uprobes.c 39.5 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35

36 37
#include <linux/uprobes.h>

38 39 40
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

41
static struct rb_root uprobes_tree = RB_ROOT;
42

43 44 45
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

64 65
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66 67

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68 69 70

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72 73

/*
74
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75 76 77 78 79
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

80 81 82 83 84 85 86 87 88 89 90 91
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

108 109
	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
				== (VM_READ|VM_EXEC))
110 111 112 113 114 115 116 117 118 119 120
		return true;

	return false;
}

static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
{
	loff_t vaddr;

	vaddr = vma->vm_start + offset;
	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121

122 123 124 125 126 127 128 129 130 131 132 133 134
	return vaddr;
}

/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
135
static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
136 137 138
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr;
139 140
	spinlock_t *ptl;
	pte_t *ptep;
141 142 143

	addr = page_address_in_vma(page, vma);
	if (addr == -EFAULT)
144
		return -EFAULT;
145

146
	ptep = page_check_address(page, mm, addr, &ptl, 0);
147
	if (!ptep)
148
		return -EAGAIN;
149 150 151 152

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

153 154 155 156 157
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

158 159 160 161 162 163 164 165 166 167
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	put_page(page);
	pte_unmap_unlock(ptep, ptl);

168
	return 0;
169 170 171
}

/**
172
 * is_swbp_insn - check if instruction is breakpoint instruction.
173
 * @insn: instruction to be checked.
174
 * Default implementation of is_swbp_insn
175 176
 * Returns true if @insn is a breakpoint instruction.
 */
177
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
178
{
179
	return *insn == UPROBE_SWBP_INSN;
180 181 182 183 184 185 186 187 188 189 190 191 192 193
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
194
 * @auprobe: arch breakpointing information.
195 196 197 198 199 200 201 202 203 204
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
205
static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
206 207 208 209 210 211
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	struct address_space *mapping;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
212
	struct uprobe *uprobe;
213
	int ret;
214
retry:
215 216 217 218
	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;
219

220 221 222 223 224 225 226 227
	ret = -EINVAL;

	/*
	 * We are interested in text pages only. Our pages of interest
	 * should be mapped for read and execute only. We desist from
	 * adding probes in write mapped pages since the breakpoints
	 * might end up in the file copy.
	 */
228
	if (!valid_vma(vma, is_swbp_insn(&opcode)))
229 230
		goto put_out;

231
	uprobe = container_of(auprobe, struct uprobe, arch);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	mapping = uprobe->inode->i_mapping;
	if (mapping != vma->vm_file->f_mapping)
		goto put_out;

	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
		goto put_out;

	__SetPageUptodate(new_page);

	/*
	 * lock page will serialize against do_wp_page()'s
	 * PageAnon() handling
	 */
	lock_page(old_page);
	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
253
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
		goto unlock_out;

	lock_page(new_page);
	ret = __replace_page(vma, old_page, new_page);
	unlock_page(new_page);

unlock_out:
	unlock_page(old_page);
	page_cache_release(new_page);

put_out:
271 272
	put_page(old_page);

273 274
	if (unlikely(ret == -EAGAIN))
		goto retry;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
290
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
291 292 293 294 295
{
	struct page *page;
	void *vaddr_new;
	int ret;

296
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
297 298 299 300 301 302
	if (ret <= 0)
		return ret;

	lock_page(page);
	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
303
	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
304 305
	kunmap_atomic(vaddr_new);
	unlock_page(page);
306 307 308

	put_page(page);

309 310 311
	return 0;
}

312
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
313 314
{
	uprobe_opcode_t opcode;
315
	int result;
316

