uprobes.c 39.3 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35
#include "../../mm/internal.h"	/* munlock_vma_page */
36
#include <linux/percpu-rwsem.h>
37

38 39
#include <linux/uprobes.h>

40 41 42
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

43
static struct rb_root uprobes_tree = RB_ROOT;
44

45 46 47
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

66 67
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
68 69

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
70 71 72

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
73
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
74

75 76
static struct percpu_rw_semaphore dup_mmap_sem;

77
/*
78
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
79 80 81 82 83
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

84
/* Have a copy of original instruction */
85
#define UPROBE_COPY_INSN	0
86
/* Dont run handlers when first register/ last unregister in progress*/
87
#define UPROBE_RUN_HANDLER	1
88
/* Can skip singlestep */
89
#define UPROBE_SKIP_SSTEP	2
90

91 92 93
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
94
	struct rw_semaphore	register_rwsem;
95
	struct rw_semaphore	consumer_rwsem;
96
	struct mutex		copy_mutex;	/* TODO: kill me and UPROBE_COPY_INSN */
97 98 99 100
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
101
	unsigned long		flags;
102 103 104
	struct arch_uprobe	arch;
};

105 106 107 108 109 110 111 112 113 114
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
115
	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
116

117 118
	if (is_register)
		flags |= VM_WRITE;
119

120
	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
121 122
}

123
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
124
{
125
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
126 127
}

128 129 130 131 132
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

133 134 135 136 137
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
138
 * @addr:     address the old @page is mapped at
139 140 141 142 143
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
144 145
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
146 147
{
	struct mm_struct *mm = vma->vm_mm;
148 149
	spinlock_t *ptl;
	pte_t *ptep;
150
	int err;
151 152 153
	/* For mmu_notifiers */
	const unsigned long mmun_start = addr;
	const unsigned long mmun_end   = addr + PAGE_SIZE;
154

155
	/* For try_to_free_swap() and munlock_vma_page() below */
156 157
	lock_page(page);

158
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
159
	err = -EAGAIN;
160
	ptep = page_check_address(page, mm, addr, &ptl, 0);
161
	if (!ptep)
162
		goto unlock;
163 164 165 166

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

167 168 169 170 171
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

172 173 174 175 176 177 178 179 180
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

181 182 183 184
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

185 186
	err = 0;
 unlock:
187
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
188 189
	unlock_page(page);
	return err;
190 191 192
}

/**
193
 * is_swbp_insn - check if instruction is breakpoint instruction.
194
 * @insn: instruction to be checked.
195
 * Default implementation of is_swbp_insn
196 197
 * Returns true if @insn is a breakpoint instruction.
 */
198
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
199
{
200
	return *insn == UPROBE_SWBP_INSN;
201 202
}

203 204 205 206 207 208 209
static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
{
	void *kaddr = kmap_atomic(page);
	memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
	kunmap_atomic(kaddr);
}

210 211 212 213 214 215 216 217 218 219 220 221 222
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
{
	uprobe_opcode_t old_opcode;
	bool is_swbp;

	copy_opcode(page, vaddr, &old_opcode);
	is_swbp = is_swbp_insn(&old_opcode);

	if (is_swbp_insn(new_opcode)) {
		if (is_swbp)		/* register: already installed? */
			return 0;
	} else {
		if (!is_swbp)		/* unregister: was it changed by us? */
223
			return 0;
224 225 226 227 228
	}

	return 1;
}

229 230 231 232 233
/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
234
 * supported by that architecture then we need to modify is_swbp_at_addr and
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
251 252
static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
			uprobe_opcode_t opcode)
253 254 255 256 257
{
	struct page *old_page, *new_page;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	int ret;
258

259
retry:
260
	/* Read the page with vaddr into memory */
261
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
262 263
	if (ret <= 0)
		return ret;
264

265 266 267 268
	ret = verify_opcode(old_page, vaddr, &opcode);
	if (ret <= 0)
		goto put_old;

269 270 271
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
272
		goto put_old;
273 274 275 276 277 278 279 280

	__SetPageUptodate(new_page);

	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
281
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
282 283 284 285 286 287

