intel_pm.c 175.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <linux/vgaarb.h>
34
#include <drm/i915_powerwell.h>
35
#include <linux/pm_runtime.h>
36

B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59 60
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
61
 *
62 63
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
64
 *
65 66
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
67 68
 */

69
static void i8xx_disable_fbc(struct drm_device *dev)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

91
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
92 93 94 95 96 97 98 99 100
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
	int plane, i;
101
	u32 fbc_ctl;
102

103
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104 105 106
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

107 108 109 110 111
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
112 113 114 115 116 117
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

118 119 120 121 122 123 124 125 126
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
		fbc_ctl2 |= plane;
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
127 128 129 130 131 132 133 134 135 136

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

137 138
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 140
}

141
static bool i8xx_fbc_enabled(struct drm_device *dev)
142 143 144 145 146 147
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

148
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

172
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
173 174
}

175
static void g4x_disable_fbc(struct drm_device *dev)
176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

190
static bool g4x_fbc_enabled(struct drm_device *dev)
191 192 193 194 195 196 197 198 199 200 201 202
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
203 204 205 206

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
207

208 209 210 211 212 213 214 215 216 217
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
218

219
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
220 221
}

222
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	/* Set persistent mode for front-buffer rendering, ala X. */
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
239 240 241
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
242 243 244 245 246 247
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249 250 251 252 253 254 255 256 257 258
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

259
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 261
}

262
static void ironlake_disable_fbc(struct drm_device *dev)
263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

277
static bool ironlake_fbc_enabled(struct drm_device *dev)
278 279 280 281 282 283
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

284 285 286 287 288 289 290 291 292
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

293
	I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
294 295 296 297 298

	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
		   IVB_DPFC_CTL_FENCE_EN |
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);

R
Rodrigo Vivi 已提交
299
	if (IS_IVYBRIDGE(dev)) {
300
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
R
Rodrigo Vivi 已提交
301
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
302
	} else {
303
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
304 305
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
			   HSW_BYPASS_FBC_QUEUE);
R
Rodrigo Vivi 已提交
306
	}
307

308 309 310 311 312 313
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

314
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
315 316
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
336
	if (work == dev_priv->fbc.fbc_work) {
337 338 339 340 341 342 343
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
		if (work->crtc->fb == work->fb) {
			dev_priv->display.enable_fbc(work->crtc,
						     work->interval);

344 345 346
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
			dev_priv->fbc.fb_id = work->crtc->fb->base.id;
			dev_priv->fbc.y = work->crtc->y;
347 348
		}

349
		dev_priv->fbc.fbc_work = NULL;
350 351 352 353 354 355 356 357
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
358
	if (dev_priv->fbc.fbc_work == NULL)
359 360 361 362 363
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
364
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
365 366
	 * entirely asynchronously.
	 */
367
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
368
		/* tasklet was killed before being run, clean up */
369
		kfree(dev_priv->fbc.fbc_work);
370 371 372 373 374 375

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
376
	dev_priv->fbc.fbc_work = NULL;
377 378
}

379
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
380 381 382 383 384 385 386 387 388 389
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

390
	work = kzalloc(sizeof(*work), GFP_KERNEL);
391
	if (work == NULL) {
392
		DRM_ERROR("Failed to allocate FBC work structure\n");
393 394 395 396 397 398 399 400 401
		dev_priv->display.enable_fbc(crtc, interval);
		return;
	}

	work->crtc = crtc;
	work->fb = crtc->fb;
	work->interval = interval;
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

402
	dev_priv->fbc.fbc_work = work;
403 404 405 406 407 408 409 410 411 412 413

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
414 415
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
430
	dev_priv->fbc.plane = -1;
431 432
}

433 434 435 436 437 438 439 440 441 442
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

443 444 445 446 447 448 449 450 451 452
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
453
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
470
	const struct drm_display_mode *adjusted_mode;
471
	unsigned int max_width, max_height;
472