317 318 319 320 321 322 323 324 325 326
	if (current->mm == mm) {
		pagefault_disable();
		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
								sizeof(opcode));
		pagefault_enable();

		if (likely(result == 0))
			goto out;
	}

327
	result = read_opcode(mm, vaddr, &opcode);
328 329
	if (result)
		return result;
330
out:
331
	if (is_swbp_insn(&opcode))
332 333 334 335 336 337
		return 1;

	return 0;
}

/**
338
 * set_swbp - store breakpoint at a given address.
339
 * @auprobe: arch specific probepoint information.
340 341 342 343 344 345
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
346
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
347
{
348
	int result;
349 350 351
	/*
	 * See the comment near uprobes_hash().
	 */
352
	result = is_swbp_at_addr(mm, vaddr);
353 354 355 356 357 358
	if (result == 1)
		return -EEXIST;

	if (result)
		return result;

359
	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
360 361 362 363 364
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
365
 * @auprobe: arch specific probepoint information.
366 367 368 369 370 371
 * @vaddr: the virtual address to insert the opcode.
 * @verify: if true, verify existance of breakpoint instruction.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
372
int __weak
373
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
374 375
{
	if (verify) {
376
		int result;
377

378
		result = is_swbp_at_addr(mm, vaddr);
379 380 381 382 383 384
		if (!result)
			return -EINVAL;

		if (result != 1)
			return result;
	}
385
	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
386 387 388 389 390 391
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
392

393 394 395
	if (l->inode > r->inode)
		return 1;

396 397 398 399 400
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	uprobe = __find_uprobe(inode, offset);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
466

467 468 469 470 471
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
472

473 474 475 476
	return u;
}

/*
477
 * Acquire uprobes_treelock.
478 479 480 481 482 483 484 485 486 487 488 489 490 491
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;
	struct uprobe *u;

	spin_lock_irqsave(&uprobes_treelock, flags);
	u = __insert_uprobe(uprobe);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
492

493 494 495
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
525
	} else {
526
		atomic_inc(&uprobe_events);
527 528
	}

529 530 531
	return uprobe;
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

547
/* Returns the previous consumer */
548
static struct uprobe_consumer *
549
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
550 551
{
	down_write(&uprobe->consumer_rwsem);
552 553
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
554
	up_write(&uprobe->consumer_rwsem);
555

556
	return uc->next;
557 558 559
}

/*
560 561
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
562 563
 * or return false.
 */
564
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
565 566 567 568 569 570
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
571 572
		if (*con == uc) {
			*con = uc->next;
573 574 575 576 577
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
578

579 580 581
	return ret;
}

582
static int
583
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
584 585 586 587 588 589 590 591 592 593
			unsigned long nbytes, unsigned long offset)
{
	struct page *page;
	void *vaddr;
	unsigned long off1;
	unsigned long idx;

	if (!filp)
		return -EINVAL;

594 595 596
	if (!mapping->a_ops->readpage)
		return -EIO;

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
	off1 = offset &= ~PAGE_MASK;

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
	memcpy(insn, vaddr + off1, nbytes);
	kunmap_atomic(vaddr);
	page_cache_release(page);
612

613 614 615
	return 0;
}

616
static int copy_insn(struct uprobe *uprobe, struct file *filp)
617 618 619
{
	struct address_space *mapping;
	unsigned long nbytes;
620
	int bytes;
621

622
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
623 624 625 626 627 628 629 630 631 632
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
633 634 635 636
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
637 638
		bytes = nbytes;
	}
639
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
640 641
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/*
 * How mm->uprobes_state.count gets updated
 * uprobe_mmap() increments the count if
 * 	- it successfully adds a breakpoint.
 * 	- it cannot add a breakpoint, but sees that there is a underlying
 * 	  breakpoint (via a is_swbp_at_addr()).
 *
 * uprobe_munmap() decrements the count if
 * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
 * 	  unless a uprobe_mmap kicks in, since the old vma would be
 * 	  dropped just after uprobe_munmap.)
 *
 * uprobe_register increments the count if:
 * 	- it successfully adds a breakpoint.
 *
 * uprobe_unregister decrements the count if:
 * 	- it sees a underlying breakpoint and removes successfully.
 * 	  (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
 * 	  since there is no underlying breakpoint after the
 * 	  breakpoint removal.)
 */
665 666 667
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
			struct vm_area_struct *vma, loff_t vaddr)
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
{
	unsigned long addr;
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
		return -EEXIST;

	addr = (unsigned long)vaddr;
683

684
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
685
		ret = copy_insn(uprobe, vma->vm_file);
686 687 688
		if (ret)
			return ret;

