 */
154
long rcu_batches_completed_sched(void)
155
{
156
	return rcu_sched_state.completed;
157
}
158
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
159 160 161 162 163 164 165 166 167 168

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
202
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
		rdp->offline_fqs++;
		return 1;
	}

237 238 239 240
	/* If preemptable RCU, no point in sending reschedule IPI. */
	if (rdp->preemptable)
		return 0;

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	rdtp->dynticks++;
	rdtp->dynticks_nesting--;
272
	WARN_ON_ONCE(rdtp->dynticks & 0x1);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	local_irq_restore(flags);
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	rdtp->dynticks++;
	rdtp->dynticks_nesting++;
291
	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	local_irq_restore(flags);
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks & 0x1)
		return;
	rdtp->dynticks_nmi++;
310
	WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks & 0x1)
		return;
	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	rdtp->dynticks_nmi++;
329
	WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (rdtp->dynticks_nesting++)
		return;
	rdtp->dynticks++;
345
	WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

	if (--rdtp->dynticks_nesting)
		return;
	smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
	rdtp->dynticks++;
364
	WARN_ON_ONCE(rdtp->dynticks & 0x1);
365 366

	/* If the interrupt queued a callback, get out of dyntick mode. */
367 368
	if (__this_cpu_read(rcu_sched_data.nxtlist) ||
	    __this_cpu_read(rcu_bh_data.nxtlist))
369 370 371 372 373 374 375 376
		set_need_resched();
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
377
 * is in dynticks idle mode, which is an extended quiescent state.
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	int ret;
	int snap;
	int snap_nmi;

	snap = rdp->dynticks->dynticks;
	snap_nmi = rdp->dynticks->dynticks_nmi;
	smp_mb();	/* Order sampling of snap with end of grace period. */
	rdp->dynticks_snap = snap;
	rdp->dynticks_nmi_snap = snap_nmi;
	ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
	if (ret)
		rdp->dynticks_fqs++;
	return ret;
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	long curr;
	long curr_nmi;
	long snap;
	long snap_nmi;

	curr = rdp->dynticks->dynticks;
	snap = rdp->dynticks_snap;
	curr_nmi = rdp->dynticks->dynticks_nmi;
	snap_nmi = rdp->dynticks_nmi_snap;
	smp_mb(); /* force ordering with cpu entering/leaving dynticks. */

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
	if ((curr != snap || (curr & 0x1) == 0) &&
	    (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

455
int rcu_cpu_stall_suppress __read_mostly;
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
472
	raw_spin_lock_irqsave(&rnp->lock, flags);
473
	delta = jiffies - rsp->jiffies_stall;
474
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
475
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
476 477 478
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
479 480 481 482 483 484

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
485
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
486

487 488 489 490 491
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
492 493
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
494
	rcu_for_each_leaf_node(rsp, rnp) {
495
		raw_spin_lock_irqsave(&rnp->lock, flags);
496
		rcu_print_task_stall(rnp);
497
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
498
		if (rnp->qsmask == 0)
499
			continue;
500 501 502
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
503
	}
504
	printk("} (detected by %d, t=%ld jiffies)\n",
505
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
506 507
	trigger_all_cpu_backtrace();

508 509 510 511
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

512 513 514 515 516 517 518 519
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

520 521 522 523 524
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
525 526
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
527 528
	trigger_all_cpu_backtrace();

P
Paul E. McKenney 已提交
529
	raw_spin_lock_irqsave(&rnp->lock, flags);
530
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
531 532
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
533
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
534

535 536 537 538 539 540 541 542
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
	long delta;
	struct rcu_node *rnp;

543
	if (rcu_cpu_stall_suppress)
544
		return;
545
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
546
	rnp = rdp->mynode;
547
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
548 549 550 551

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

552
	} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
553 554 555 556 557 558

		/* They had two time units to dump stack, so complain. */
		print_other_cpu_stall(rsp);
	}
}

559 560
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
561
	rcu_cpu_stall_suppress = 1;
562 563 564
	return NOTIFY_DONE;
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

581 582 583 584 585 586 587 588 589
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

590 591 592 593 594 595 596 597 598 599
#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
}

