uprobes.c 38.9 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35
#include "../../mm/internal.h"	/* munlock_vma_page */
36
#include <linux/percpu-rwsem.h>
37

38 39
#include <linux/uprobes.h>

40 41 42
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

43
static struct rb_root uprobes_tree = RB_ROOT;
44

45 46 47
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

66 67
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
68 69

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
70 71 72

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
73
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
74

75 76
static struct percpu_rw_semaphore dup_mmap_sem;

77
/*
78
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
79 80 81 82 83
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

84
/* Have a copy of original instruction */
85
#define UPROBE_COPY_INSN	0
86
/* Dont run handlers when first register/ last unregister in progress*/
87
#define UPROBE_RUN_HANDLER	1
88
/* Can skip singlestep */
89
#define UPROBE_SKIP_SSTEP	2
90

91 92 93 94
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
95
	struct mutex		copy_mutex;	/* TODO: kill me and UPROBE_COPY_INSN */
96 97 98 99
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
100
	unsigned long		flags;
101 102 103
	struct arch_uprobe	arch;
};

104 105 106 107 108 109 110 111 112 113
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
114
	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
115

116 117
	if (is_register)
		flags |= VM_WRITE;
118

119
	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
120 121
}

122
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
123
{
124
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
125 126
}

127 128 129 130 131
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

132 133 134 135 136
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
137
 * @addr:     address the old @page is mapped at
138 139 140 141 142
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
143 144
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
145 146
{
	struct mm_struct *mm = vma->vm_mm;
147 148
	spinlock_t *ptl;
	pte_t *ptep;
149
	int err;
150 151 152
	/* For mmu_notifiers */
	const unsigned long mmun_start = addr;
	const unsigned long mmun_end   = addr + PAGE_SIZE;
153

154
	/* For try_to_free_swap() and munlock_vma_page() below */
155 156
	lock_page(page);

157
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
158
	err = -EAGAIN;
159
	ptep = page_check_address(page, mm, addr, &ptl, 0);
160
	if (!ptep)
161
		goto unlock;
162 163 164 165

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

166 167 168 169 170
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

171 172 173 174 175 176 177 178 179
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

180 181 182 183
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

184 185
	err = 0;
 unlock:
186
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
187 188
	unlock_page(page);
	return err;
189 190 191
}

/**
192
 * is_swbp_insn - check if instruction is breakpoint instruction.
193
 * @insn: instruction to be checked.
194
 * Default implementation of is_swbp_insn
195 196
 * Returns true if @insn is a breakpoint instruction.
 */
197
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
198
{
199
	return *insn == UPROBE_SWBP_INSN;
200 201
}

202 203 204 205 206 207 208
static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
{
	void *kaddr = kmap_atomic(page);
	memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
	kunmap_atomic(kaddr);
}

209 210 211 212 213 214 215 216 217 218 219 220 221
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
{
	uprobe_opcode_t old_opcode;
	bool is_swbp;

	copy_opcode(page, vaddr, &old_opcode);
	is_swbp = is_swbp_insn(&old_opcode);

	if (is_swbp_insn(new_opcode)) {
		if (is_swbp)		/* register: already installed? */
			return 0;
	} else {
		if (!is_swbp)		/* unregister: was it changed by us? */
222
			return 0;
223 224 225 226 227
	}

	return 1;
}

228 229 230 231 232
/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
233
 * supported by that architecture then we need to modify is_swbp_at_addr and
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
250 251
static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
			uprobe_opcode_t opcode)
252 253 254 255 256
{
	struct page *old_page, *new_page;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	int ret;
257

258
retry:
259
	/* Read the page with vaddr into memory */
260
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
261 262
	if (ret <= 0)
		return ret;
263

264 265 266 267
	ret = verify_opcode(old_page, vaddr, &opcode);
	if (ret <= 0)
		goto put_old;

268 269 270
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
271
		goto put_old;
272 273 274 275 276 277 278 279

