uprobes.c 38.8 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35

36 37
#include <linux/uprobes.h>

38 39 40
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

41
static struct rb_root uprobes_tree = RB_ROOT;
42

43 44 45
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

64 65
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66 67

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68 69 70

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72 73

/*
74
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75 76 77 78 79
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

80 81 82 83 84 85 86 87 88 89 90 91
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

108 109
	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
				== (VM_READ|VM_EXEC))
110 111 112 113 114 115 116 117 118 119 120
		return true;

	return false;
}

static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
{
	loff_t vaddr;

	vaddr = vma->vm_start + offset;
	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121

122 123 124 125 126 127 128 129
	return vaddr;
}

/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
130
 * @addr:     address the old @page is mapped at
131 132 133 134 135
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
136 137
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
138 139
{
	struct mm_struct *mm = vma->vm_mm;
140 141
	spinlock_t *ptl;
	pte_t *ptep;
142
	int err;
143

144 145 146 147
	/* freeze PageSwapCache() for try_to_free_swap() below */
	lock_page(page);

	err = -EAGAIN;
148
	ptep = page_check_address(page, mm, addr, &ptl, 0);
149
	if (!ptep)
150
		goto unlock;
151 152 153 154

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

155 156 157 158 159
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

160 161 162 163 164 165 166 167 168 169
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	put_page(page);
	pte_unmap_unlock(ptep, ptl);

170 171 172 173
	err = 0;
 unlock:
	unlock_page(page);
	return err;
174 175 176
}

/**
177
 * is_swbp_insn - check if instruction is breakpoint instruction.
178
 * @insn: instruction to be checked.
179
 * Default implementation of is_swbp_insn
180 181
 * Returns true if @insn is a breakpoint instruction.
 */
182
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
183
{
184
	return *insn == UPROBE_SWBP_INSN;
185 186 187 188 189 190 191 192 193 194 195 196 197 198
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
199
 * @auprobe: arch breakpointing information.
200 201 202 203 204 205 206 207 208 209
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
210
static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
211 212 213 214 215 216
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	int ret;
217

218
retry:
219 220 221 222
	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;
223

224 225 226
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
227
		goto put_old;
228 229 230 231 232 233 234 235

	__SetPageUptodate(new_page);

	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
236
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
237 238 239 240 241 242

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
243
		goto put_new;
244

245
	ret = __replace_page(vma, vaddr, old_page, new_page);
246

247
put_new:
248
	page_cache_release(new_page);
249
put_old:
250 251
	put_page(old_page);

252 253
	if (unlikely(ret == -EAGAIN))
		goto retry;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
269
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
270 271 272 273 274
{
	struct page *page;
	void *vaddr_new;
	int ret;

275
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
276 277 278 279 280 281
	if (ret <= 0)
		return ret;

	lock_page(page);
	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
282
	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
283 284
	kunmap_atomic(vaddr_new);
	unlock_page(page);
285 286 287

	put_page(page);

288 289 290
	return 0;
}

291
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
292 293
{
	uprobe_opcode_t opcode;
294
	int result;
295

296 297 298 299 300 301 302 303 304 305
	if (current->mm == mm) {
		pagefault_disable();
		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
								sizeof(opcode));
		pagefault_enable();

		if (likely(result == 0))
			goto out;
	}

306
	result = read_opcode(mm, vaddr, &opcode);
307 308
	if (result)
		return result;
309
out:
310
	if (is_swbp_insn(&opcode))
311 312 313 314 315 316
		return 1;

	return 0;
}

/**
317
 * set_swbp - store breakpoint at a given address.
318
 * @auprobe: arch specific probepoint information.
319 320 321 322 323 324
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
325
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
326
{
327
	int result;
328 329 330
	/*
	 * See the comment near uprobes_hash().
	 */
331
	result = is_swbp_at_addr(mm, vaddr);
332 333 334 335 336 337
	if (result == 1)
		return -EEXIST;

	if (result)
		return result;

338
	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
339 340 341 342 343
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
344
 * @auprobe: arch specific probepoint information.
345 346 347 348 349 350
 * @vaddr: the virtual address to insert the opcode.
 * @verify: if true, verify existance of breakpoint instruction.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
351
int __weak
352
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
353 354
{
	if (verify) {
355
		int result;
356

357
		result = is_swbp_at_addr(mm, vaddr);
358 359 360 361 362 363
		if (!result)
			return -EINVAL;

		if (result != 1)
			return result;
	}
364
	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
365 366 367 368 369 370
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
371

372 373 374
	if (l->inode > r->inode)
		return 1;

375 376 377 378 379
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	uprobe = __find_uprobe(inode, offset);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
445

