uprobes.c 38.2 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35
#include "../../mm/internal.h"	/* munlock_vma_page */
36

37 38
#include <linux/uprobes.h>

39 40 41
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

42
static struct rb_root uprobes_tree = RB_ROOT;
43

44 45 46
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

65 66
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 68

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 70 71

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 74

/*
75
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 77 78 79 80
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

81 82 83 84 85 86 87
/* Have a copy of original instruction */
#define UPROBE_COPY_INSN	0x1
/* Dont run handlers when first register/ last unregister in progress*/
#define UPROBE_RUN_HANDLER	0x2
/* Can skip singlestep */
#define UPROBE_SKIP_SSTEP	0x4

88 89 90 91 92 93 94 95 96 97 98 99
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

100 101 102 103 104 105 106 107 108 109
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
110
	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
111

112 113
	if (is_register)
		flags |= VM_WRITE;
114

115
	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
116 117
}

118
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
119
{
120
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
121 122
}

123 124 125 126 127
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

128 129 130 131 132
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
133
 * @addr:     address the old @page is mapped at
134 135 136 137 138
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
139 140
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
141 142
{
	struct mm_struct *mm = vma->vm_mm;
143 144
	spinlock_t *ptl;
	pte_t *ptep;
145
	int err;
146

147
	/* For try_to_free_swap() and munlock_vma_page() below */
148 149 150
	lock_page(page);

	err = -EAGAIN;
151
	ptep = page_check_address(page, mm, addr, &ptl, 0);
152
	if (!ptep)
153
		goto unlock;
154 155 156 157

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

158 159 160 161 162
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

163 164 165 166 167 168 169 170 171
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

172 173 174 175
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

176 177 178 179
	err = 0;
 unlock:
	unlock_page(page);
	return err;
180 181 182
}

/**
183
 * is_swbp_insn - check if instruction is breakpoint instruction.
184
 * @insn: instruction to be checked.
185
 * Default implementation of is_swbp_insn
186 187
 * Returns true if @insn is a breakpoint instruction.
 */
188
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
189
{
190
	return *insn == UPROBE_SWBP_INSN;
191 192
}

193 194 195 196 197 198 199
static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
{
	void *kaddr = kmap_atomic(page);
	memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
	kunmap_atomic(kaddr);
}

200 201 202 203 204 205 206 207 208 209 210 211 212
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
{
	uprobe_opcode_t old_opcode;
	bool is_swbp;

	copy_opcode(page, vaddr, &old_opcode);
	is_swbp = is_swbp_insn(&old_opcode);

	if (is_swbp_insn(new_opcode)) {
		if (is_swbp)		/* register: already installed? */
			return 0;
	} else {
		if (!is_swbp)		/* unregister: was it changed by us? */
213
			return 0;
214 215 216 217 218
	}

	return 1;
}

219 220 221 222 223
/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
224
 * supported by that architecture then we need to modify is_swbp_at_addr and
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
241 242
static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
			uprobe_opcode_t opcode)
243 244 245 246 247
{
	struct page *old_page, *new_page;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	int ret;
248

249
retry:
250
	/* Read the page with vaddr into memory */
251
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
252 253
	if (ret <= 0)
		return ret;
254

255 256 257 258
	ret = verify_opcode(old_page, vaddr, &opcode);
	if (ret <= 0)
		goto put_old;

259 260 261
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
262
		goto put_old;
263 264 265 266 267 268 269 270

	__SetPageUptodate(new_page);

	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
271
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
272 273 274 275 276 277

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
278
		goto put_new;
279

280
	ret = __replace_page(vma, vaddr, old_page, new_page);
281

282
put_new:
283
	page_cache_release(new_page);
284
put_old:
285 286
	put_page(old_page);

287 288
	if (unlikely(ret == -EAGAIN))
		goto retry;
289 290 291 292
	return ret;
}

/**
293
 * set_swbp - store breakpoint at a given address.
294
 * @auprobe: arch specific probepoint information.
295 296 297 298 299 300
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
301
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
302
{
303
	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
304 305 306 307 308
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
309
 * @auprobe: arch specific probepoint information.
310 311 312 313 314
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
315
int __weak
316
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
317
{
318
	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
319 320 321 322 323 324
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
325

326 327 328
	if (l->inode > r->inode)
		return 1;

329 330 331 332 333
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;

369
	spin_lock(&uprobes_treelock);
370
	uprobe = __find_uprobe(inode, offset);
371
	spin_unlock(&uprobes_treelock);
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
398

399 400 401 402 403
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
404

405 406 407 408
	return u;
}

/*
409
 * Acquire uprobes_treelock.
410 411 412 413 414 415 416 417 418 419
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	struct uprobe *u;