473 474
	if (!I915_HAS_FBC(dev)) {
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
475
		return;
476
	}
477

478 479 480
	if (!i915_powersave) {
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
481
		return;
482
	}
483 484 485 486 487 488 489 490 491 492 493

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
494
		if (intel_crtc_active(tmp_crtc) &&
495
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
496
			if (crtc) {
497 498
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
499 500 501 502 503 504 505
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
506 507
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
508 509 510 511 512 513 514
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;
515
	adjusted_mode = &intel_crtc->config.adjusted_mode;
516

517 518
	if (i915_enable_fbc < 0 &&
	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
519 520
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
521
		goto out_disable;
522
	}
523
	if (!i915_enable_fbc) {
524 525
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
526 527
		goto out_disable;
	}
528 529
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
530 531 532
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
533 534
		goto out_disable;
	}
535 536

	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
537 538
		max_width = 4096;
		max_height = 2048;
539
	} else {
540 541
		max_width = 2048;
		max_height = 1536;
542
	}
543 544
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
545 546
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
547 548
		goto out_disable;
	}
549 550
	if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
	    intel_crtc->plane != PLANE_A) {
551
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
552
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
553 554 555 556 557 558 559 560
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
561 562
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
563 564 565 566 567 568 569
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

570
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
571 572
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
573 574 575
		goto out_disable;
	}

576 577 578 579 580
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
581 582 583
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

	intel_enable_fbc(crtc, 500);
615
	dev_priv->fbc.no_fbc_reason = FBC_OK;
616 617 618 619 620 621 622 623
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
624
	i915_gem_stolen_cleanup_compression(dev);
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

694
	dev_priv->ips.r_t = dev_priv->mem_freq;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
726
		dev_priv->ips.c_m = 0;
727
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
728
		dev_priv->ips.c_m = 1;
729
	} else {
730
		dev_priv->ips.c_m = 2;
731 732 733
	}
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

772
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

796
static void pineview_disable_cxsr(struct drm_device *dev)
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

820
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

836
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

853
static int i845_get_fifo_size(struct drm_device *dev, int plane)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

869
static int i830_get_fifo_size(struct drm_device *dev, int plane)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
	VALLEYVIEW_FIFO_SIZE,
	VALLEYVIEW_MAX_WM,
	VALLEYVIEW_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
	I965_CURSOR_FIFO,
	VALLEYVIEW_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static const struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static const struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1091
		if (intel_crtc_active(crtc)) {
1092 1093 1094 1095 1096 1097 1098 1099 1100
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1101
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1102
{
1103
	struct drm_device *dev = unused_crtc->dev;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1120
		const struct drm_display_mode *adjusted_mode;
1121
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1122 1123 1124 1125
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1185
	const struct drm_display_mode *adjusted_mode;
1186 1187 1188 1189 1190
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1191
	if (!intel_crtc_active(crtc)) {
1192 1193 1194 1195 1196
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1197
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1198
	clock = adjusted_mode->crtc_clock;
1199
	htotal = adjusted_mode->htotal;
1200
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1271
	const struct drm_display_mode *adjusted_mode;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1284
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1285
	clock = adjusted_mode->crtc_clock;
1286
	htotal = adjusted_mode->htotal;
1287
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

static bool vlv_compute_drain_latency(struct drm_device *dev,
				     int plane,
				     int *plane_prec_mult,
				     int *plane_dl,
				     int *cursor_prec_mult,
				     int *cursor_dl)
{
	struct drm_crtc *crtc;
	int clock, pixel_size;
	int entries;

	crtc = intel_get_crtc_for_plane(dev, plane);
1323
	if (!intel_crtc_active(crtc))
1324 1325
		return false;

1326
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */

	entries = (clock / 1000) * pixel_size;
	*plane_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
						     pixel_size);

	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
	*cursor_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

static void vlv_update_drain_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
							either 16 or 32 */

	/* For plane A, Cursor A */
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
				      &cursor_prec_mult, &cursora_dl)) {
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;