446 447 448 449 450
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
451

452 453 454 455
	return u;
}

/*
456
 * Acquire uprobes_treelock.
457 458 459 460 461 462 463 464 465 466 467 468 469 470
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;
	struct uprobe *u;

	spin_lock_irqsave(&uprobes_treelock, flags);
	u = __insert_uprobe(uprobe);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
471

472 473 474
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
504
	} else {
505
		atomic_inc(&uprobe_events);
506 507
	}

508 509 510
	return uprobe;
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

526
/* Returns the previous consumer */
527
static struct uprobe_consumer *
528
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
529 530
{
	down_write(&uprobe->consumer_rwsem);
531 532
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
533
	up_write(&uprobe->consumer_rwsem);
534

535
	return uc->next;
536 537 538
}

/*
539 540
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
541 542
 * or return false.
 */
543
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
544 545 546 547 548 549
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
550 551
		if (*con == uc) {
			*con = uc->next;
552 553 554 555 556
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
557

558 559 560
	return ret;
}

561
static int
562
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
563
			unsigned long nbytes, loff_t offset)
564 565 566
{
	struct page *page;
	void *vaddr;
567 568
	unsigned long off;
	pgoff_t idx;
569 570 571 572

	if (!filp)
		return -EINVAL;

573 574 575
	if (!mapping->a_ops->readpage)
		return -EIO;

576 577
	idx = offset >> PAGE_CACHE_SHIFT;
	off = offset & ~PAGE_MASK;
578 579 580 581 582 583 584 585 586 587

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
588
	memcpy(insn, vaddr + off, nbytes);
589 590
	kunmap_atomic(vaddr);
	page_cache_release(page);
591

592 593 594
	return 0;
}

595
static int copy_insn(struct uprobe *uprobe, struct file *filp)
596 597 598
{
	struct address_space *mapping;
	unsigned long nbytes;
599
	int bytes;
600

601
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
602 603 604 605 606 607 608 609 610 611
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
612 613 614 615
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
616 617
		bytes = nbytes;
	}
618
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * How mm->uprobes_state.count gets updated
 * uprobe_mmap() increments the count if
 * 	- it successfully adds a breakpoint.
 * 	- it cannot add a breakpoint, but sees that there is a underlying
 * 	  breakpoint (via a is_swbp_at_addr()).
 *
 * uprobe_munmap() decrements the count if
 * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
 * 	  unless a uprobe_mmap kicks in, since the old vma would be
 * 	  dropped just after uprobe_munmap.)
 *
 * uprobe_register increments the count if:
 * 	- it successfully adds a breakpoint.
 *
 * uprobe_unregister decrements the count if:
 * 	- it sees a underlying breakpoint and removes successfully.
 * 	  (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
 * 	  since there is no underlying breakpoint after the
 * 	  breakpoint removal.)
 */
644 645
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
646
			struct vm_area_struct *vma, unsigned long vaddr)
647 648 649 650 651 652 653 654 655 656 657 658 659
{
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
		return -EEXIST;

660
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
661
		ret = copy_insn(uprobe, vma->vm_file);
662 663 664
		if (ret)
			return ret;

665
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
666
			return -ENOTSUPP;
667

668
		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
669 670 671
		if (ret)
			return ret;

672 673 674 675
		/* write_opcode() assumes we don't cross page boundary */
		BUG_ON((uprobe->offset & ~PAGE_MASK) +
				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

676
		uprobe->flags |= UPROBE_COPY_INSN;
677
	}
678 679 680 681 682 683 684 685 686 687

	/*
	 * Ideally, should be updating the probe count after the breakpoint
	 * has been successfully inserted. However a thread could hit the
	 * breakpoint we just inserted even before the probe count is
	 * incremented. If this is the first breakpoint placed, breakpoint
	 * notifier might ignore uprobes and pass the trap to the thread.
	 * Hence increment before and decrement on failure.
	 */
	atomic_inc(&mm->uprobes_state.count);
688
	ret = set_swbp(&uprobe->arch, mm, vaddr);
689 690
	if (ret)
		atomic_dec(&mm->uprobes_state.count);
691 692 693 694

	return ret;
}

695
static void
696
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
697
{
698
	if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
699
		atomic_dec(&mm->uprobes_state.count);
700 701
}

702
/*
703 704 705
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
706
 */
707 708 709 710 711 712 713 714 715 716 717 718
static void delete_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	rb_erase(&uprobe->rb_node, &uprobes_tree);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

719 720 721
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
722
	unsigned long vaddr;
723 724 725
};

static inline struct map_info *free_map_info(struct map_info *info)
726
{
727 728 729 730 731 732 733 734 735
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
736 737
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
738 739 740 741
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
742

743 744
 again:
	mutex_lock(&mapping->i_mmap_mutex);
745 746 747 748
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