600 601 602 603
void rcu_cpu_stall_reset(void)
{
}

604 605 606 607
static void __init check_cpu_stall_init(void)
{
}

608 609 610 611 612
#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
613 614 615
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
616
 */
617 618 619
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
620 621 622 623 624
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
625
		rdp->gpnum = rnp->gpnum;
626 627 628 629 630
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
			rdp->passed_quiesc = 0;
		} else
			rdp->qs_pending = 0;
631 632 633
	}
}

634 635
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
636 637 638 639 640 641
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
642
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
643 644 645 646
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
647
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
689

690 691
		/*
		 * If we were in an extended quiescent state, we may have
692
		 * missed some grace periods that others CPUs handled on
693
		 * our behalf. Catch up with this state to avoid noting
694 695 696
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
697
		 */
698
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
699 700
			rdp->gpnum = rdp->completed;

701
		/*
702 703
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
704
		 */
705
		if ((rnp->qsmask & rdp->grpmask) == 0)
706
			rdp->qs_pending = 0;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
724
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
725 726 727 728
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
729
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
756 757 758

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
759 760
}

761 762 763 764 765 766 767 768 769 770
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
771
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
772 773
	struct rcu_node *rnp = rcu_get_root(rsp);

774
	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
775 776
		if (cpu_needs_another_gp(rsp, rdp))
			rsp->fqs_need_gp = 1;
777
		if (rnp->completed == rsp->completed) {
P
Paul E. McKenney 已提交
778
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
779 780
			return;
		}
P
Paul E. McKenney 已提交
781
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
782 783 784 785 786 787 788

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
789
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
790
			rnp->completed = rsp->completed;
P
Paul E. McKenney 已提交
791
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
792 793
		}
		local_irq_restore(flags);
794 795 796 797 798
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
799
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
800 801 802 803 804 805
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
806
		rcu_preempt_check_blocked_tasks(rnp);
807
		rnp->qsmask = rnp->qsmaskinit;
808
		rnp->gpnum = rsp->gpnum;
809
		rnp->completed = rsp->completed;
810
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
811
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
812
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
813 814 815
		return;
	}

P
Paul E. McKenney 已提交
816
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
817 818 819


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
820
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
821 822

	/*
823 824 825 826 827 828 829 830 831
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
832 833 834 835
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
836 837
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
838
	 */
839
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
840
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
841
		rcu_preempt_check_blocked_tasks(rnp);
842
		rnp->qsmask = rnp->qsmaskinit;
843
		rnp->gpnum = rsp->gpnum;
844 845 846
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
847
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
848 849
	}

850
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
851
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
852
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
853 854
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
855 856
}

857
/*
P
Paul E. McKenney 已提交
858 859 860 861 862
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
863
 */
P
Paul E. McKenney 已提交
864
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
865
	__releases(rcu_get_root(rsp)->lock)
866
{
867
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
868
	rsp->completed = rsp->gpnum;
869
	rsp->signaled = RCU_GP_IDLE;
870 871 872
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

873
/*
P
Paul E. McKenney 已提交
874 875 876 877 878 879
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
880 881
 */
static void
P
Paul E. McKenney 已提交
882 883
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
884 885
	__releases(rnp->lock)
{
886 887
	struct rcu_node *rnp_c;

888 889 890 891 892
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
893
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
894 895 896
			return;
		}
		rnp->qsmask &= ~mask;
897
		if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
898 899

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
900
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
901 902 903 904 905 906 907 908 909
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
910
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
911
		rnp_c = rnp;
912
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
913
		raw_spin_lock_irqsave(&rnp->lock, flags);
914
		WARN_ON_ONCE(rnp_c->qsmask);
915 916 917 918
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
919
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
920
	 * to clean up and start the next grace period if one is needed.
921
	 */
P
Paul E. McKenney 已提交
922
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
923 924 925
}

/*
P
Paul E. McKenney 已提交
926 927 928 929 930 931 932
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
933 934
 */
static void
P
Paul E. McKenney 已提交
935
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
936 937 938 939 940 941
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
942
	raw_spin_lock_irqsave(&rnp->lock, flags);
943
	if (lastcomp != rnp->completed) {
944 945 946 947 948 949