		I915_WRITE(VLV_DDL1, cursora_prec |
				(cursora_dl << DDL_CURSORA_SHIFT) |
				planea_prec | planea_dl);
	}

	/* For plane B, Cursor B */
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
				      &cursor_prec_mult, &cursorb_dl)) {
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;

		I915_WRITE(VLV_DDL2, cursorb_prec |
				(cursorb_dl << DDL_CURSORB_SHIFT) |
				planeb_prec | planeb_dl);
	}
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1388
static void valleyview_update_wm(struct drm_crtc *crtc)
1389
{
1390
	struct drm_device *dev = crtc->dev;
1391 1392 1393 1394
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1395
	int ignore_plane_sr, ignore_cursor_sr;
1396 1397 1398 1399
	unsigned int enabled = 0;

	vlv_update_drain_latency(dev);

1400
	if (g4x_compute_wm0(dev, PIPE_A,
1401 1402 1403
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1404
		enabled |= 1 << PIPE_A;
1405

1406
	if (g4x_compute_wm0(dev, PIPE_B,
1407 1408 1409
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1410
		enabled |= 1 << PIPE_B;
1411 1412 1413 1414 1415 1416

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1417 1418 1419 1420 1421
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1422
			     &ignore_plane_sr, &cursor_sr)) {
1423
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1424
	} else {
1425 1426
		I915_WRITE(FW_BLC_SELF_VLV,
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1427 1428
		plane_sr = cursor_sr = 0;
	}
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1441
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1442 1443
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1444 1445
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446 1447
}

1448
static void g4x_update_wm(struct drm_crtc *crtc)
1449
{
1450
	struct drm_device *dev = crtc->dev;
1451 1452 1453 1454 1455 1456
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;

1457
	if (g4x_compute_wm0(dev, PIPE_A,
1458 1459 1460
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1461
		enabled |= 1 << PIPE_A;
1462

1463
	if (g4x_compute_wm0(dev, PIPE_B,
1464 1465 1466
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1467
		enabled |= 1 << PIPE_B;
1468 1469 1470 1471 1472 1473

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1474
			     &plane_sr, &cursor_sr)) {
1475
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1476
	} else {
1477 1478
		I915_WRITE(FW_BLC_SELF,
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1479 1480
		plane_sr = cursor_sr = 0;
	}
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1493
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1494 1495 1496
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1497
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1498 1499 1500
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1501
static void i965_update_wm(struct drm_crtc *unused_crtc)
1502
{
1503
	struct drm_device *dev = unused_crtc->dev;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1514 1515
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1516
		int clock = adjusted_mode->crtc_clock;
1517
		int htotal = adjusted_mode->htotal;
1518
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		int pixel_size = crtc->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = ((htotal * 1000) / clock);

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
		   (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1569
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1570
{
1571
	struct drm_device *dev = unused_crtc->dev;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
		wm_info = &i855_wm_info;

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1590
	if (intel_crtc_active(crtc)) {
1591
		const struct drm_display_mode *adjusted_mode;
1592 1593 1594 1595
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1596 1597
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1598
					       wm_info, fifo_size, cpp,
1599 1600 1601 1602 1603 1604 1605
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1606
	if (intel_crtc_active(crtc)) {
1607
		const struct drm_display_mode *adjusted_mode;
1608 1609 1610 1611
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1612 1613
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1614
					       wm_info, fifo_size, cpp,
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
	if (IS_I945G(dev) || IS_I945GM(dev))
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
	else if (IS_I915GM(dev))
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1640 1641
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1642
		int clock = adjusted_mode->crtc_clock;
1643
		int htotal = adjusted_mode->htotal;
1644
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		int pixel_size = enabled->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = (htotal * 1000) / clock;