689
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
690
			return -ENOTSUPP;
691

692
		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
693 694 695
		if (ret)
			return ret;

696 697 698 699
		/* write_opcode() assumes we don't cross page boundary */
		BUG_ON((uprobe->offset & ~PAGE_MASK) +
				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

700
		uprobe->flags |= UPROBE_COPY_INSN;
701
	}
702 703 704 705 706 707 708 709 710 711

	/*
	 * Ideally, should be updating the probe count after the breakpoint
	 * has been successfully inserted. However a thread could hit the
	 * breakpoint we just inserted even before the probe count is
	 * incremented. If this is the first breakpoint placed, breakpoint
	 * notifier might ignore uprobes and pass the trap to the thread.
	 * Hence increment before and decrement on failure.
	 */
	atomic_inc(&mm->uprobes_state.count);
712
	ret = set_swbp(&uprobe->arch, mm, addr);
713 714
	if (ret)
		atomic_dec(&mm->uprobes_state.count);
715 716 717 718

	return ret;
}

719 720
static void
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
721
{
722 723
	if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
		atomic_dec(&mm->uprobes_state.count);
724 725
}

726
/*
727 728 729
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
730
 */
731 732 733 734 735 736 737 738 739 740 741 742
static void delete_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	rb_erase(&uprobe->rb_node, &uprobes_tree);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

743 744 745 746 747 748 749
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
	loff_t vaddr;
};

static inline struct map_info *free_map_info(struct map_info *info)
750
{
751 752 753 754 755 756 757 758 759
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
760 761
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
762 763 764 765
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
766

767 768
 again:
	mutex_lock(&mapping->i_mmap_mutex);
769 770 771 772
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

773 774 775 776 777 778 779 780 781 782
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
783 784 785
		if (!prev) {
			more++;
			continue;
786 787
		}

788 789
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
790

791 792 793 794
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
795

796 797 798
		info->mm = vma->vm_mm;
		info->vaddr = vma_address(vma, offset);
	}
799 800
	mutex_unlock(&mapping->i_mmap_mutex);

801 802 803 804 805 806 807 808
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
825 826 827 828
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
829 830
	struct map_info *info;
	int err = 0;
831

832 833 834 835
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
	if (IS_ERR(info))
		return PTR_ERR(info);
836

837 838 839 840
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
		loff_t vaddr;
841

842 843
		if (err)
			goto free;
844

845
		down_write(&mm->mmap_sem);
846 847 848 849
		vma = find_vma(mm, (unsigned long)info->vaddr);
		if (!vma || !valid_vma(vma, is_register))
			goto unlock;

850 851
		vaddr = vma_address(vma, uprobe->offset);
		if (vma->vm_file->f_mapping->host != uprobe->inode ||
852 853
						vaddr != info->vaddr)
			goto unlock;
854 855

		if (is_register) {
856
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
857 858 859 860
			/*
			 * We can race against uprobe_mmap(), see the
			 * comment near uprobe_hash().
			 */
861 862 863 864
			if (err == -EEXIST)
				err = 0;
		} else {
			remove_breakpoint(uprobe, mm, info->vaddr);
865
		}
866 867 868 869 870
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
871
	}
872

873
	return err;
874 875
}

876
static int __uprobe_register(struct uprobe *uprobe)
877 878 879 880
{
	return register_for_each_vma(uprobe, true);
}