749 750 751 752 753 754 755 756 757 758
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
759 760 761
		if (!prev) {
			more++;
			continue;
762 763
		}

764 765
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
766

767 768 769 770
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
771

772 773 774
		info->mm = vma->vm_mm;
		info->vaddr = vma_address(vma, offset);
	}
775 776
	mutex_unlock(&mapping->i_mmap_mutex);

777 778 779 780 781 782 783 784
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
801 802 803 804
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
805 806
	struct map_info *info;
	int err = 0;
807

808 809 810 811
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
	if (IS_ERR(info))
		return PTR_ERR(info);
812

813 814 815
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
816

817 818
		if (err)
			goto free;
819

820
		down_write(&mm->mmap_sem);
821 822 823 824
		vma = find_vma(mm, (unsigned long)info->vaddr);
		if (!vma || !valid_vma(vma, is_register))
			goto unlock;

825
		if (vma->vm_file->f_mapping->host != uprobe->inode ||
826
		    vma_address(vma, uprobe->offset) != info->vaddr)
827
			goto unlock;
828 829

		if (is_register) {
830
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
831 832 833 834
			/*
			 * We can race against uprobe_mmap(), see the
			 * comment near uprobe_hash().
			 */
835 836 837 838
			if (err == -EEXIST)
				err = 0;
		} else {
			remove_breakpoint(uprobe, mm, info->vaddr);
839
		}
840 841 842 843 844
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
845
	}
846

847
	return err;
848 849
}

850
static int __uprobe_register(struct uprobe *uprobe)
851 852 853 854
{
	return register_for_each_vma(uprobe, true);
}

855
static void __uprobe_unregister(struct uprobe *uprobe)
856 857 858 859 860 861 862 863
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
864
 * uprobe_register - register a probe
865 866
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
867
 * @uc: information on howto handle the probe..
868
 *
869
 * Apart from the access refcount, uprobe_register() takes a creation
870 871
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
872
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
873
 * @uprobe even before the register operation is complete. Creation
874
 * refcount is released when the last @uc for the @uprobe
875 876 877 878 879
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
880
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
881 882
{
	struct uprobe *uprobe;
883
	int ret;
884

885
	if (!inode || !uc || uc->next)
886
		return -EINVAL;
887 888

	if (offset > i_size_read(inode))
889
		return -EINVAL;
890 891 892 893

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
894

895
	if (uprobe && !consumer_add(uprobe, uc)) {
896
		ret = __uprobe_register(uprobe);
897 898
		if (ret) {
			uprobe->consumers = NULL;
899 900
			__uprobe_unregister(uprobe);
		} else {
901
			uprobe->flags |= UPROBE_RUN_HANDLER;
902
		}
903 904 905 906 907 908 909 910 911
	}

	mutex_unlock(uprobes_hash(inode));
	put_uprobe(uprobe);

	return ret;
}

/*
912
 * uprobe_unregister - unregister a already registered probe.
913 914
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
915
 * @uc: identify which probe if multiple probes are colocated.
916
 */
917
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
918
{
919
	struct uprobe *uprobe;
920

921
	if (!inode || !uc)
922 923 924 925 926 927 928 929
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

930
	if (consumer_del(uprobe, uc)) {
931 932
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
933
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
934
		}
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

/*
 * Of all the nodes that correspond to the given inode, return the node
 * with the least offset.
 */
static struct rb_node *find_least_offset_node(struct inode *inode)
{
	struct uprobe u = { .inode = inode, .offset = 0};
	struct rb_node *n = uprobes_tree.rb_node;
	struct rb_node *close_node = NULL;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
957

958 959 960 961 962 963 964 965 966 967 968
		if (uprobe->inode == inode)
			close_node = n;

		if (!match)
			return close_node;

		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
969

970 971 972 973 974 975 976 977 978 979
	return close_node;
}

/*
 * For a given inode, build a list of probes that need to be inserted.
 */
static void build_probe_list(struct inode *inode, struct list_head *head)
{
	struct uprobe *uprobe;
	unsigned long flags;
980
	struct rb_node *n;
981 982

	spin_lock_irqsave(&uprobes_treelock, flags);
983

984
	n = find_least_offset_node(inode);
985

986 987 988 989 990 991 992 993
	for (; n; n = rb_next(n)) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		if (uprobe->inode != inode)
			break;

		list_add(&uprobe->pending_list, head);
		atomic_inc(&uprobe->ref);
	}
994

995 996 997 998 999 1000 1001 1002 1003
	spin_unlock_irqrestore(&uprobes_treelock, flags);
}

