uprobes.c 38.9 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35

36 37
#include <linux/uprobes.h>

38 39 40
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

41
static struct rb_root uprobes_tree = RB_ROOT;
42

43 44 45
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
46

47 48
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
49 50

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
51 52 53

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
54
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
55 56

/*
57
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
58 59 60 61 62
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

63 64 65 66 67 68 69 70 71 72 73 74
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

91 92
	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
				== (VM_READ|VM_EXEC))
93 94 95 96 97 98 99 100 101 102 103
		return true;

	return false;
}

static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
{
	loff_t vaddr;

	vaddr = vma->vm_start + offset;
	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
104

105 106 107 108 109 110 111 112 113 114 115 116 117
	return vaddr;
}

/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
118
static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
119 120 121
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr;
122 123
	spinlock_t *ptl;
	pte_t *ptep;
124 125 126

	addr = page_address_in_vma(page, vma);
	if (addr == -EFAULT)
127
		return -EFAULT;
128

129
	ptep = page_check_address(page, mm, addr, &ptl, 0);
130
	if (!ptep)
131
		return -EAGAIN;
132 133 134 135

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

136 137 138 139 140
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

141 142 143 144 145 146 147 148 149 150
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	put_page(page);
	pte_unmap_unlock(ptep, ptl);

151
	return 0;
152 153 154
}

/**
155
 * is_swbp_insn - check if instruction is breakpoint instruction.
156
 * @insn: instruction to be checked.
157
 * Default implementation of is_swbp_insn
158 159
 * Returns true if @insn is a breakpoint instruction.
 */
160
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
161
{
162
	return *insn == UPROBE_SWBP_INSN;
163 164 165 166 167 168 169 170 171 172 173 174 175 176
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
177
 * @auprobe: arch breakpointing information.
178 179 180 181 182 183 184 185 186 187
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
188
static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
189 190 191 192 193 194
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	struct address_space *mapping;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
195
	struct uprobe *uprobe;
196
	unsigned long pgoff;
197 198
	loff_t addr;
	int ret;
199
retry:
200 201 202 203
	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;
204

205 206 207 208 209 210 211 212
	ret = -EINVAL;

	/*
	 * We are interested in text pages only. Our pages of interest
	 * should be mapped for read and execute only. We desist from
	 * adding probes in write mapped pages since the breakpoints
	 * might end up in the file copy.
	 */
213
	if (!valid_vma(vma, is_swbp_insn(&opcode)))
214 215
		goto put_out;

216
	uprobe = container_of(auprobe, struct uprobe, arch);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	mapping = uprobe->inode->i_mapping;
	if (mapping != vma->vm_file->f_mapping)
		goto put_out;

	addr = vma_address(vma, uprobe->offset);
	if (vaddr != (unsigned long)addr)
		goto put_out;

	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
		goto put_out;

	__SetPageUptodate(new_page);

	/*
	 * lock page will serialize against do_wp_page()'s
	 * PageAnon() handling
	 */
	lock_page(old_page);
	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
242

243
	/* poke the new insn in, ASSUMES we don't cross page boundary */
244 245 246
	pgoff = (vaddr & ~PAGE_MASK);
	BUG_ON(pgoff + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
	memcpy(vaddr_new + pgoff, &opcode, UPROBE_SWBP_INSN_SIZE);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
		goto unlock_out;

	lock_page(new_page);
	ret = __replace_page(vma, old_page, new_page);
	unlock_page(new_page);

unlock_out:
	unlock_page(old_page);
	page_cache_release(new_page);

put_out:
264 265
	put_page(old_page);

266 267
	if (unlikely(ret == -EAGAIN))
		goto retry;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
283
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
284 285 286 287 288
{
	struct page *page;
	void *vaddr_new;
	int ret;

289
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
290 291 292 293 294 295
	if (ret <= 0)
		return ret;

	lock_page(page);
	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
296
	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
297 298
	kunmap_atomic(vaddr_new);
	unlock_page(page);
299 300 301

	put_page(page);