420
	spin_lock(&uprobes_treelock);
421
	u = __insert_uprobe(uprobe);
422
	spin_unlock(&uprobes_treelock);
423

424 425 426
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
456
	} else {
457
		atomic_inc(&uprobe_events);
458 459
	}

460 461 462
	return uprobe;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

478
/* Returns the previous consumer */
479
static struct uprobe_consumer *
480
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
481 482
{
	down_write(&uprobe->consumer_rwsem);
483 484
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
485
	up_write(&uprobe->consumer_rwsem);
486

487
	return uc->next;
488 489 490
}

/*
491 492
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
493 494
 * or return false.
 */
495
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
496 497 498 499 500 501
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
502 503
		if (*con == uc) {
			*con = uc->next;
504 505 506 507 508
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
509

510 511 512
	return ret;
}

513
static int
514
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
515
			unsigned long nbytes, loff_t offset)
516 517 518
{
	struct page *page;
	void *vaddr;
519 520
	unsigned long off;
	pgoff_t idx;
521 522 523 524

	if (!filp)
		return -EINVAL;

525 526 527
	if (!mapping->a_ops->readpage)
		return -EIO;

528 529
	idx = offset >> PAGE_CACHE_SHIFT;
	off = offset & ~PAGE_MASK;
530 531 532 533 534 535 536 537 538 539

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
540
	memcpy(insn, vaddr + off, nbytes);
541 542
	kunmap_atomic(vaddr);
	page_cache_release(page);
543

544 545 546
	return 0;
}

547
static int copy_insn(struct uprobe *uprobe, struct file *filp)
548 549 550
{
	struct address_space *mapping;
	unsigned long nbytes;
551
	int bytes;
552

553
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
554 555 556 557 558 559 560 561 562 563
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
564 565 566 567
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
568 569
		bytes = nbytes;
	}
570
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
				struct mm_struct *mm, unsigned long vaddr)
{
	int ret = 0;

	if (uprobe->flags & UPROBE_COPY_INSN)
		return ret;

	ret = copy_insn(uprobe, file);
	if (ret)
		goto out;

	ret = -ENOTSUPP;
	if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
		goto out;

	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
	if (ret)
		goto out;

	/* write_opcode() assumes we don't cross page boundary */
	BUG_ON((uprobe->offset & ~PAGE_MASK) +
			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
	uprobe->flags |= UPROBE_COPY_INSN;

 out:
	return ret;
}

604 605
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
606
			struct vm_area_struct *vma, unsigned long vaddr)
607
{
608
	bool first_uprobe;
609 610 611 612 613 614 615 616 617 618
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
619
		return 0;
620

621 622 623
	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
	if (ret)
		return ret;
624

625 626 627 628 629 630 631 632
	/*
	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
	 * the task can hit this breakpoint right after __replace_page().
	 */
	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
	if (first_uprobe)
		set_bit(MMF_HAS_UPROBES, &mm->flags);

633
	ret = set_swbp(&uprobe->arch, mm, vaddr);
634 635 636
	if (!ret)
		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
	else if (first_uprobe)
637
		clear_bit(MMF_HAS_UPROBES, &mm->flags);
638 639 640 641

	return ret;
}

642
static int
643
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
644
{
645 646
	/* can happen if uprobe_register() fails */
	if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
647
		return 0;
648 649

	set_bit(MMF_RECALC_UPROBES, &mm->flags);
650
	return set_orig_insn(&uprobe->arch, mm, vaddr);
651 652
}

653
/*
654 655 656
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
657
 */
658 659
static void delete_uprobe(struct uprobe *uprobe)
{
660
	spin_lock(&uprobes_treelock);
661
	rb_erase(&uprobe->rb_node, &uprobes_tree);
662
	spin_unlock(&uprobes_treelock);
663 664 665 666 667
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

668 669 670
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
671
	unsigned long vaddr;
672 673 674
};

static inline struct map_info *free_map_info(struct map_info *info)
675
{
676 677 678 679 680 681 682 683 684
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
685 686
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
687 688 689 690
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
691

692 693
 again:
	mutex_lock(&mapping->i_mmap_mutex);
694 695 696 697
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

698 699 700 701 702 703 704 705 706 707
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
708 709 710
		if (!prev) {
			more++;
			continue;
711 712
		}

713 714
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
715

716 717 718 719
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
720

721
		info->mm = vma->vm_mm;
722
		info->vaddr = offset_to_vaddr(vma, offset);
723
	}
724 725
	mutex_unlock(&mapping->i_mmap_mutex);