		/*
		 * Someone beat us to it for this grace period, so leave.
		 * The race with GP start is resolved by the fact that we
		 * hold the leaf rcu_node lock, so that the per-CPU bits
		 * cannot yet be initialized -- so we would simply find our
P
Paul E. McKenney 已提交
950 951
		 * CPU's bit already cleared in rcu_report_qs_rnp() if this
		 * race occurred.
952 953
		 */
		rdp->passed_quiesc = 0;	/* try again later! */
P
Paul E. McKenney 已提交
954
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
955 956 957 958
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
959
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
960 961 962 963 964 965 966 967 968
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
969
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;

P
Paul E. McKenney 已提交
1000 1001 1002 1003 1004
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1005 1006 1007 1008
}

#ifdef CONFIG_HOTPLUG_CPU

1009
/*
1010 1011 1012
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1013
 */
1014
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1015 1016
{
	int i;
1017 1018
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1019
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1020
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1021 1022 1023

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1024 1025 1026 1027 1028 1029 1030

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1031 1032 1033 1034 1035 1036
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1037 1038 1039 1040 1041 1042 1043 1044
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1045
	int need_report = 0;
1046
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1047 1048 1049
	struct rcu_node *rnp;

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1050
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1051 1052

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1053
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1054 1055
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1056
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1057 1058
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1059
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1060
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1061 1062
			break;
		}
1063
		if (rnp == rdp->mynode)
1064
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1065
		else
P
Paul E. McKenney 已提交
1066
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1067 1068 1069 1070
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1071 1072 1073
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1074 1075
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1076
	 */
P
Paul E. McKenney 已提交
1077
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1078
	rnp = rdp->mynode;
1079
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1080
		rcu_report_unblock_qs_rnp(rnp, flags);
1081
	else
P
Paul E. McKenney 已提交
1082
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1083 1084
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1095
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1096
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1097
	rcu_preempt_offline_cpu(cpu);
1098 1099 1100 1101
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1102
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1103 1104 1105
{
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1116
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
	int count;

	/* If no callbacks are ready, just return.*/
	if (!cpu_has_callbacks_ready_to_invoke(rdp))
		return;

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1145
		debug_rcu_head_unqueue(list);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		list->func(list);
		list = next;
		if (++count >= rdp->blimit)
			break;
	}

	local_irq_save(flags);

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1156
	rdp->n_cbs_invoked += count;
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1171 1172 1173 1174 1175 1176 1177
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	local_irq_restore(flags);

	/* Re-raise the RCU softirq if there are callbacks remaining. */
	if (cpu_has_callbacks_ready_to_invoke(rdp))
		raise_softirq(RCU_SOFTIRQ);
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 * Also schedule the RCU softirq handler.
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
	if (user ||
1197 1198
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1199 1200 1201 1202 1203

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1204
		 * a quiescent state, so note it.
1205 1206
		 *
		 * No memory barrier is required here because both
1207 1208 1209
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1210 1211
		 */

1212 1213
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1214 1215 1216 1217 1218 1219 1220

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1221
		 * critical section, so note it.
1222 1223
		 */

1224
		rcu_bh_qs(cpu);
1225
	}
1226
	rcu_preempt_check_callbacks(cpu);
1227 1228
	if (rcu_pending(cpu))
		raise_softirq(RCU_SOFTIRQ);
1229 1230 1231 1232 1233 1234 1235
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1236
 * The caller must have suppressed start of new grace periods.
1237
 */
1238
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1239 1240 1241 1242 1243
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1244
	struct rcu_node *rnp;
1245

1246
	rcu_for_each_leaf_node(rsp, rnp) {
1247
		mask = 0;
P
Paul E. McKenney 已提交
1248
		raw_spin_lock_irqsave(&rnp->lock, flags);
1249
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1250
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1251
			return;
1252
		}
1253
		if (rnp->qsmask == 0) {
P
Paul E. McKenney 已提交
1254
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1255 1256
			continue;
		}
1257
		cpu = rnp->grplo;
1258
		bit = 1;
1259
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1260 1261
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1262 1263
				mask |= bit;
		}
1264
		if (mask != 0) {
1265

