uprobes.c 37.3 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35
#include "../../mm/internal.h"	/* munlock_vma_page */
36

37 38
#include <linux/uprobes.h>

39 40 41
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

42
static struct rb_root uprobes_tree = RB_ROOT;
43

44 45 46
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

65 66
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 68

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 70 71

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 74

/*
75
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 77 78 79 80
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

81 82 83 84 85 86 87 88 89 90 91 92
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

93 94 95 96 97 98 99 100 101 102
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
103
	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
104

105 106
	if (is_register)
		flags |= VM_WRITE;
107

108
	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
109 110
}

111
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
112
{
113
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
114 115
}

116 117 118 119 120
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

121 122 123 124 125
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
126
 * @addr:     address the old @page is mapped at
127 128 129 130 131
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
132 133
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
134 135
{
	struct mm_struct *mm = vma->vm_mm;
136 137
	spinlock_t *ptl;
	pte_t *ptep;
138
	int err;
139

140
	/* For try_to_free_swap() and munlock_vma_page() below */
141 142 143
	lock_page(page);

	err = -EAGAIN;
144
	ptep = page_check_address(page, mm, addr, &ptl, 0);
145
	if (!ptep)
146
		goto unlock;
147 148 149 150

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

151 152 153 154 155
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

156 157 158 159 160 161 162 163 164
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

165 166 167 168
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

169 170 171 172
	err = 0;
 unlock:
	unlock_page(page);
	return err;
173 174 175
}

/**
176
 * is_swbp_insn - check if instruction is breakpoint instruction.
177
 * @insn: instruction to be checked.
178
 * Default implementation of is_swbp_insn
179 180
 * Returns true if @insn is a breakpoint instruction.
 */
181
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
182
{
183
	return *insn == UPROBE_SWBP_INSN;
184 185
}

186 187 188 189 190 191 192
static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
{
	void *kaddr = kmap_atomic(page);
	memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
	kunmap_atomic(kaddr);
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
{
	uprobe_opcode_t old_opcode;
	bool is_swbp;

	copy_opcode(page, vaddr, &old_opcode);
	is_swbp = is_swbp_insn(&old_opcode);

	if (is_swbp_insn(new_opcode)) {
		if (is_swbp)		/* register: already installed? */
			return 0;
	} else {
		if (!is_swbp)		/* unregister: was it changed by us? */
			return -EINVAL;
	}

	return 1;
}

212 213 214 215 216
/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
217
 * supported by that architecture then we need to modify is_swbp_at_addr and
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
234 235
static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
			uprobe_opcode_t opcode)
236 237 238 239 240
{
	struct page *old_page, *new_page;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	int ret;
241

242
retry:
243
	/* Read the page with vaddr into memory */
244
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
245 246
	if (ret <= 0)
		return ret;
247

248 249 250 251
	ret = verify_opcode(old_page, vaddr, &opcode);
	if (ret <= 0)
		goto put_old;

252 253 254
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
255
		goto put_old;
256 257 258 259 260 261 262 263

	__SetPageUptodate(new_page);

	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
264
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
265 266 267 268 269 270

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
271
		goto put_new;
272

273
	ret = __replace_page(vma, vaddr, old_page, new_page);
274

275
put_new:
276
	page_cache_release(new_page);
277
put_old:
278 279
	put_page(old_page);

280 281
	if (unlikely(ret == -EAGAIN))
		goto retry;
282 283 284 285
	return ret;
}

/**
286
 * set_swbp - store breakpoint at a given address.
287
 * @auprobe: arch specific probepoint information.
288 289 290 291 292 293
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
294
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
295
{
296
	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
297 298 299 300 301
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
302
 * @auprobe: arch specific probepoint information.
303 304 305 306 307
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
308
int __weak
309
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
310
{
311
	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
312 313 314 315 316 317
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
318

319 320 321
	if (l->inode > r->inode)
		return 1;

322 323 324 325 326
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;

362
	spin_lock(&uprobes_treelock);
363
	uprobe = __find_uprobe(inode, offset);
364
	spin_unlock(&uprobes_treelock);
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
391

392 393 394 395 396
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
397

398 399 400 401
	return u;
}

/*
402
 * Acquire uprobes_treelock.
403 404 405 406 407 408 409 410 411 412
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	struct uprobe *u;