302 303 304
	return 0;
}

305
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
306 307
{
	uprobe_opcode_t opcode;
308
	int result;
309

310 311 312 313 314 315 316 317 318 319
	if (current->mm == mm) {
		pagefault_disable();
		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
								sizeof(opcode));
		pagefault_enable();

		if (likely(result == 0))
			goto out;
	}

320
	result = read_opcode(mm, vaddr, &opcode);
321 322
	if (result)
		return result;
323
out:
324
	if (is_swbp_insn(&opcode))
325 326 327 328 329 330
		return 1;

	return 0;
}

/**
331
 * set_swbp - store breakpoint at a given address.
332
 * @auprobe: arch specific probepoint information.
333 334 335 336 337 338
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
339
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
340
{
341
	int result;
342

343
	result = is_swbp_at_addr(mm, vaddr);
344 345 346 347 348 349
	if (result == 1)
		return -EEXIST;

	if (result)
		return result;

350
	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
351 352 353 354 355
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
356
 * @auprobe: arch specific probepoint information.
357 358 359 360 361 362
 * @vaddr: the virtual address to insert the opcode.
 * @verify: if true, verify existance of breakpoint instruction.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
363
int __weak
364
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
365 366
{
	if (verify) {
367
		int result;
368

369
		result = is_swbp_at_addr(mm, vaddr);
370 371 372 373 374 375
		if (!result)
			return -EINVAL;

		if (result != 1)
			return result;
	}
376
	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
377 378 379 380 381 382
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
383

384 385 386
	if (l->inode > r->inode)
		return 1;

387 388 389 390 391
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	uprobe = __find_uprobe(inode, offset);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
457

458 459 460 461 462
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
463

464 465 466 467
	return u;
}

/*
468
 * Acquire uprobes_treelock.
469 470 471 472 473 474 475 476 477 478 479 480 481 482
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;
	struct uprobe *u;

	spin_lock_irqsave(&uprobes_treelock, flags);
	u = __insert_uprobe(uprobe);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
483

484 485 486
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);
	INIT_LIST_HEAD(&uprobe->pending_list);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
517
	} else {
518
		atomic_inc(&uprobe_events);
519 520
	}

521 522 523
	return uprobe;
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

539
/* Returns the previous consumer */
540
static struct uprobe_consumer *
541
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
542 543
{
	down_write(&uprobe->consumer_rwsem);
544 545
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
546
	up_write(&uprobe->consumer_rwsem);
547

548
	return uc->next;
549 550 551
}

/*
552 553
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
554 555
 * or return false.
 */
556
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
557 558 559 560 561 562
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
563 564
		if (*con == uc) {
			*con = uc->next;
565 566 567 568 569
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
570

571 572 573
	return ret;
}

574 575
static int
__copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
576 577 578 579 580 581 582 583 584 585 586
			unsigned long nbytes, unsigned long offset)
{
	struct file *filp = vma->vm_file;
	struct page *page;
	void *vaddr;
	unsigned long off1;
	unsigned long idx;

	if (!filp)
		return -EINVAL;

587 588 589
	if (!mapping->a_ops->readpage)
		return -EIO;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
	off1 = offset &= ~PAGE_MASK;

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
	memcpy(insn, vaddr + off1, nbytes);
	kunmap_atomic(vaddr);
	page_cache_release(page);
605

606 607 608
	return 0;
}

609 610
static int
copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
611 612 613
{
	struct address_space *mapping;
	unsigned long nbytes;
614
	int bytes;
615 616 617 618 619 620 621 622 623 624 625 626 627

	addr &= ~PAGE_MASK;
	nbytes = PAGE_SIZE - addr;
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
628
		if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
629 630 631 632 633
				bytes - nbytes, uprobe->offset + nbytes))
			return -ENOMEM;