	__SetPageUptodate(new_page);

	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
280
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
281 282 283 284 285 286

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
287
		goto put_new;
288

289
	ret = __replace_page(vma, vaddr, old_page, new_page);
290

291
put_new:
292
	page_cache_release(new_page);
293
put_old:
294 295
	put_page(old_page);

296 297
	if (unlikely(ret == -EAGAIN))
		goto retry;
298 299 300 301
	return ret;
}

/**
302
 * set_swbp - store breakpoint at a given address.
303
 * @auprobe: arch specific probepoint information.
304 305 306 307 308 309
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
310
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
311
{
312
	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
313 314 315 316 317
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
318
 * @auprobe: arch specific probepoint information.
319 320 321 322 323
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
324
int __weak
325
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
326
{
327
	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
328 329 330 331 332 333
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
334

335 336 337
	if (l->inode > r->inode)
		return 1;

338 339 340 341 342
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;

378
	spin_lock(&uprobes_treelock);
379
	uprobe = __find_uprobe(inode, offset);
380
	spin_unlock(&uprobes_treelock);
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
407

408 409 410 411 412
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
413

414 415 416 417
	return u;
}

/*
418
 * Acquire uprobes_treelock.
419 420 421 422 423 424 425 426 427 428
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	struct uprobe *u;

429
	spin_lock(&uprobes_treelock);
430
	u = __insert_uprobe(uprobe);
431
	spin_unlock(&uprobes_treelock);
432

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);
453
	mutex_init(&uprobe->copy_mutex);
454 455
	/* For now assume that the instruction need not be single-stepped */
	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
456 457 458 459 460 461 462 463 464

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
465
	} else {
466
		atomic_inc(&uprobe_events);
467 468
	}

469 470 471
	return uprobe;
}

472 473 474 475
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

476
	if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
477 478 479 480 481 482 483 484 485 486
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

487
/* Returns the previous consumer */
488
static struct uprobe_consumer *
489
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
490 491
{
	down_write(&uprobe->consumer_rwsem);
492 493
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
494
	up_write(&uprobe->consumer_rwsem);
495

496
	return uc->next;
497 498 499
}

/*
500 501
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
502 503
 * or return false.
 */
504
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
505 506 507 508 509 510
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
511 512
		if (*con == uc) {
			*con = uc->next;
513 514 515 516 517
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
518

519 520 521
	return ret;
}

522
static int
523
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
524
			unsigned long nbytes, loff_t offset)
525 526 527
{
	struct page *page;
	void *vaddr;
528 529
	unsigned long off;
	pgoff_t idx;
530 531 532 533

	if (!filp)
		return -EINVAL;

534 535 536
	if (!mapping->a_ops->readpage)
		return -EIO;

537 538
	idx = offset >> PAGE_CACHE_SHIFT;
	off = offset & ~PAGE_MASK;
539 540 541 542 543 544 545 546 547 548

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
549
	memcpy(insn, vaddr + off, nbytes);
550 551
	kunmap_atomic(vaddr);
	page_cache_release(page);
552

553 554 555
	return 0;
}

556
static int copy_insn(struct uprobe *uprobe, struct file *filp)
557 558 559
{
	struct address_space *mapping;
	unsigned long nbytes;
560
	int bytes;
561

562
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
563 564 565 566 567 568 569 570 571 572
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
573 574 575 576
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
577 578
		bytes = nbytes;
	}
579
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
580 581
}

582 583 584 585 586
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
				struct mm_struct *mm, unsigned long vaddr)
{
	int ret = 0;

587
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
588 589
		return ret;

590
	mutex_lock(&uprobe->copy_mutex);
591
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
592 593
		goto out;

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	ret = copy_insn(uprobe, file);
	if (ret)
		goto out;

	ret = -ENOTSUPP;
	if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
		goto out;

	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
	if (ret)
		goto out;