413
	spin_lock(&uprobes_treelock);
414
	u = __insert_uprobe(uprobe);
415
	spin_unlock(&uprobes_treelock);
416

417 418 419
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
449
	} else {
450
		atomic_inc(&uprobe_events);
451 452
	}

453 454 455
	return uprobe;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

471
/* Returns the previous consumer */
472
static struct uprobe_consumer *
473
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
474 475
{
	down_write(&uprobe->consumer_rwsem);
476 477
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
478
	up_write(&uprobe->consumer_rwsem);
479

480
	return uc->next;
481 482 483
}

/*
484 485
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
486 487
 * or return false.
 */
488
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
489 490 491 492 493 494
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
495 496
		if (*con == uc) {
			*con = uc->next;
497 498 499 500 501
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
502

503 504 505
	return ret;
}

506
static int
507
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
508
			unsigned long nbytes, loff_t offset)
509 510 511
{
	struct page *page;
	void *vaddr;
512 513
	unsigned long off;
	pgoff_t idx;
514 515 516 517

	if (!filp)
		return -EINVAL;

518 519 520
	if (!mapping->a_ops->readpage)
		return -EIO;

521 522
	idx = offset >> PAGE_CACHE_SHIFT;
	off = offset & ~PAGE_MASK;
523 524 525 526 527 528 529 530 531 532

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
533
	memcpy(insn, vaddr + off, nbytes);
534 535
	kunmap_atomic(vaddr);
	page_cache_release(page);
536

537 538 539
	return 0;
}

540
static int copy_insn(struct uprobe *uprobe, struct file *filp)
541 542 543
{
	struct address_space *mapping;
	unsigned long nbytes;
544
	int bytes;
545

546
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
547 548 549 550 551 552 553 554 555 556
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
557 558 559 560
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
561 562
		bytes = nbytes;
	}
563
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
564 565
}

566 567
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
568
			struct vm_area_struct *vma, unsigned long vaddr)
569
{
570
	bool first_uprobe;
571 572 573 574 575 576 577 578 579 580
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
581
		return 0;
582

583
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
584
		ret = copy_insn(uprobe, vma->vm_file);
585 586 587
		if (ret)
			return ret;

588
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
589
			return -ENOTSUPP;
590

591
		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
592 593 594
		if (ret)
			return ret;

595 596 597 598
		/* write_opcode() assumes we don't cross page boundary */
		BUG_ON((uprobe->offset & ~PAGE_MASK) +
				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

599
		uprobe->flags |= UPROBE_COPY_INSN;
600
	}
601

602 603 604 605 606 607 608 609
	/*
	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
	 * the task can hit this breakpoint right after __replace_page().
	 */
	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
	if (first_uprobe)
		set_bit(MMF_HAS_UPROBES, &mm->flags);

610
	ret = set_swbp(&uprobe->arch, mm, vaddr);
611 612 613
	if (!ret)
		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
	else if (first_uprobe)
614
		clear_bit(MMF_HAS_UPROBES, &mm->flags);
615 616 617 618

	return ret;
}

619
static void
620
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
621
{
622 623 624 625 626
	/* can happen if uprobe_register() fails */
	if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
		return;

	set_bit(MMF_RECALC_UPROBES, &mm->flags);
627
	set_orig_insn(&uprobe->arch, mm, vaddr);
628 629
}

630
/*
631 632 633
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
634
 */
635 636
static void delete_uprobe(struct uprobe *uprobe)
{
637
	spin_lock(&uprobes_treelock);
638
	rb_erase(&uprobe->rb_node, &uprobes_tree);
639
	spin_unlock(&uprobes_treelock);
640 641 642 643 644
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

645 646 647
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
648
	unsigned long vaddr;
649 650 651
};

static inline struct map_info *free_map_info(struct map_info *info)
652
{
653 654 655 656 657 658 659 660 661
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
662 663
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
664 665 666 667
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
668

669 670
 again:
	mutex_lock(&mapping->i_mmap_mutex);
671 672 673 674
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

675 676 677 678 679 680 681 682 683 684
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
685 686 687
		if (!prev) {
			more++;
			continue;
688 689
		}

690 691
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
692

693 694 695 696
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
697

698
		info->mm = vma->vm_mm;
699
		info->vaddr = offset_to_vaddr(vma, offset);
700
	}
701 702
	mutex_unlock(&mapping->i_mmap_mutex);