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
288
		goto put_new;
289

290
	ret = __replace_page(vma, vaddr, old_page, new_page);
291

292
put_new:
293
	page_cache_release(new_page);
294
put_old:
295 296
	put_page(old_page);

297 298
	if (unlikely(ret == -EAGAIN))
		goto retry;
299 300 301 302
	return ret;
}

/**
303
 * set_swbp - store breakpoint at a given address.
304
 * @auprobe: arch specific probepoint information.
305 306 307 308 309 310
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
311
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
312
{
313
	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
314 315 316 317 318
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
319
 * @auprobe: arch specific probepoint information.
320 321 322 323 324
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
325
int __weak
326
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
327
{
328
	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
329 330 331 332 333 334
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
335

336 337 338
	if (l->inode > r->inode)
		return 1;

339 340 341 342 343
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;

379
	spin_lock(&uprobes_treelock);
380
	uprobe = __find_uprobe(inode, offset);
381
	spin_unlock(&uprobes_treelock);
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
408

409 410 411 412 413
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
414

415 416 417 418
	return u;
}

/*
419
 * Acquire uprobes_treelock.
420 421 422 423 424 425 426 427 428 429
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	struct uprobe *u;

430
	spin_lock(&uprobes_treelock);
431
	u = __insert_uprobe(uprobe);
432
	spin_unlock(&uprobes_treelock);
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
453
	init_rwsem(&uprobe->register_rwsem);
454
	init_rwsem(&uprobe->consumer_rwsem);
455
	mutex_init(&uprobe->copy_mutex);
456 457
	/* For now assume that the instruction need not be single-stepped */
	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
458 459 460 461 462 463 464 465 466

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
467
	} else {
468
		atomic_inc(&uprobe_events);
469 470
	}

471 472 473
	return uprobe;
}

474 475 476 477
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

478
	if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
479 480
		return;

481
	down_read(&uprobe->register_rwsem);
482 483
	for (uc = uprobe->consumers; uc; uc = uc->next)
		uc->handler(uc, regs);
484
	up_read(&uprobe->register_rwsem);
485 486
}

487
static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
488 489
{
	down_write(&uprobe->consumer_rwsem);
490 491
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
492 493 494 495
	up_write(&uprobe->consumer_rwsem);
}

/*
496 497
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
498 499
 * or return false.
 */
500
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
501 502 503 504 505 506
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
507 508
		if (*con == uc) {
			*con = uc->next;
509 510 511 512 513
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
514

515 516 517
	return ret;
}

518
static int
519
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
520
			unsigned long nbytes, loff_t offset)
521 522 523
{
	struct page *page;
	void *vaddr;
524 525
	unsigned long off;
	pgoff_t idx;
526 527 528 529

	if (!filp)
		return -EINVAL;

530 531 532
	if (!mapping->a_ops->readpage)
		return -EIO;

533 534
	idx = offset >> PAGE_CACHE_SHIFT;
	off = offset & ~PAGE_MASK;
535 536 537 538 539 540 541 542 543 544

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
545
	memcpy(insn, vaddr + off, nbytes);
546 547
	kunmap_atomic(vaddr);
	page_cache_release(page);
548

549 550 551
	return 0;
}

552
static int copy_insn(struct uprobe *uprobe, struct file *filp)
553 554 555
{
	struct address_space *mapping;
	unsigned long nbytes;
556
	int bytes;
557

558
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
559 560 561 562 563 564 565 566 567 568
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
569 570 571 572
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
573 574
		bytes = nbytes;
	}
575
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
576 577
}

578 579 580 581 582
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
				struct mm_struct *mm, unsigned long vaddr)
{
	int ret = 0;

583
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
584 585
		return ret;

586
	mutex_lock(&uprobe->copy_mutex);
587
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
588 589
		goto out;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	ret = copy_insn(uprobe, file);
	if (ret)
		goto out;

	ret = -ENOTSUPP;
	if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
		goto out;

	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
	if (ret)
		goto out;

	/* write_opcode() assumes we don't cross page boundary */
	BUG_ON((uprobe->offset & ~PAGE_MASK) +
			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
607
	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
608 609

 out:
610 611
	mutex_unlock(&uprobe->copy_mutex);