881
static void __uprobe_unregister(struct uprobe *uprobe)
882 883 884 885 886 887 888 889
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
890
 * uprobe_register - register a probe
891 892
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
893
 * @uc: information on howto handle the probe..
894
 *
895
 * Apart from the access refcount, uprobe_register() takes a creation
896 897
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
898
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
899
 * @uprobe even before the register operation is complete. Creation
900
 * refcount is released when the last @uc for the @uprobe
901 902 903 904 905
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
906
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
907 908
{
	struct uprobe *uprobe;
909
	int ret;
910

911
	if (!inode || !uc || uc->next)
912
		return -EINVAL;
913 914

	if (offset > i_size_read(inode))
915
		return -EINVAL;
916 917 918 919

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
920

921
	if (uprobe && !consumer_add(uprobe, uc)) {
922
		ret = __uprobe_register(uprobe);
923 924
		if (ret) {
			uprobe->consumers = NULL;
925 926
			__uprobe_unregister(uprobe);
		} else {
927
			uprobe->flags |= UPROBE_RUN_HANDLER;
928
		}
929 930 931 932 933 934 935 936 937
	}

	mutex_unlock(uprobes_hash(inode));
	put_uprobe(uprobe);

	return ret;
}

/*
938
 * uprobe_unregister - unregister a already registered probe.
939 940
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
941
 * @uc: identify which probe if multiple probes are colocated.
942
 */
943
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
944
{
945
	struct uprobe *uprobe;
946

947
	if (!inode || !uc)
948 949 950 951 952 953 954 955
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

956
	if (consumer_del(uprobe, uc)) {
957 958
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
959
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
960
		}
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

/*
 * Of all the nodes that correspond to the given inode, return the node
 * with the least offset.
 */
static struct rb_node *find_least_offset_node(struct inode *inode)
{
	struct uprobe u = { .inode = inode, .offset = 0};
	struct rb_node *n = uprobes_tree.rb_node;
	struct rb_node *close_node = NULL;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
983

984 985 986 987 988 989 990 991 992 993 994
		if (uprobe->inode == inode)
			close_node = n;

		if (!match)
			return close_node;

		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
995

996 997 998 999 1000 1001 1002 1003 1004 1005
	return close_node;
}

/*
 * For a given inode, build a list of probes that need to be inserted.
 */
static void build_probe_list(struct inode *inode, struct list_head *head)
{
	struct uprobe *uprobe;
	unsigned long flags;
1006
	struct rb_node *n;
1007 1008

	spin_lock_irqsave(&uprobes_treelock, flags);
1009

1010
	n = find_least_offset_node(inode);
1011

1012 1013 1014 1015 1016 1017 1018 1019
	for (; n; n = rb_next(n)) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		if (uprobe->inode != inode)
			break;

		list_add(&uprobe->pending_list, head);
		atomic_inc(&uprobe->ref);
	}
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029
	spin_unlock_irqrestore(&uprobes_treelock, flags);
}

/*
 * Called from mmap_region.
 * called with mm->mmap_sem acquired.
 *
 * Return -ve no if we fail to insert probes and we cannot
 * bail-out.
1030 1031
 * Return 0 otherwise. i.e:
 *
1032 1033 1034 1035
 *	- successful insertion of probes
 *	- (or) no possible probes to be inserted.
 *	- (or) insertion of probes failed but we can bail-out.
 */
1036
int uprobe_mmap(struct vm_area_struct *vma)
1037 1038
{
	struct list_head tmp_list;
1039
	struct uprobe *uprobe;
1040
	struct inode *inode;
1041
	int ret, count;
1042 1043

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1044
		return 0;
1045 1046 1047

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
1048
		return 0;
1049 1050 1051 1052

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);
1053 1054

	ret = 0;
1055
	count = 0;
1056

1057
	list_for_each_entry(uprobe, &tmp_list, pending_list) {
1058 1059 1060 1061
		loff_t vaddr;

		if (!ret) {
			vaddr = vma_address(vma, uprobe->offset);
1062 1063 1064 1065

			if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
				put_uprobe(uprobe);
				continue;
1066
			}
1067 1068