726 727 728 729 730 731 732 733
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
750 751 752 753
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
754 755
	struct map_info *info;
	int err = 0;
756

757 758 759 760
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
	if (IS_ERR(info))
		return PTR_ERR(info);
761

762 763 764
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
765

766
		if (err && is_register)
767
			goto free;
768

769
		down_write(&mm->mmap_sem);
770 771 772
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
		    vma->vm_file->f_mapping->host != uprobe->inode)
773 774
			goto unlock;

775 776
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
777
			goto unlock;
778

779
		if (is_register)
780
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
781
		else
782
			err |= remove_breakpoint(uprobe, mm, info->vaddr);
783

784 785 786 787 788
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
789
	}
790

791
	return err;
792 793
}

794
static int __uprobe_register(struct uprobe *uprobe)
795 796 797 798
{
	return register_for_each_vma(uprobe, true);
}

799
static void __uprobe_unregister(struct uprobe *uprobe)
800 801 802 803 804 805 806 807
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
808
 * uprobe_register - register a probe
809 810
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
811
 * @uc: information on howto handle the probe..
812
 *
813
 * Apart from the access refcount, uprobe_register() takes a creation
814 815
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
816
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
817
 * @uprobe even before the register operation is complete. Creation
818
 * refcount is released when the last @uc for the @uprobe
819 820 821 822 823
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
824
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
825 826
{
	struct uprobe *uprobe;
827
	int ret;
828

829
	if (!inode || !uc || uc->next)
830
		return -EINVAL;
831 832

	if (offset > i_size_read(inode))
833
		return -EINVAL;
834 835 836 837

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
838

839 840 841
	if (!uprobe) {
		ret = -ENOMEM;
	} else if (!consumer_add(uprobe, uc)) {
842
		ret = __uprobe_register(uprobe);
843 844
		if (ret) {
			uprobe->consumers = NULL;
845 846
			__uprobe_unregister(uprobe);
		} else {
847
			uprobe->flags |= UPROBE_RUN_HANDLER;
848
		}
849 850 851
	}

	mutex_unlock(uprobes_hash(inode));
852 853
	if (uprobe)
		put_uprobe(uprobe);
854 855 856 857 858

	return ret;
}

/*
859
 * uprobe_unregister - unregister a already registered probe.
860 861
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
862
 * @uc: identify which probe if multiple probes are colocated.
863
 */
864
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
865
{
866
	struct uprobe *uprobe;
867

868
	if (!inode || !uc)
869 870 871 872 873 874 875 876
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

877
	if (consumer_del(uprobe, uc)) {
878 879
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
880
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
881
		}
882 883 884 885 886 887 888
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

889 890
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
891 892 893 894
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
895
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
896

897
		if (inode < u->inode) {
898
			n = n->rb_left;
899
		} else if (inode > u->inode) {
900
			n = n->rb_right;
901 902 903 904 905 906 907 908
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
909
	}
910

911
	return n;
912 913 914
}

/*
915
 * For a given range in vma, build a list of probes that need to be inserted.
916
 */
917 918 919 920
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
921
{
922 923 924
	loff_t min, max;
	struct rb_node *n, *t;
	struct uprobe *u;
925

926
	INIT_LIST_HEAD(head);
927
	min = vaddr_to_offset(vma, start);
928
	max = min + (end - start) - 1;
929

930
	spin_lock(&uprobes_treelock);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
947
	}
948
	spin_unlock(&uprobes_treelock);
949 950 951
}

/*
952
 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
953
 *
954 955
 * Currently we ignore all errors and always return 0, the callers
 * can't handle the failure anyway.
956
 */
957
int uprobe_mmap(struct vm_area_struct *vma)
958 959
{
	struct list_head tmp_list;
960
	struct uprobe *uprobe, *u;
961 962 963
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
964
		return 0;
965 966 967

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
968
		return 0;
969 970

	mutex_lock(uprobes_mmap_hash(inode));
971
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
972

973
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
974
		if (!fatal_signal_pending(current)) {
975
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
976
			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
977 978 979 980 981
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));

982
	return 0;
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static bool
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	loff_t min, max;
	struct inode *inode;
	struct rb_node *n;

	inode = vma->vm_file->f_mapping->host;

	min = vaddr_to_offset(vma, start);
	max = min + (end - start) - 1;

	spin_lock(&uprobes_treelock);
	n = find_node_in_range(inode, min, max);
	spin_unlock(&uprobes_treelock);

	return !!n;
}

1004 1005 1006
/*
 * Called in context of a munmap of a vma.
 */
1007
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1008 1009 1010 1011
{
	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

1012 1013 1014
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

1015 1016
	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1017 1018
		return;