612 613 614
	return ret;
}

615 616
static bool filter_chain(struct uprobe *uprobe)
{
617 618 619 620 621 622 623 624 625 626 627 628 629
	struct uprobe_consumer *uc;
	bool ret = false;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		/* TODO: ret = uc->filter(...) */
		ret = true;
		if (ret)
			break;
	}
	up_read(&uprobe->consumer_rwsem);

	return ret;
630 631
}

632 633
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
634
			struct vm_area_struct *vma, unsigned long vaddr)
635
{
636
	bool first_uprobe;
637 638 639 640 641
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
642 643
	 * nobody will be able to cleanup. But in this case filter_chain()
	 * must return false, all consumers have gone away.
644
	 */
645
	if (!filter_chain(uprobe))
646
		return 0;
647

648 649 650
	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
	if (ret)
		return ret;
651

652 653 654 655 656 657 658 659
	/*
	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
	 * the task can hit this breakpoint right after __replace_page().
	 */
	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
	if (first_uprobe)
		set_bit(MMF_HAS_UPROBES, &mm->flags);

660
	ret = set_swbp(&uprobe->arch, mm, vaddr);
661 662 663
	if (!ret)
		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
	else if (first_uprobe)
664
		clear_bit(MMF_HAS_UPROBES, &mm->flags);
665 666 667 668

	return ret;
}

669
static int
670
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
671
{
672
	if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
673
		return 0;
674

675 676 677
	if (filter_chain(uprobe))
		return 0;

678
	set_bit(MMF_RECALC_UPROBES, &mm->flags);
679
	return set_orig_insn(&uprobe->arch, mm, vaddr);
680 681
}

682
/*
683 684 685
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
686
 */
687 688
static void delete_uprobe(struct uprobe *uprobe)
{
689
	spin_lock(&uprobes_treelock);
690
	rb_erase(&uprobe->rb_node, &uprobes_tree);
691
	spin_unlock(&uprobes_treelock);
692 693 694 695 696
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

697 698 699
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
700
	unsigned long vaddr;
701 702 703
};

static inline struct map_info *free_map_info(struct map_info *info)
704
{
705 706 707 708 709 710 711 712 713
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
714
	struct vm_area_struct *vma;
715 716 717 718
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
719

720 721
 again:
	mutex_lock(&mapping->i_mmap_mutex);
722
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
723 724 725
		if (!valid_vma(vma, is_register))
			continue;

726 727 728 729 730 731 732 733 734 735
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
736 737 738
		if (!prev) {
			more++;
			continue;
739 740
		}

741 742
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
743

744 745 746 747
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
748

749
		info->mm = vma->vm_mm;
750
		info->vaddr = offset_to_vaddr(vma, offset);
751
	}
752 753
	mutex_unlock(&mapping->i_mmap_mutex);

754 755 756 757 758 759 760 761
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
778 779 780 781
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
782 783
	struct map_info *info;
	int err = 0;
784

785
	percpu_down_write(&dup_mmap_sem);
786 787
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
788 789 790 791
	if (IS_ERR(info)) {
		err = PTR_ERR(info);
		goto out;
	}
792

793 794 795
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
796

797
		if (err && is_register)
798
			goto free;
799

800
		down_write(&mm->mmap_sem);
801 802 803
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
		    vma->vm_file->f_mapping->host != uprobe->inode)
804 805
			goto unlock;

806 807
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
808
			goto unlock;
809

810
		if (is_register)
811
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
812
		else
813
			err |= remove_breakpoint(uprobe, mm, info->vaddr);
814

815 816 817 818 819
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
820
	}
821 822
 out:
	percpu_up_write(&dup_mmap_sem);
823
	return err;
824 825
}

826
static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
827
{
828 829 830 831 832 833 834
	int err;

	consumer_add(uprobe, uc);
	err = register_for_each_vma(uprobe, true);
	if (!err) /* TODO: pointless unless the first consumer */
		set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
	return err;
835 836
}

837
static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
838
{
839 840 841 842
	int err;

	if (!consumer_del(uprobe, uc))	/* WARN? */
		return;
843

844 845 846 847 848 849 850
	err = register_for_each_vma(uprobe, false);
	if (!uprobe->consumers) {
		clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
		/* TODO : cant unregister? schedule a worker thread */
		if (!err)
			delete_uprobe(uprobe);
	}
851 852 853
}