			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1069 1070 1071 1072
			/*
			 * We can race against uprobe_register(), see the
			 * comment near uprobe_hash().
			 */
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
			if (ret == -EEXIST) {
				ret = 0;

				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
					continue;

				/*
				 * Unable to insert a breakpoint, but
				 * breakpoint lies underneath. Increment the
				 * probe count.
				 */
				atomic_inc(&vma->vm_mm->uprobes_state.count);
			}

			if (!ret)
				count++;
1089 1090 1091 1092 1093 1094
		}
		put_uprobe(uprobe);
	}

	mutex_unlock(uprobes_mmap_hash(inode));

1095 1096 1097
	if (ret)
		atomic_sub(count, &vma->vm_mm->uprobes_state.count);

1098 1099 1100
	return ret;
}

1101 1102 1103
/*
 * Called in context of a munmap of a vma.
 */
1104
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1105 1106
{
	struct list_head tmp_list;
1107
	struct uprobe *uprobe;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
		return;

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
		return;

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);

1124
	list_for_each_entry(uprobe, &tmp_list, pending_list) {
1125 1126 1127
		loff_t vaddr;

		vaddr = vma_address(vma, uprobe->offset);
1128
		if (vaddr >= start && vaddr < end) {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			/*
			 * An unregister could have removed the probe before
			 * unmap. So check before we decrement the count.
			 */
			if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
				atomic_dec(&vma->vm_mm->uprobes_state.count);
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

/*
 * uprobe_reset_state - Free the area allocated for slots.
 */
void uprobe_reset_state(struct mm_struct *mm)
{
	mm->uprobes_state.xol_area = NULL;
1246
	atomic_set(&mm->uprobes_state.count, 0);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
}

/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1374
	xol_free_insn_slot(t);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	utask->active_uprobe = NULL;
	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1412 1413 1414
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
		return true;

	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	return false;
}

1465
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1466
{
1467 1468
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1469 1470 1471 1472
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1473 1474 1475 1476
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
			struct inode *inode;
			loff_t offset;
1477

1478 1479 1480 1481 1482
			inode = vma->vm_file->f_mapping->host;
			offset = bp_vaddr - vma->vm_start;
			offset += (vma->vm_pgoff << PAGE_SHIFT);
			uprobe = find_uprobe(inode, offset);
		}
1483 1484 1485 1486 1487

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1488 1489 1490
	}
	up_read(&mm->mmap_sem);

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1503
	int uninitialized_var(is_swbp);
1504 1505

	bp_vaddr = uprobe_get_swbp_addr(regs);
1506
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1507

1508
	if (!uprobe) {
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		return;
	}

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
			goto cleanup_ret;
	}
	utask->active_uprobe = uprobe;
	handler_chain(uprobe, regs);
	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
		goto cleanup_ret;

	utask->state = UTASK_SSTEP;
	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
		user_enable_single_step(current);
		return;
	}

cleanup_ret:
	if (utask) {
		utask->active_uprobe = NULL;
		utask->state = UTASK_RUNNING;
	}
	if (uprobe) {
		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))

			/*
			 * cannot singlestep; cannot skip instruction;
			 * re-execute the instruction.
			 */
			instruction_pointer_set(regs, bp_vaddr);

		put_uprobe(uprobe);
	}
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
	user_disable_single_step(current);
1582
	xol_free_insn_slot(current);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
 * allows the thread to return from interrupt.
 *
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
 * interrupt.
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

	utask = current->utask;
	if (!utask || utask->state == UTASK_BP_HIT)
		handle_swbp(regs);
	else
		handle_singlestep(utask, regs);
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1620 1621
	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
		/* task is currently not uprobed */
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		return 0;

	utask = current->utask;
	if (utask)
		utask->state = UTASK_BP_HIT;

	set_thread_flag(TIF_UPROBE);

	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1655 1656 1657 1658 1659 1660 1661 1662
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1663 1664

	return register_die_notifier(&uprobe_exception_nb);
1665
}
1666
module_init(init_uprobes);
1667 1668 1669 1670 1671

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);