703 704 705 706 707 708 709 710
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
727 728 729 730
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
731 732
	struct map_info *info;
	int err = 0;
733

734 735 736 737
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
	if (IS_ERR(info))
		return PTR_ERR(info);
738

739 740 741
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
742

743 744
		if (err)
			goto free;
745

746
		down_write(&mm->mmap_sem);
747 748 749
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
		    vma->vm_file->f_mapping->host != uprobe->inode)
750 751
			goto unlock;

752 753
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
754
			goto unlock;
755

756
		if (is_register)
757
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
758
		else
759
			remove_breakpoint(uprobe, mm, info->vaddr);
760

761 762 763 764 765
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
766
	}
767

768
	return err;
769 770
}

771
static int __uprobe_register(struct uprobe *uprobe)
772 773 774 775
{
	return register_for_each_vma(uprobe, true);
}

776
static void __uprobe_unregister(struct uprobe *uprobe)
777 778 779 780 781 782 783 784
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
785
 * uprobe_register - register a probe
786 787
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
788
 * @uc: information on howto handle the probe..
789
 *
790
 * Apart from the access refcount, uprobe_register() takes a creation
791 792
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
793
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
794
 * @uprobe even before the register operation is complete. Creation
795
 * refcount is released when the last @uc for the @uprobe
796 797 798 799 800
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
801
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
802 803
{
	struct uprobe *uprobe;
804
	int ret;
805

806
	if (!inode || !uc || uc->next)
807
		return -EINVAL;
808 809

	if (offset > i_size_read(inode))
810
		return -EINVAL;
811 812 813 814

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
815

816 817 818
	if (!uprobe) {
		ret = -ENOMEM;
	} else if (!consumer_add(uprobe, uc)) {
819
		ret = __uprobe_register(uprobe);
820 821
		if (ret) {
			uprobe->consumers = NULL;
822 823
			__uprobe_unregister(uprobe);
		} else {
824
			uprobe->flags |= UPROBE_RUN_HANDLER;
825
		}
826 827 828
	}

	mutex_unlock(uprobes_hash(inode));
829 830
	if (uprobe)
		put_uprobe(uprobe);
831 832 833 834 835

	return ret;
}

/*
836
 * uprobe_unregister - unregister a already registered probe.
837 838
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
839
 * @uc: identify which probe if multiple probes are colocated.
840
 */
841
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
842
{
843
	struct uprobe *uprobe;
844

845
	if (!inode || !uc)
846 847 848 849 850 851 852 853
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

854
	if (consumer_del(uprobe, uc)) {
855 856
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
857
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
858
		}
859 860 861 862 863 864 865
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

866 867
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
868 869 870 871
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
872
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
873

874
		if (inode < u->inode) {
875
			n = n->rb_left;
876
		} else if (inode > u->inode) {
877
			n = n->rb_right;
878 879 880 881 882 883 884 885
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
886
	}
887

888
	return n;
889 890 891
}

/*
892
 * For a given range in vma, build a list of probes that need to be inserted.
893
 */
894 895 896 897
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
898
{
899 900 901
	loff_t min, max;
	struct rb_node *n, *t;
	struct uprobe *u;
902

903
	INIT_LIST_HEAD(head);
904
	min = vaddr_to_offset(vma, start);
905
	max = min + (end - start) - 1;
906

907
	spin_lock(&uprobes_treelock);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
924
	}
925
	spin_unlock(&uprobes_treelock);
926 927 928
}

/*
929
 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
930
 *
931 932
 * Currently we ignore all errors and always return 0, the callers
 * can't handle the failure anyway.
933
 */
934
int uprobe_mmap(struct vm_area_struct *vma)
935 936
{
	struct list_head tmp_list;
937
	struct uprobe *uprobe, *u;
938 939 940
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
941
		return 0;
942 943 944

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
945
		return 0;
946 947

	mutex_lock(uprobes_mmap_hash(inode));
948
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
949

950
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
951
		if (!fatal_signal_pending(current)) {
952
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
953
			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
954 955 956 957 958
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));

959
	return 0;
960 961
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static bool
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	loff_t min, max;
	struct inode *inode;
	struct rb_node *n;

	inode = vma->vm_file->f_mapping->host;

	min = vaddr_to_offset(vma, start);
	max = min + (end - start) - 1;

	spin_lock(&uprobes_treelock);
	n = find_node_in_range(inode, min, max);
	spin_unlock(&uprobes_treelock);

	return !!n;
}

981 982 983
/*
 * Called in context of a munmap of a vma.
 */
984
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
985 986 987 988
{
	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