/*
854
 * uprobe_register - register a probe
855 856
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
857
 * @uc: information on howto handle the probe..
858
 *
859
 * Apart from the access refcount, uprobe_register() takes a creation
860 861
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
862
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
863
 * @uprobe even before the register operation is complete. Creation
864
 * refcount is released when the last @uc for the @uprobe
865 866 867 868 869
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
870
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
871 872
{
	struct uprobe *uprobe;
873
	int ret;
874

875
	/* Racy, just to catch the obvious mistakes */
876
	if (offset > i_size_read(inode))
877
		return -EINVAL;
878

879
	ret = -ENOMEM;
880 881
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
882
	if (uprobe) {
883
		down_write(&uprobe->register_rwsem);
884 885
		ret = __uprobe_register(uprobe, uc);
		if (ret)
886
			__uprobe_unregister(uprobe, uc);
887
		up_write(&uprobe->register_rwsem);
888 889
	}
	mutex_unlock(uprobes_hash(inode));
890 891
	if (uprobe)
		put_uprobe(uprobe);
892 893 894 895 896

	return ret;
}

/*
897
 * uprobe_unregister - unregister a already registered probe.
898 899
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
900
 * @uc: identify which probe if multiple probes are colocated.
901
 */
902
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
903
{
904
	struct uprobe *uprobe;
905 906 907 908 909 910

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));
911
	down_write(&uprobe->register_rwsem);
912
	__uprobe_unregister(uprobe, uc);
913
	up_write(&uprobe->register_rwsem);
914
	mutex_unlock(uprobes_hash(inode));
S
Sasha Levin 已提交
915
	put_uprobe(uprobe);
916 917
}

918 919
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
920 921 922 923
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
924
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
925

926
		if (inode < u->inode) {
927
			n = n->rb_left;
928
		} else if (inode > u->inode) {
929
			n = n->rb_right;
930 931 932 933 934 935 936 937
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
938
	}
939

940
	return n;
941 942 943
}

/*
944
 * For a given range in vma, build a list of probes that need to be inserted.
945
 */
946 947 948 949
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
950
{
951 952 953
	loff_t min, max;
	struct rb_node *n, *t;
	struct uprobe *u;
954

955
	INIT_LIST_HEAD(head);
956
	min = vaddr_to_offset(vma, start);
957
	max = min + (end - start) - 1;
958

959
	spin_lock(&uprobes_treelock);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
976
	}
977
	spin_unlock(&uprobes_treelock);
978 979 980
}

/*
981
 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
982
 *
983 984
 * Currently we ignore all errors and always return 0, the callers
 * can't handle the failure anyway.
985
 */
986
int uprobe_mmap(struct vm_area_struct *vma)
987 988
{
	struct list_head tmp_list;
989
	struct uprobe *uprobe, *u;
990 991 992
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
993
		return 0;
994 995 996

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
997
		return 0;
998 999

	mutex_lock(uprobes_mmap_hash(inode));
1000
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1001

1002
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1003
		if (!fatal_signal_pending(current)) {
1004
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1005
			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1006 1007 1008 1009 1010
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));

1011
	return 0;
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static bool
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	loff_t min, max;
	struct inode *inode;
	struct rb_node *n;

	inode = vma->vm_file->f_mapping->host;

	min = vaddr_to_offset(vma, start);
	max = min + (end - start) - 1;

	spin_lock(&uprobes_treelock);
	n = find_node_in_range(inode, min, max);
	spin_unlock(&uprobes_treelock);

	return !!n;
}

1033 1034 1035
/*
 * Called in context of a munmap of a vma.
 */
1036
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1037 1038 1039 1040
{
	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

1041 1042 1043
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

1044 1045
	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1046 1047
		return;

1048 1049
	if (vma_has_uprobes(vma, start, end))
		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
void uprobe_start_dup_mmap(void)
{
	percpu_down_read(&dup_mmap_sem);
}

void uprobe_end_dup_mmap(void)
{
	percpu_up_read(&dup_mmap_sem);
}

1161 1162
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
{
1163 1164
	newmm->uprobes_state.xol_area = NULL;