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

	if (HAS_FW_BLC(dev)) {
		if (enabled) {
			if (IS_I945G(dev) || IS_I945GM(dev))
				I915_WRITE(FW_BLC_SELF,
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
			else if (IS_I915GM(dev))
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
			DRM_DEBUG_KMS("memory self refresh enabled\n");
		} else
			DRM_DEBUG_KMS("memory self refresh disabled\n");
	}
}

1693
static void i830_update_wm(struct drm_crtc *unused_crtc)
1694
{
1695
	struct drm_device *dev = unused_crtc->dev;
1696 1697
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1698
	const struct drm_display_mode *adjusted_mode;
1699 1700 1701 1702 1703 1704 1705
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1706 1707
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1708
				       &i830_wm_info,
1709
				       dev_priv->display.get_fifo_size(dev, 0),
1710
				       4, latency_ns);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
1744 1745 1746 1747
	} else if (INTEL_INFO(dev)->gen >= 6) {
		/* enable FBC WM (except on ILK, where it must remain off) */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
				  int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1780
	const struct drm_display_mode *adjusted_mode;
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	unsigned long line_time_us;
	int hdisplay, htotal, pixel_size, clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1793
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1794
	clock = adjusted_mode->crtc_clock;
1795
	htotal = adjusted_mode->htotal;
1796
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

1826
static void ironlake_update_wm(struct drm_crtc *crtc)
1827
{
1828
	struct drm_device *dev = crtc->dev;
1829 1830 1831 1832 1833
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1834
	if (g4x_compute_wm0(dev, PIPE_A,
1835
			    &ironlake_display_wm_info,
1836
			    dev_priv->wm.pri_latency[0] * 100,
1837
			    &ironlake_cursor_wm_info,
1838
			    dev_priv->wm.cur_latency[0] * 100,
1839 1840 1841 1842 1843 1844
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1845
		enabled |= 1 << PIPE_A;
1846 1847
	}

1848
	if (g4x_compute_wm0(dev, PIPE_B,
1849
			    &ironlake_display_wm_info,
1850
			    dev_priv->wm.pri_latency[0] * 100,
1851
			    &ironlake_cursor_wm_info,
1852
			    dev_priv->wm.cur_latency[0] * 100,
1853 1854 1855 1856 1857 1858
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1859
		enabled |= 1 << PIPE_B;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled))
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1876
				   dev_priv->wm.pri_latency[1] * 500,
1877 1878 1879 1880 1881 1882 1883
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1884
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1885 1886 1887 1888 1889 1890
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1891
				   dev_priv->wm.pri_latency[2] * 500,
1892 1893 1894 1895 1896 1897 1898
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1899
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

1910
static void sandybridge_update_wm(struct drm_crtc *crtc)
1911
{
1912
	struct drm_device *dev = crtc->dev;
1913
	struct drm_i915_private *dev_priv = dev->dev_private;
1914
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
1915 1916 1917 1918 1919
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1920
	if (g4x_compute_wm0(dev, PIPE_A,
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1931
		enabled |= 1 << PIPE_A;
1932 1933
	}

1934
	if (g4x_compute_wm0(dev, PIPE_B,
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1945
		enabled |= 1 << PIPE_B;
1946 1947
	}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1969
				   dev_priv->wm.pri_latency[1] * 500,
1970 1971 1972 1973 1974 1975 1976
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1977
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1978 1979 1980 1981 1982 1983
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1984
				   dev_priv->wm.pri_latency[2] * 500,
1985 1986 1987 1988 1989 1990 1991
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1992
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1993 1994 1995 1996 1997 1998
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3, enabled,
1999
				   dev_priv->wm.pri_latency[3] * 500,
2000 2001 2002 2003 2004 2005 2006
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
2007
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2008 2009 2010 2011 2012
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2013
static void ivybridge_update_wm(struct drm_crtc *crtc)
2014
{
2015
	struct drm_device *dev = crtc->dev;
2016
	struct drm_i915_private *dev_priv = dev->dev_private;
2017
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
2018 2019 2020 2021 2022 2023
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
	unsigned int enabled;

	enabled = 0;
2024
	if (g4x_compute_wm0(dev, PIPE_A,
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
2035
		enabled |= 1 << PIPE_A;
2036 2037
	}