	/* write_opcode() assumes we don't cross page boundary */
	BUG_ON((uprobe->offset & ~PAGE_MASK) +
			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
611
	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
612 613

 out:
614 615
	mutex_unlock(&uprobe->copy_mutex);

616 617 618
	return ret;
}

619 620
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
621
			struct vm_area_struct *vma, unsigned long vaddr)
622
{
623
	bool first_uprobe;
624 625 626 627 628 629 630 631 632 633
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
634
		return 0;
635

636 637 638
	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
	if (ret)
		return ret;
639

640 641 642 643 644 645 646 647
	/*
	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
	 * the task can hit this breakpoint right after __replace_page().
	 */
	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
	if (first_uprobe)
		set_bit(MMF_HAS_UPROBES, &mm->flags);

648
	ret = set_swbp(&uprobe->arch, mm, vaddr);
649 650 651
	if (!ret)
		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
	else if (first_uprobe)
652
		clear_bit(MMF_HAS_UPROBES, &mm->flags);
653 654 655 656

	return ret;
}

657
static int
658
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
659
{
660 661
	/* can happen if uprobe_register() fails */
	if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
662
		return 0;
663 664

	set_bit(MMF_RECALC_UPROBES, &mm->flags);
665
	return set_orig_insn(&uprobe->arch, mm, vaddr);
666 667
}

668
/*
669 670 671
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
672
 */
673 674
static void delete_uprobe(struct uprobe *uprobe)
{
675
	spin_lock(&uprobes_treelock);
676
	rb_erase(&uprobe->rb_node, &uprobes_tree);
677
	spin_unlock(&uprobes_treelock);
678 679 680 681 682
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

683 684 685
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
686
	unsigned long vaddr;
687 688 689
};

static inline struct map_info *free_map_info(struct map_info *info)
690
{
691 692 693 694 695 696 697 698 699
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
700
	struct vm_area_struct *vma;
701 702 703 704
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
705

706 707
 again:
	mutex_lock(&mapping->i_mmap_mutex);
708
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
709 710 711
		if (!valid_vma(vma, is_register))
			continue;

712 713 714 715 716 717 718 719 720 721
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
722 723 724
		if (!prev) {
			more++;
			continue;
725 726
		}

727 728
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
729

730 731 732 733
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
734

735
		info->mm = vma->vm_mm;
736
		info->vaddr = offset_to_vaddr(vma, offset);
737
	}
738 739
	mutex_unlock(&mapping->i_mmap_mutex);

740 741 742 743 744 745 746 747
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
748

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
764 765 766 767
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
768 769
	struct map_info *info;
	int err = 0;
770

771
	percpu_down_write(&dup_mmap_sem);
772 773
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
774 775 776 777
	if (IS_ERR(info)) {
		err = PTR_ERR(info);
		goto out;
	}
778

779 780 781
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
782

783
		if (err && is_register)
784
			goto free;
785

786
		down_write(&mm->mmap_sem);
787 788 789
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
		    vma->vm_file->f_mapping->host != uprobe->inode)
790 791
			goto unlock;

792 793
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
794
			goto unlock;
795

796
		if (is_register)
797
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
798
		else
799
			err |= remove_breakpoint(uprobe, mm, info->vaddr);
800

801 802 803 804 805
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
806
	}
807 808
 out:
	percpu_up_write(&dup_mmap_sem);
809
	return err;
810 811
}

812
static int __uprobe_register(struct uprobe *uprobe)
813 814 815 816
{
	return register_for_each_vma(uprobe, true);
}

817
static void __uprobe_unregister(struct uprobe *uprobe)
818 819 820 821 822 823 824 825
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
826
 * uprobe_register - register a probe
827 828
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
829
 * @uc: information on howto handle the probe..
830
 *
831
 * Apart from the access refcount, uprobe_register() takes a creation
832 833
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
834
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
835
 * @uprobe even before the register operation is complete. Creation
836
 * refcount is released when the last @uc for the @uprobe
837 838 839 840 841
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
842
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
843 844
{
	struct uprobe *uprobe;
845
	int ret;
846