1019 1020
	if (vma_has_uprobes(vma, start, end))
		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1021 1022
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

1122 1123
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
{
1124 1125
	newmm->uprobes_state.xol_area = NULL;

1126
	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1127
		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1128 1129 1130
		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
	}
1131 1132
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1258
	xol_free_insn_slot(t);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1295 1296 1297
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
1341 1342 1343 1344 1345
	if (uprobe->flags & UPROBE_SKIP_SSTEP) {
		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
			return true;
		uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	}
1346 1347 1348
	return false;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static void mmf_recalc_uprobes(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!valid_vma(vma, false))
			continue;
		/*
		 * This is not strictly accurate, we can race with
		 * uprobe_unregister() and see the already removed
		 * uprobe if delete_uprobe() was not yet called.
		 */
		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
			return;
	}

	clear_bit(MMF_HAS_UPROBES, &mm->flags);
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
{
	struct page *page;
	uprobe_opcode_t opcode;
	int result;

	pagefault_disable();
	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
							sizeof(opcode));
	pagefault_enable();

	if (likely(result == 0))
		goto out;

	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
	if (result < 0)
		return result;

	copy_opcode(page, vaddr, &opcode);
	put_page(page);
 out:
	return is_swbp_insn(&opcode);
}

1392
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1393
{
1394 1395
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1396 1397 1398 1399
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1400 1401
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
1402 1403
			struct inode *inode = vma->vm_file->f_mapping->host;
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1404

1405 1406
			uprobe = find_uprobe(inode, offset);
		}
1407 1408 1409 1410 1411

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1412
	}
1413 1414 1415

	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
		mmf_recalc_uprobes(mm);
1416 1417
	up_read(&mm->mmap_sem);

1418 1419 1420
	return uprobe;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
{
	user_enable_single_step(current);
}

void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
{
	user_disable_single_step(current);
}

1431 1432 1433 1434 1435 1436 1437 1438 1439
/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1440
	int uninitialized_var(is_swbp);
1441 1442

	bp_vaddr = uprobe_get_swbp_addr(regs);
1443
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1444

1445
	if (!uprobe) {
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1460 1461
		return;
	}
1462 1463 1464 1465 1466 1467 1468 1469
	/*
	 * TODO: move copy_insn/etc into _register and remove this hack.
	 * After we hit the bp, _unregister + _register can install the
	 * new and not-yet-analyzed uprobe at the same address, restart.
	 */
	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
	if (unlikely(!(uprobe->flags & UPROBE_COPY_INSN)))
		goto restart;
1470

O
Oleg Nesterov 已提交
1471
	utask = current->utask;
1472 1473 1474 1475
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
1476
			goto restart;
1477
	}
1478

1479
	handler_chain(uprobe, regs);
1480 1481
	if (can_skip_sstep(uprobe, regs))
		goto out;
1482 1483

	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1484
		arch_uprobe_enable_step(&uprobe->arch);
1485 1486
		utask->active_uprobe = uprobe;
		utask->state = UTASK_SSTEP;
1487 1488 1489
		return;
	}

1490 1491 1492 1493 1494 1495 1496
restart:
	/*
	 * cannot singlestep; cannot skip instruction;
	 * re-execute the instruction.
	 */
	instruction_pointer_set(regs, bp_vaddr);
out:
1497
	put_uprobe(uprobe);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

1516
	arch_uprobe_disable_step(&uprobe->arch);
1517 1518 1519
	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
1520
	xol_free_insn_slot(current);
1521 1522 1523 1524 1525 1526 1527

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
O
Oleg Nesterov 已提交
1528 1529 1530
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
 * allows the thread to return from interrupt. After that handle_swbp()
 * sets utask->active_uprobe.
1531
 *
O
Oleg Nesterov 已提交
1532 1533
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
 * and allows the thread to return from interrupt.
1534 1535 1536 1537 1538 1539 1540 1541
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1542 1543
	clear_thread_flag(TIF_UPROBE);

1544
	utask = current->utask;
O
Oleg Nesterov 已提交
1545
	if (utask && utask->active_uprobe)
1546
		handle_singlestep(utask, regs);
O
Oleg Nesterov 已提交
1547 1548
	else
		handle_swbp(regs);
1549 1550 1551 1552 1553 1554 1555 1556
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
1557
	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		return 0;

	set_thread_flag(TIF_UPROBE);
	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1586 1587 1588 1589 1590 1591 1592 1593
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1594 1595

	return register_die_notifier(&uprobe_exception_nb);
1596
}
1597
module_init(init_uprobes);
1598 1599 1600 1601 1602

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);