/*
 * Called from mmap_region.
 * called with mm->mmap_sem acquired.
 *
 * Return -ve no if we fail to insert probes and we cannot
 * bail-out.
1004 1005
 * Return 0 otherwise. i.e:
 *
1006 1007 1008 1009
 *	- successful insertion of probes
 *	- (or) no possible probes to be inserted.
 *	- (or) insertion of probes failed but we can bail-out.
 */
1010
int uprobe_mmap(struct vm_area_struct *vma)
1011 1012
{
	struct list_head tmp_list;
1013
	struct uprobe *uprobe, *u;
1014
	struct inode *inode;
1015
	int ret, count;
1016 1017

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1018
		return 0;
1019 1020 1021

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
1022
		return 0;
1023 1024 1025 1026

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);
1027 1028

	ret = 0;
1029
	count = 0;
1030

1031
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1032
		if (!ret) {
1033
			loff_t vaddr = vma_address(vma, uprobe->offset);
1034 1035 1036 1037

			if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
				put_uprobe(uprobe);
				continue;
1038
			}
1039 1040

			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1041 1042 1043 1044
			/*
			 * We can race against uprobe_register(), see the
			 * comment near uprobe_hash().
			 */
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			if (ret == -EEXIST) {
				ret = 0;

				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
					continue;

				/*
				 * Unable to insert a breakpoint, but
				 * breakpoint lies underneath. Increment the
				 * probe count.
				 */
				atomic_inc(&vma->vm_mm->uprobes_state.count);
			}

			if (!ret)
				count++;
1061 1062 1063 1064 1065 1066
		}
		put_uprobe(uprobe);
	}

	mutex_unlock(uprobes_mmap_hash(inode));

1067 1068 1069
	if (ret)
		atomic_sub(count, &vma->vm_mm->uprobes_state.count);

1070 1071 1072
	return ret;
}

1073 1074 1075
/*
 * Called in context of a munmap of a vma.
 */
1076
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1077 1078
{
	struct list_head tmp_list;
1079
	struct uprobe *uprobe, *u;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
		return;

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
		return;

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);

1096
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1097
		loff_t vaddr = vma_address(vma, uprobe->offset);
1098

1099
		if (vaddr >= start && vaddr < end) {
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
			/*
			 * An unregister could have removed the probe before
			 * unmap. So check before we decrement the count.
			 */
			if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
				atomic_dec(&vma->vm_mm->uprobes_state.count);
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

/*
 * uprobe_reset_state - Free the area allocated for slots.
 */
void uprobe_reset_state(struct mm_struct *mm)
{
	mm->uprobes_state.xol_area = NULL;
1217
	atomic_set(&mm->uprobes_state.count, 0);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}

/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1345
	xol_free_insn_slot(t);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1382 1383 1384
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
		return true;

	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	return false;
}

1435
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1436
{
1437 1438
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1439 1440 1441 1442
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1443 1444 1445 1446
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
			struct inode *inode;
			loff_t offset;
1447

1448 1449 1450 1451 1452
			inode = vma->vm_file->f_mapping->host;
			offset = bp_vaddr - vma->vm_start;
			offset += (vma->vm_pgoff << PAGE_SHIFT);
			uprobe = find_uprobe(inode, offset);
		}
1453 1454 1455 1456 1457

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1458 1459 1460
	}
	up_read(&mm->mmap_sem);

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1473
	int uninitialized_var(is_swbp);
1474 1475

	bp_vaddr = uprobe_get_swbp_addr(regs);
1476
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1477

1478
	if (!uprobe) {
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		return;
	}

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
			goto cleanup_ret;
	}
	utask->active_uprobe = uprobe;
	handler_chain(uprobe, regs);
	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
		goto cleanup_ret;

	utask->state = UTASK_SSTEP;
	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
		user_enable_single_step(current);
		return;
	}

cleanup_ret:
	if (utask) {
		utask->active_uprobe = NULL;
		utask->state = UTASK_RUNNING;
	}
	if (uprobe) {
		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))

			/*
			 * cannot singlestep; cannot skip instruction;
			 * re-execute the instruction.
			 */
			instruction_pointer_set(regs, bp_vaddr);

		put_uprobe(uprobe);
	}
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
	user_disable_single_step(current);
1552
	xol_free_insn_slot(current);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
 * allows the thread to return from interrupt.
 *
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
 * interrupt.
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

	utask = current->utask;
	if (!utask || utask->state == UTASK_BP_HIT)
		handle_swbp(regs);
	else
		handle_singlestep(utask, regs);
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1590 1591
	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
		/* task is currently not uprobed */
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		return 0;

	utask = current->utask;
	if (utask)
		utask->state = UTASK_BP_HIT;

	set_thread_flag(TIF_UPROBE);

	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1625 1626 1627 1628 1629 1630 1631 1632
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1633 1634

	return register_die_notifier(&uprobe_exception_nb);
1635
}
1636
module_init(init_uprobes);
1637 1638 1639 1640 1641

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);