847
	/* Racy, just to catch the obvious mistakes */
848
	if (offset > i_size_read(inode))
849
		return -EINVAL;
850 851 852 853

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
854

855 856 857
	if (!uprobe) {
		ret = -ENOMEM;
	} else if (!consumer_add(uprobe, uc)) {
858
		ret = __uprobe_register(uprobe);
859 860
		if (ret) {
			uprobe->consumers = NULL;
861 862
			__uprobe_unregister(uprobe);
		} else {
863
			set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
864
		}
865 866 867
	}

	mutex_unlock(uprobes_hash(inode));
868 869
	if (uprobe)
		put_uprobe(uprobe);
870 871 872 873 874

	return ret;
}

/*
875
 * uprobe_unregister - unregister a already registered probe.
876 877
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
878
 * @uc: identify which probe if multiple probes are colocated.
879
 */
880
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
881
{
882
	struct uprobe *uprobe;
883 884 885 886 887 888 889

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

890
	if (consumer_del(uprobe, uc)) {
891 892
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
893
			clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
894
		}
895 896 897
	}

	mutex_unlock(uprobes_hash(inode));
S
Sasha Levin 已提交
898
	put_uprobe(uprobe);
899 900
}

901 902
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
903 904 905 906
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
907
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
908

909
		if (inode < u->inode) {
910
			n = n->rb_left;
911
		} else if (inode > u->inode) {
912
			n = n->rb_right;
913 914 915 916 917 918 919 920
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
921
	}
922

923
	return n;
924 925 926
}

/*
927
 * For a given range in vma, build a list of probes that need to be inserted.
928
 */
929 930 931 932
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
933
{
934 935 936
	loff_t min, max;
	struct rb_node *n, *t;
	struct uprobe *u;
937

938
	INIT_LIST_HEAD(head);
939
	min = vaddr_to_offset(vma, start);
940
	max = min + (end - start) - 1;
941

942
	spin_lock(&uprobes_treelock);
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
959
	}
960
	spin_unlock(&uprobes_treelock);
961 962 963
}

/*
964
 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
965
 *
966 967
 * Currently we ignore all errors and always return 0, the callers
 * can't handle the failure anyway.
968
 */
969
int uprobe_mmap(struct vm_area_struct *vma)
970 971
{
	struct list_head tmp_list;
972
	struct uprobe *uprobe, *u;
973 974 975
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
976
		return 0;
977 978 979

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
980
		return 0;
981 982

	mutex_lock(uprobes_mmap_hash(inode));
983
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
984

985
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
986
		if (!fatal_signal_pending(current)) {
987
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
988
			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
989 990 991 992 993
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));

994
	return 0;
995 996
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static bool
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	loff_t min, max;
	struct inode *inode;
	struct rb_node *n;

	inode = vma->vm_file->f_mapping->host;

	min = vaddr_to_offset(vma, start);
	max = min + (end - start) - 1;

	spin_lock(&uprobes_treelock);
	n = find_node_in_range(inode, min, max);
	spin_unlock(&uprobes_treelock);

	return !!n;
}

1016 1017 1018
/*
 * Called in context of a munmap of a vma.
 */
1019
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1020 1021 1022 1023
{
	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

1024 1025 1026
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

1027 1028
	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1029 1030
		return;

1031 1032
	if (vma_has_uprobes(vma, start, end))
		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
void uprobe_start_dup_mmap(void)
{
	percpu_down_read(&dup_mmap_sem);
}

void uprobe_end_dup_mmap(void)
{
	percpu_up_read(&dup_mmap_sem);
}

1144 1145
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
{
1146 1147
	newmm->uprobes_state.xol_area = NULL;