1165
	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1166
		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1167 1168 1169
		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
	}
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);
1229 1230 1231 1232 1233
	/*
	 * We probably need flush_icache_user_range() but it needs vma.
	 * This should work on supported architectures too.
	 */
	flush_dcache_page(area->page);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1302
	xol_free_insn_slot(t);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1339 1340 1341
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
1385
	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1386 1387
		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
			return true;
1388
		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1389
	}
1390 1391 1392
	return false;
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static void mmf_recalc_uprobes(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!valid_vma(vma, false))
			continue;
		/*
		 * This is not strictly accurate, we can race with
		 * uprobe_unregister() and see the already removed
		 * uprobe if delete_uprobe() was not yet called.
1404
		 * Or this uprobe can be filtered out.
1405 1406 1407 1408 1409 1410 1411 1412
		 */
		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
			return;
	}

	clear_bit(MMF_HAS_UPROBES, &mm->flags);
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
{
	struct page *page;
	uprobe_opcode_t opcode;
	int result;

	pagefault_disable();
	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
							sizeof(opcode));
	pagefault_enable();

	if (likely(result == 0))
		goto out;

	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
	if (result < 0)
		return result;

	copy_opcode(page, vaddr, &opcode);
	put_page(page);
 out:
	return is_swbp_insn(&opcode);
}

1437
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1438
{
1439 1440
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1441 1442 1443 1444
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1445 1446
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
1447 1448
			struct inode *inode = vma->vm_file->f_mapping->host;
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1449

1450 1451
			uprobe = find_uprobe(inode, offset);
		}
1452 1453 1454 1455 1456

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1457
	}
1458 1459 1460

	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
		mmf_recalc_uprobes(mm);
1461 1462
	up_read(&mm->mmap_sem);

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1475
	int uninitialized_var(is_swbp);
1476 1477

	bp_vaddr = uprobe_get_swbp_addr(regs);
1478
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1479

1480
	if (!uprobe) {
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1495 1496
		return;
	}
1497 1498 1499 1500 1501 1502
	/*
	 * TODO: move copy_insn/etc into _register and remove this hack.
	 * After we hit the bp, _unregister + _register can install the
	 * new and not-yet-analyzed uprobe at the same address, restart.
	 */
	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1503
	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1504
		goto restart;
1505 1506 1507 1508 1509 1510

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
1511
			goto restart;
1512
	}
1513

1514
	handler_chain(uprobe, regs);
1515 1516
	if (can_skip_sstep(uprobe, regs))
		goto out;
1517 1518

	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1519 1520
		utask->active_uprobe = uprobe;
		utask->state = UTASK_SSTEP;
1521 1522 1523
		return;
	}

1524 1525 1526 1527 1528 1529 1530
restart:
	/*
	 * cannot singlestep; cannot skip instruction;
	 * re-execute the instruction.
	 */
	instruction_pointer_set(regs, bp_vaddr);
out:
1531
	put_uprobe(uprobe);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
1553
	xol_free_insn_slot(current);
1554 1555 1556 1557 1558 1559 1560

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
O
Oleg Nesterov 已提交
1561 1562 1563
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
 * allows the thread to return from interrupt. After that handle_swbp()
 * sets utask->active_uprobe.
1564
 *
O
Oleg Nesterov 已提交
1565 1566
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
 * and allows the thread to return from interrupt.
1567 1568 1569 1570 1571 1572 1573 1574
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1575 1576
	clear_thread_flag(TIF_UPROBE);

1577
	utask = current->utask;
O
Oleg Nesterov 已提交
1578
	if (utask && utask->active_uprobe)
1579
		handle_singlestep(utask, regs);
O
Oleg Nesterov 已提交
1580 1581
	else
		handle_swbp(regs);
1582 1583 1584 1585 1586 1587 1588 1589
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
1590
	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		return 0;

	set_thread_flag(TIF_UPROBE);
	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1619 1620 1621 1622 1623 1624 1625 1626
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1627

1628 1629 1630
	if (percpu_init_rwsem(&dup_mmap_sem))
		return -ENOMEM;

1631
	return register_die_notifier(&uprobe_exception_nb);
1632
}
1633
module_init(init_uprobes);
1634 1635 1636 1637 1638

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);