P
Paul E. McKenney 已提交
1266 1267
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1268 1269
			continue;
		}
P
Paul E. McKenney 已提交
1270
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	}
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1283
	if (!rcu_gp_in_progress(rsp))
1284
		return;  /* No grace period in progress, nothing to force. */
P
Paul E. McKenney 已提交
1285
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1286 1287 1288
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
		return;	/* Someone else is already on the job. */
	}
1289
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1290
		goto unlock_fqs_ret; /* no emergency and done recently. */
1291
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1292
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1293
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1294
	if(!rcu_gp_in_progress(rsp)) {
1295
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1296
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1297
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1298
	}
1299
	rsp->fqs_active = 1;
1300
	switch (rsp->signaled) {
1301
	case RCU_GP_IDLE:
1302 1303
	case RCU_GP_INIT:

1304
		break; /* grace period idle or initializing, ignore. */
1305 1306 1307 1308 1309

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1310 1311
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1312
		/* Record dyntick-idle state. */
1313
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1314
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1315
		if (rcu_gp_in_progress(rsp))
1316
			rsp->signaled = RCU_FORCE_QS;
1317
		break;
1318 1319 1320 1321

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1322
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1323
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1324 1325 1326

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1327
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1328
		break;
1329
	}
1330
	rsp->fqs_active = 0;
1331
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1332
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1333 1334 1335 1336
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
		return;
	}
P
Paul E. McKenney 已提交
1337
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1338
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1339
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
 * This does the RCU processing work from softirq context for the
 * specified rcu_state and rcu_data structures.  This may be called
 * only from the CPU to whom the rdp belongs.
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1361 1362
	WARN_ON_ONCE(rdp->beenonline == 0);

1363 1364 1365 1366
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1367
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1381
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1382 1383 1384 1385
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1386
	rcu_do_batch(rsp, rdp);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/*
 * Do softirq processing for the current CPU.
 */
static void rcu_process_callbacks(struct softirq_action *unused)
{
	/*
	 * Memory references from any prior RCU read-side critical sections
	 * executed by the interrupted code must be seen before any RCU
	 * grace-period manipulations below.
	 */
	smp_mb(); /* See above block comment. */

1401 1402
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1403
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1404
	rcu_preempt_process_callbacks();
1405 1406 1407 1408 1409 1410 1411

	/*
	 * Memory references from any later RCU read-side critical sections
	 * executed by the interrupted code must be seen after any RCU
	 * grace-period manipulations above.
	 */
	smp_mb(); /* See above block comment. */
1412 1413 1414

	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
	rcu_needs_cpu_flush();
1415 1416 1417 1418 1419 1420 1421 1422 1423
}

static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1424
	debug_rcu_head_queue(head);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1437
	rdp = this_cpu_ptr(rsp->rda);
1438 1439 1440 1441 1442

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;

1443 1444 1445 1446 1447 1448 1449 1450
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
	if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1472
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1473 1474 1475 1476 1477
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1478
 * Queue an RCU-sched callback for invocation after a grace period.
1479
 */
1480
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1481
{
1482
	__call_rcu(head, func, &rcu_sched_state);
1483
}
1484
EXPORT_SYMBOL_GPL(call_rcu_sched);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1525
	init_rcu_head_on_stack(&rcu.head);
1526 1527 1528 1529 1530
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_sched(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1531
	destroy_rcu_head_on_stack(&rcu.head);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1551
	init_rcu_head_on_stack(&rcu.head);
1552 1553 1554 1555 1556
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_bh(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1557
	destroy_rcu_head_on_stack(&rcu.head);
1558 1559 1560
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1561 1562 1563 1564 1565 1566 1567 1568 1569
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1570 1571
	struct rcu_node *rnp = rdp->mynode;

1572 1573 1574 1575 1576 1577
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1578
	if (rdp->qs_pending && !rdp->passed_quiesc) {
1579 1580 1581 1582 1583 1584

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1585
		rdp->n_rp_qs_pending++;
1586 1587 1588 1589
		if (!rdp->preemptable &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1590 1591
	} else if (rdp->qs_pending && rdp->passed_quiesc) {
		rdp->n_rp_report_qs++;
1592
		return 1;
1593
	}
1594 1595

	/* Does this CPU have callbacks ready to invoke? */
1596 1597
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1598
		return 1;
1599
	}
1600 1601