		bytes = nbytes;
	}
634
	return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
635 636
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/*
 * How mm->uprobes_state.count gets updated
 * uprobe_mmap() increments the count if
 * 	- it successfully adds a breakpoint.
 * 	- it cannot add a breakpoint, but sees that there is a underlying
 * 	  breakpoint (via a is_swbp_at_addr()).
 *
 * uprobe_munmap() decrements the count if
 * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
 * 	  unless a uprobe_mmap kicks in, since the old vma would be
 * 	  dropped just after uprobe_munmap.)
 *
 * uprobe_register increments the count if:
 * 	- it successfully adds a breakpoint.
 *
 * uprobe_unregister decrements the count if:
 * 	- it sees a underlying breakpoint and removes successfully.
 * 	  (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
 * 	  since there is no underlying breakpoint after the
 * 	  breakpoint removal.)
 */
660 661 662
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
			struct vm_area_struct *vma, loff_t vaddr)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
{
	unsigned long addr;
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
		return -EEXIST;

	addr = (unsigned long)vaddr;
678

679
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
680 681 682 683
		ret = copy_insn(uprobe, vma, addr);
		if (ret)
			return ret;

684
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
685
			return -ENOTSUPP;
686

687
		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
688 689 690
		if (ret)
			return ret;

691
		uprobe->flags |= UPROBE_COPY_INSN;
692
	}
693 694 695 696 697 698 699 700 701 702

	/*
	 * Ideally, should be updating the probe count after the breakpoint
	 * has been successfully inserted. However a thread could hit the
	 * breakpoint we just inserted even before the probe count is
	 * incremented. If this is the first breakpoint placed, breakpoint
	 * notifier might ignore uprobes and pass the trap to the thread.
	 * Hence increment before and decrement on failure.
	 */
	atomic_inc(&mm->uprobes_state.count);
703
	ret = set_swbp(&uprobe->arch, mm, addr);
704 705
	if (ret)
		atomic_dec(&mm->uprobes_state.count);
706 707 708 709

	return ret;
}

710 711
static void
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
712
{
713 714
	if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
		atomic_dec(&mm->uprobes_state.count);
715 716
}

717
/*
718 719 720
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
721
 */
722 723 724 725 726 727 728 729 730 731 732 733
static void delete_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	rb_erase(&uprobe->rb_node, &uprobes_tree);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

734 735 736 737 738 739 740
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
	loff_t vaddr;
};

static inline struct map_info *free_map_info(struct map_info *info)
741
{
742 743 744 745 746 747 748 749 750
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
751 752
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
753 754 755 756
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
757

758 759
 again:
	mutex_lock(&mapping->i_mmap_mutex);
760 761 762 763
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

764 765 766 767 768 769 770 771 772 773
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
774 775 776
		if (!prev) {
			more++;
			continue;
777 778
		}

779 780
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
781

782 783 784 785
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
786

787 788 789
		info->mm = vma->vm_mm;
		info->vaddr = vma_address(vma, offset);
	}
790 791
	mutex_unlock(&mapping->i_mmap_mutex);

792 793 794 795 796 797 798 799
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
800

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
816 817 818 819
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
820 821
	struct map_info *info;
	int err = 0;
822

823 824 825 826
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
	if (IS_ERR(info))
		return PTR_ERR(info);
827

828 829 830 831
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
		loff_t vaddr;
832

833 834
		if (err)
			goto free;
835

836
		down_write(&mm->mmap_sem);
837 838 839 840
		vma = find_vma(mm, (unsigned long)info->vaddr);
		if (!vma || !valid_vma(vma, is_register))
			goto unlock;

841 842
		vaddr = vma_address(vma, uprobe->offset);
		if (vma->vm_file->f_mapping->host != uprobe->inode ||
843 844
						vaddr != info->vaddr)
			goto unlock;
845 846

		if (is_register) {
847 848 849 850 851
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
			if (err == -EEXIST)
				err = 0;
		} else {
			remove_breakpoint(uprobe, mm, info->vaddr);
852
		}
853 854 855 856 857
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
858
	}
859

860
	return err;
861 862
}

863
static int __uprobe_register(struct uprobe *uprobe)
864 865 866 867
{
	return register_for_each_vma(uprobe, true);
}