1148
	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1149
		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1150 1151 1152
		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
	}
1153 1154
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);
1212 1213 1214 1215 1216
	/*
	 * We probably need flush_icache_user_range() but it needs vma.
	 * This should work on supported architectures too.
	 */
	flush_dcache_page(area->page);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1285
	xol_free_insn_slot(t);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1322 1323 1324
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
1368
	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1369 1370
		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
			return true;
1371
		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1372
	}
1373 1374 1375
	return false;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static void mmf_recalc_uprobes(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!valid_vma(vma, false))
			continue;
		/*
		 * This is not strictly accurate, we can race with
		 * uprobe_unregister() and see the already removed
		 * uprobe if delete_uprobe() was not yet called.
		 */
		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
			return;
	}

	clear_bit(MMF_HAS_UPROBES, &mm->flags);
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
{
	struct page *page;
	uprobe_opcode_t opcode;
	int result;

	pagefault_disable();
	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
							sizeof(opcode));
	pagefault_enable();

	if (likely(result == 0))
		goto out;

	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
	if (result < 0)
		return result;

	copy_opcode(page, vaddr, &opcode);
	put_page(page);
 out:
	return is_swbp_insn(&opcode);
}

1419
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1420
{
1421 1422
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1423 1424 1425 1426
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1427 1428
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
1429 1430
			struct inode *inode = vma->vm_file->f_mapping->host;
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1431

1432 1433
			uprobe = find_uprobe(inode, offset);
		}
1434 1435 1436 1437 1438

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1439
	}
1440 1441 1442

	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
		mmf_recalc_uprobes(mm);
1443 1444
	up_read(&mm->mmap_sem);

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1457
	int uninitialized_var(is_swbp);
1458 1459

	bp_vaddr = uprobe_get_swbp_addr(regs);
1460
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1461

1462
	if (!uprobe) {
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1477 1478
		return;
	}
1479 1480 1481 1482 1483 1484
	/*
	 * TODO: move copy_insn/etc into _register and remove this hack.
	 * After we hit the bp, _unregister + _register can install the
	 * new and not-yet-analyzed uprobe at the same address, restart.
	 */
	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1485
	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1486
		goto restart;
1487 1488 1489 1490 1491 1492

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
1493
			goto restart;
1494
	}
1495

1496
	handler_chain(uprobe, regs);
1497 1498
	if (can_skip_sstep(uprobe, regs))
		goto out;
1499 1500

	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1501 1502
		utask->active_uprobe = uprobe;
		utask->state = UTASK_SSTEP;
1503 1504 1505
		return;
	}

1506 1507 1508 1509 1510 1511 1512
restart:
	/*
	 * cannot singlestep; cannot skip instruction;
	 * re-execute the instruction.
	 */
	instruction_pointer_set(regs, bp_vaddr);
out:
1513
	put_uprobe(uprobe);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
1535
	xol_free_insn_slot(current);
1536 1537 1538 1539 1540 1541 1542

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
O
Oleg Nesterov 已提交
1543 1544 1545
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
 * allows the thread to return from interrupt. After that handle_swbp()
 * sets utask->active_uprobe.
1546
 *
O
Oleg Nesterov 已提交
1547 1548
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
 * and allows the thread to return from interrupt.
1549 1550 1551 1552 1553 1554 1555 1556
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1557 1558
	clear_thread_flag(TIF_UPROBE);

1559
	utask = current->utask;
O
Oleg Nesterov 已提交
1560
	if (utask && utask->active_uprobe)
1561
		handle_singlestep(utask, regs);
O
Oleg Nesterov 已提交
1562 1563
	else
		handle_swbp(regs);
1564 1565 1566 1567 1568 1569 1570 1571
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
1572
	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		return 0;

	set_thread_flag(TIF_UPROBE);
	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1601 1602 1603 1604 1605 1606 1607 1608
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1609

1610 1611 1612
	if (percpu_init_rwsem(&dup_mmap_sem))
		return -ENOMEM;

1613
	return register_die_notifier(&uprobe_exception_nb);
1614
}
1615
module_init(init_uprobes);
1616 1617 1618 1619 1620

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);