2038
	if (g4x_compute_wm0(dev, PIPE_B,
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2049
		enabled |= 1 << PIPE_B;
2050 2051
	}

2052
	if (g4x_compute_wm0(dev, PIPE_C,
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEC_IVB);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEC_IVB, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2063
		enabled |= 1 << PIPE_C;
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
2087
				   dev_priv->wm.pri_latency[1] * 500,
2088 2089 2090 2091 2092 2093 2094
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
2095
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2096 2097 2098 2099 2100 2101
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
2102
				   dev_priv->wm.pri_latency[2] * 500,
2103 2104 2105 2106 2107 2108 2109
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
2110
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2111 2112 2113 2114
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

2115
	/* WM3, note we have to correct the cursor latency */
2116
	if (!ironlake_compute_srwm(dev, 3, enabled,
2117
				   dev_priv->wm.pri_latency[3] * 500,
2118 2119
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
2120 2121
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
	    !ironlake_compute_srwm(dev, 3, enabled,
2122
				   dev_priv->wm.cur_latency[3] * 500,
2123 2124 2125
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2126 2127 2128 2129
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
2130
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2131 2132 2133 2134 2135
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2136 2137
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
2138 2139
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2140
	uint32_t pixel_rate;
2141

2142
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2143 2144 2145 2146

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

2147
	if (intel_crtc->config.pch_pfit.enabled) {
2148
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2149
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2150

2151 2152
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

2167
/* latency must be in 0.1us units. */
2168
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2169 2170 2171 2172
			       uint32_t latency)
{
	uint64_t ret;

2173 2174 2175
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2176 2177 2178 2179 2180 2181
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

2182
/* latency must be in 0.1us units. */
2183
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2184 2185 2186 2187 2188
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

2189 2190 2191
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2192 2193 2194 2195 2196 2197
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

2198
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2199 2200 2201 2202 2203
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

2204 2205 2206 2207
struct hsw_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
2208 2209 2210
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
2211 2212
};

2213 2214 2215 2216 2217 2218 2219
struct hsw_wm_maximums {
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2220 2221 2222 2223 2224 2225 2226
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

2227 2228 2229 2230
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2231
static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2232 2233
				   uint32_t mem_value,
				   bool is_lp)
2234
{
2235 2236
	uint32_t method1, method2;

2237
	if (!params->active || !params->pri.enabled)
2238 2239
		return 0;

2240
	method1 = ilk_wm_method1(params->pixel_rate,
2241
				 params->pri.bytes_per_pixel,
2242 2243 2244 2245 2246
				 mem_value);

	if (!is_lp)
		return method1;

2247
	method2 = ilk_wm_method2(params->pixel_rate,
2248
				 params->pipe_htotal,
2249 2250
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
2251 2252 2253
				 mem_value);

	return min(method1, method2);
2254 2255
}

2256 2257 2258 2259
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2260
static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2261 2262 2263 2264
				   uint32_t mem_value)
{
	uint32_t method1, method2;

2265
	if (!params->active || !params->spr.enabled)
2266 2267
		return 0;

2268
	method1 = ilk_wm_method1(params->pixel_rate,
2269
				 params->spr.bytes_per_pixel,
2270
				 mem_value);
2271
	method2 = ilk_wm_method2(params->pixel_rate,
2272
				 params->pipe_htotal,
2273 2274
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
2275 2276 2277 2278
				 mem_value);
	return min(method1, method2);
}

2279 2280 2281 2282
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2283
static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2284 2285
				   uint32_t mem_value)
{
2286
	if (!params->active || !params->cur.enabled)
2287 2288
		return 0;

2289
	return ilk_wm_method2(params->pixel_rate,
2290
			      params->pipe_htotal,
2291 2292
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2293 2294 2295
			      mem_value);
}