868
static void __uprobe_unregister(struct uprobe *uprobe)
869 870 871 872 873 874 875 876
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
877
 * uprobe_register - register a probe
878 879
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
880
 * @uc: information on howto handle the probe..
881
 *
882
 * Apart from the access refcount, uprobe_register() takes a creation
883 884
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
885
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
886
 * @uprobe even before the register operation is complete. Creation
887
 * refcount is released when the last @uc for the @uprobe
888 889 890 891 892
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
893
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
894 895
{
	struct uprobe *uprobe;
896
	int ret;
897

898
	if (!inode || !uc || uc->next)
899
		return -EINVAL;
900 901

	if (offset > i_size_read(inode))
902
		return -EINVAL;
903 904 905 906

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
907

908
	if (uprobe && !consumer_add(uprobe, uc)) {
909
		ret = __uprobe_register(uprobe);
910 911
		if (ret) {
			uprobe->consumers = NULL;
912 913
			__uprobe_unregister(uprobe);
		} else {
914
			uprobe->flags |= UPROBE_RUN_HANDLER;
915
		}
916 917 918 919 920 921 922 923 924
	}

	mutex_unlock(uprobes_hash(inode));
	put_uprobe(uprobe);

	return ret;
}

/*
925
 * uprobe_unregister - unregister a already registered probe.
926 927
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
928
 * @uc: identify which probe if multiple probes are colocated.
929
 */
930
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
931
{
932
	struct uprobe *uprobe;
933

934
	if (!inode || !uc)
935 936 937 938 939 940 941 942
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

943
	if (consumer_del(uprobe, uc)) {
944 945
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
946
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
947
		}
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

/*
 * Of all the nodes that correspond to the given inode, return the node
 * with the least offset.
 */
static struct rb_node *find_least_offset_node(struct inode *inode)
{
	struct uprobe u = { .inode = inode, .offset = 0};
	struct rb_node *n = uprobes_tree.rb_node;
	struct rb_node *close_node = NULL;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
970

971 972 973 974 975 976 977 978 979 980 981
		if (uprobe->inode == inode)
			close_node = n;

		if (!match)
			return close_node;

		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
982

983 984 985 986 987 988 989 990 991 992
	return close_node;
}

/*
 * For a given inode, build a list of probes that need to be inserted.
 */
static void build_probe_list(struct inode *inode, struct list_head *head)
{
	struct uprobe *uprobe;
	unsigned long flags;
993
	struct rb_node *n;
994 995

	spin_lock_irqsave(&uprobes_treelock, flags);
996

997
	n = find_least_offset_node(inode);
998

999 1000 1001 1002 1003 1004 1005 1006
	for (; n; n = rb_next(n)) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		if (uprobe->inode != inode)
			break;

		list_add(&uprobe->pending_list, head);
		atomic_inc(&uprobe->ref);
	}
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
	spin_unlock_irqrestore(&uprobes_treelock, flags);
}

/*
 * Called from mmap_region.
 * called with mm->mmap_sem acquired.
 *
 * Return -ve no if we fail to insert probes and we cannot
 * bail-out.
1017 1018
 * Return 0 otherwise. i.e:
 *
1019 1020 1021 1022
 *	- successful insertion of probes
 *	- (or) no possible probes to be inserted.
 *	- (or) insertion of probes failed but we can bail-out.
 */
1023
int uprobe_mmap(struct vm_area_struct *vma)
1024 1025 1026 1027
{
	struct list_head tmp_list;
	struct uprobe *uprobe, *u;
	struct inode *inode;
1028
	int ret, count;
1029 1030

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1031
		return 0;
1032 1033 1034

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
1035
		return 0;
1036 1037 1038 1039

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);
1040 1041

	ret = 0;
1042
	count = 0;
1043

1044 1045 1046 1047 1048 1049
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
		loff_t vaddr;

		list_del(&uprobe->pending_list);
		if (!ret) {
			vaddr = vma_address(vma, uprobe->offset);
1050 1051 1052 1053

			if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
				put_uprobe(uprobe);
				continue;
1054
			}
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);