989 990 991
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

992 993
	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
994 995
		return;

996 997
	if (vma_has_uprobes(vma, start, end))
		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
998 999
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

1099 1100
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
{
1101 1102
	newmm->uprobes_state.xol_area = NULL;

1103
	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1104
		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1105 1106 1107
		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
	}
1108 1109
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1235
	xol_free_insn_slot(t);
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1272 1273 1274
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
1318 1319 1320 1321 1322
	if (uprobe->flags & UPROBE_SKIP_SSTEP) {
		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
			return true;
		uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	}
1323 1324 1325
	return false;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
static void mmf_recalc_uprobes(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!valid_vma(vma, false))
			continue;
		/*
		 * This is not strictly accurate, we can race with
		 * uprobe_unregister() and see the already removed
		 * uprobe if delete_uprobe() was not yet called.
		 */
		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
			return;
	}

	clear_bit(MMF_HAS_UPROBES, &mm->flags);
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
{
	struct page *page;
	uprobe_opcode_t opcode;
	int result;

	pagefault_disable();
	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
							sizeof(opcode));
	pagefault_enable();

	if (likely(result == 0))
		goto out;

	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
	if (result < 0)
		return result;

	copy_opcode(page, vaddr, &opcode);
	put_page(page);
 out:
	return is_swbp_insn(&opcode);
}

1369
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1370
{
1371 1372
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1373 1374 1375 1376
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1377 1378
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
1379 1380
			struct inode *inode = vma->vm_file->f_mapping->host;
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1381

1382 1383
			uprobe = find_uprobe(inode, offset);
		}
1384 1385 1386 1387 1388

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1389
	}
1390 1391 1392

	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
		mmf_recalc_uprobes(mm);
1393 1394
	up_read(&mm->mmap_sem);

1395 1396 1397
	return uprobe;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
{
	user_enable_single_step(current);
}

void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
{
	user_disable_single_step(current);
}

1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1417
	int uninitialized_var(is_swbp);
1418 1419

	bp_vaddr = uprobe_get_swbp_addr(regs);
1420
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1421

1422
	if (!uprobe) {
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1437 1438 1439
		return;
	}

O
Oleg Nesterov 已提交
1440
	utask = current->utask;
1441 1442 1443 1444
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
1445
			goto restart;
1446
	}
1447

1448
	handler_chain(uprobe, regs);
1449 1450
	if (can_skip_sstep(uprobe, regs))
		goto out;
1451 1452

	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1453
		arch_uprobe_enable_step(&uprobe->arch);
1454 1455
		utask->active_uprobe = uprobe;
		utask->state = UTASK_SSTEP;
1456 1457 1458
		return;
	}

1459 1460 1461 1462 1463 1464 1465
restart:
	/*
	 * cannot singlestep; cannot skip instruction;
	 * re-execute the instruction.
	 */
	instruction_pointer_set(regs, bp_vaddr);
out:
1466
	put_uprobe(uprobe);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

1485
	arch_uprobe_disable_step(&uprobe->arch);
1486 1487 1488
	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
1489
	xol_free_insn_slot(current);
1490 1491 1492 1493 1494 1495 1496

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
O
Oleg Nesterov 已提交
1497 1498 1499
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
 * allows the thread to return from interrupt. After that handle_swbp()
 * sets utask->active_uprobe.
1500
 *
O
Oleg Nesterov 已提交
1501 1502
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
 * and allows the thread to return from interrupt.
1503 1504 1505 1506 1507 1508 1509 1510
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1511 1512
	clear_thread_flag(TIF_UPROBE);

1513
	utask = current->utask;
O
Oleg Nesterov 已提交
1514
	if (utask && utask->active_uprobe)
1515
		handle_singlestep(utask, regs);
O
Oleg Nesterov 已提交
1516 1517
	else
		handle_swbp(regs);
1518 1519 1520 1521 1522 1523 1524 1525
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
1526
	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		return 0;

	set_thread_flag(TIF_UPROBE);
	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1555 1556 1557 1558 1559 1560 1561 1562
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1563 1564

	return register_die_notifier(&uprobe_exception_nb);
1565
}
1566
module_init(init_uprobes);
1567 1568 1569 1570 1571

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);