	/* Has RCU gone idle with this CPU needing another grace period? */
1602 1603
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1604
		return 1;
1605
	}
1606 1607

	/* Has another RCU grace period completed?  */
1608
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1609
		rdp->n_rp_gp_completed++;
1610
		return 1;
1611
	}
1612 1613

	/* Has a new RCU grace period started? */
1614
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1615
		rdp->n_rp_gp_started++;
1616
		return 1;
1617
	}
1618 1619

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1620
	if (rcu_gp_in_progress(rsp) &&
1621
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1622
		rdp->n_rp_need_fqs++;
1623
		return 1;
1624
	}
1625 1626

	/* nothing to do */
1627
	rdp->n_rp_need_nothing++;
1628 1629 1630 1631 1632 1633 1634 1635
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1636
static int rcu_pending(int cpu)
1637
{
1638
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1639 1640
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1641 1642 1643 1644 1645
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
1646
 * 1 if so.
1647
 */
1648
static int rcu_needs_cpu_quick_check(int cpu)
1649 1650
{
	/* RCU callbacks either ready or pending? */
1651
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1652 1653
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
1654 1655
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
1686 1687
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
1688 1689 1690
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
1691
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
1692 1693 1694 1695 1696 1697 1698 1699 1700
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
1701 1702 1703
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
1718
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
1719 1720 1721 1722 1723 1724 1725 1726
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
1727
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
1728 1729 1730
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

1731
/*
1732
 * Do boot-time initialization of a CPU's per-CPU RCU data.
1733
 */
1734 1735
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1736 1737 1738
{
	unsigned long flags;
	int i;
1739
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1740 1741 1742
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1743
	raw_spin_lock_irqsave(&rnp->lock, flags);
1744 1745 1746 1747 1748 1749 1750 1751 1752
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
P
Paul E. McKenney 已提交
1753
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1754 1755 1756 1757 1758 1759 1760
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1761
 */
1762
static void __cpuinit
1763
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1764 1765 1766
{
	unsigned long flags;
	unsigned long mask;
1767
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1768 1769 1770
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1771
	raw_spin_lock_irqsave(&rnp->lock, flags);
1772 1773 1774
	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
1775
	rdp->preemptable = preemptable;
1776 1777
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
1778
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
1779
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1780 1781 1782 1783 1784 1785 1786

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
1787
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
1788 1789 1790 1791 1792 1793

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
1794
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1795 1796
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
1797 1798 1799 1800 1801
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
			rdp->passed_quiesc_completed = rnp->completed - 1;
		}
P
Paul E. McKenney 已提交
1802
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1803 1804 1805
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
1806
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1807 1808 1809 1810
}

static void __cpuinit rcu_online_cpu(int cpu)
{
1811 1812 1813
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
1814 1815 1816
}

/*
1817
 * Handle CPU online/offline notification events.
1818
 */
1819 1820
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
1821 1822 1823 1824 1825 1826 1827 1828
{
	long cpu = (long)hcpu;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		rcu_online_cpu(cpu);
		break;
1829 1830 1831
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
1832 1833 1834
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1835
		 */
1836 1837 1838
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
1839
		break;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

1876
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
1877
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1878
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
1899 1900
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
1901
{
1902 1903 1904 1905
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
1906 1907 1908 1909 1910
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

1911 1912
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
1925
			raw_spin_lock_init(&rnp->lock);
1926 1927
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
1928
			rnp->gpnum = 0;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
1946 1947
			INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
			INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1948 1949
			INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
			INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1950 1951
		}
	}
1952

1953
	rsp->rda = rda;
1954 1955
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
1956
		while (i > rnp->grphi)
1957
			rnp++;
1958
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
1959 1960
		rcu_boot_init_percpu_data(i, rsp);
	}
1961 1962
}

1963
void __init rcu_init(void)
1964
{
P
Paul E. McKenney 已提交
1965
	int cpu;
1966

1967
	rcu_bootup_announce();
1968 1969
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
1970
	__rcu_init_preempt();
1971
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1972 1973 1974 1975 1976 1977 1978

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
1979 1980
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1981
	check_cpu_stall_init();
1982 1983
}

1984
#include "rcutree_plugin.h"