			/* Ignore double add: */
			if (ret == -EEXIST) {
				ret = 0;

				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
					continue;

				/*
				 * Unable to insert a breakpoint, but
				 * breakpoint lies underneath. Increment the
				 * probe count.
				 */
				atomic_inc(&vma->vm_mm->uprobes_state.count);
			}

			if (!ret)
				count++;
1075 1076 1077 1078 1079 1080
		}
		put_uprobe(uprobe);
	}

	mutex_unlock(uprobes_mmap_hash(inode));

1081 1082 1083
	if (ret)
		atomic_sub(count, &vma->vm_mm->uprobes_state.count);

1084 1085 1086
	return ret;
}

1087 1088 1089
/*
 * Called in context of a munmap of a vma.
 */
1090
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
{
	struct list_head tmp_list;
	struct uprobe *uprobe, *u;
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
		return;

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
		return;

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);

	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
		loff_t vaddr;

		list_del(&uprobe->pending_list);
		vaddr = vma_address(vma, uprobe->offset);

1116
		if (vaddr >= start && vaddr < end) {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
			/*
			 * An unregister could have removed the probe before
			 * unmap. So check before we decrement the count.
			 */
			if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
				atomic_dec(&vma->vm_mm->uprobes_state.count);
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

/*
 * uprobe_reset_state - Free the area allocated for slots.
 */
void uprobe_reset_state(struct mm_struct *mm)
{
	mm->uprobes_state.xol_area = NULL;
1234
	atomic_set(&mm->uprobes_state.count, 0);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
}

/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1362
	xol_free_insn_slot(t);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	utask->active_uprobe = NULL;
	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1400 1401 1402
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
		return true;

	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	return false;
}

1453
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1454
{
1455 1456
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1457 1458 1459 1460
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1461 1462 1463 1464
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
			struct inode *inode;
			loff_t offset;
1465

1466 1467 1468 1469 1470
			inode = vma->vm_file->f_mapping->host;
			offset = bp_vaddr - vma->vm_start;
			offset += (vma->vm_pgoff << PAGE_SHIFT);
			uprobe = find_uprobe(inode, offset);
		}
1471 1472 1473 1474 1475

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1476 1477 1478
	}
	up_read(&mm->mmap_sem);

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1491
	int uninitialized_var(is_swbp);
1492 1493

	bp_vaddr = uprobe_get_swbp_addr(regs);
1494
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1495

1496
	if (!uprobe) {
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
		return;
	}

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
			goto cleanup_ret;
	}
	utask->active_uprobe = uprobe;
	handler_chain(uprobe, regs);
	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
		goto cleanup_ret;

	utask->state = UTASK_SSTEP;
	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
		user_enable_single_step(current);
		return;
	}

cleanup_ret:
	if (utask) {
		utask->active_uprobe = NULL;
		utask->state = UTASK_RUNNING;
	}
	if (uprobe) {
		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))

			/*
			 * cannot singlestep; cannot skip instruction;
			 * re-execute the instruction.
			 */
			instruction_pointer_set(regs, bp_vaddr);

		put_uprobe(uprobe);
	}
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
	user_disable_single_step(current);
1570
	xol_free_insn_slot(current);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
 * allows the thread to return from interrupt.
 *
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
 * interrupt.
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

	utask = current->utask;
	if (!utask || utask->state == UTASK_BP_HIT)
		handle_swbp(regs);
	else
		handle_singlestep(utask, regs);
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1608 1609
	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
		/* task is currently not uprobed */
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		return 0;

	utask = current->utask;
	if (utask)
		utask->state = UTASK_BP_HIT;

	set_thread_flag(TIF_UPROBE);

	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1643 1644 1645 1646 1647 1648 1649 1650
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1651 1652

	return register_die_notifier(&uprobe_exception_nb);
1653
}
1654
module_init(init_uprobes);
1655 1656 1657 1658 1659

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);