2296
/* Only for WM_LP. */
2297
static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2298
				   uint32_t pri_val)
2299
{
2300
	if (!params->active || !params->pri.enabled)
2301 2302
		return 0;

2303
	return ilk_wm_fbc(pri_val,
2304 2305
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2306 2307
}

2308 2309
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2310 2311 2312
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2313 2314 2315 2316 2317 2318 2319 2320
		return 768;
	else
		return 512;
}

/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2321
				     const struct intel_wm_config *config,
2322 2323 2324 2325 2326 2327 2328
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);
	unsigned int max;

	/* if sprites aren't enabled, sprites get nothing */
2329
	if (is_sprite && !config->sprites_enabled)
2330 2331 2332
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2333
	if (level == 0 || config->num_pipes_active > 1) {
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2345
	if (config->sprites_enabled) {
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2357 2358 2359
	if (INTEL_INFO(dev)->gen >= 8)
		max = level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		/* IVB/HSW primary/sprite plane watermarks */
		max = level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		max = level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		max = level == 0 ? 63 : 255;

	return min(fifo_size, max);
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2374 2375
				      int level,
				      const struct intel_wm_config *config)
2376 2377
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2378
	if (level > 0 && config->num_pipes_active > 1)
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		return 64;

	/* otherwise just report max that registers can hold */
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

/* Calculate the maximum FBC watermark */
2389
static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
2390 2391
{
	/* max that registers can hold */
2392 2393 2394 2395
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
2396 2397
}

2398 2399 2400 2401 2402
static void ilk_compute_wm_maximums(struct drm_device *dev,
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
				    struct hsw_wm_maximums *max)
2403
{
2404 2405 2406
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2407
	max->fbc = ilk_fbc_wm_max(dev);
2408 2409
}

2410 2411 2412
static bool ilk_validate_wm_level(int level,
				  const struct hsw_wm_maximums *max,
				  struct intel_wm_level *result)
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2451 2452
static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
				 int level,
2453
				 const struct hsw_pipe_wm_parameters *p,
2454
				 struct intel_wm_level *result)
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2474 2475
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2476 2477
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2478 2479
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2480
	u32 linetime, ips_linetime;
2481

2482 2483
	if (!intel_crtc_active(crtc))
		return 0;
2484

2485 2486 2487
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2488 2489 2490
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
					 intel_ddi_get_cdclk_freq(dev_priv));
2491

2492 2493
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (IS_HASWELL(dev)) {
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2506 2507 2508 2509
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2510 2511 2512 2513 2514 2515 2516
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2517 2518 2519 2520 2521 2522 2523
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2524 2525 2526
	}
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2545
static int ilk_wm_max_level(const struct drm_device *dev)
2546 2547 2548
{
	/* how many WM levels are we expecting */
	if (IS_HASWELL(dev))
2549
		return 4;
2550
	else if (INTEL_INFO(dev)->gen >= 6)
2551
		return 3;
2552
	else
2553 2554 2555 2556 2557 2558 2559 2560
		return 2;
}

static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static void intel_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2594 2595 2596 2597

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2598 2599
}

2600 2601
static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
				      struct hsw_pipe_wm_parameters *p,
2602
				      struct intel_wm_config *config)
2603
{
2604 2605 2606 2607
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2608

2609 2610
	p->active = intel_crtc_active(crtc);
	if (p->active) {
2611
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2612
		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2613 2614
		p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
		p->cur.bytes_per_pixel = 4;
2615
		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2616 2617 2618 2619
		p->cur.horiz_pixels = 64;
		/* TODO: for now, assume primary and cursor planes are always enabled. */
		p->pri.enabled = true;
		p->cur.enabled = true;
2620 2621
	}

2622
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2623
		config->num_pipes_active += intel_crtc_active(crtc);
2624

2625 2626 2627
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2628 2629
		if (intel_plane->pipe == pipe)
			p->spr = intel_plane->wm;
2630

2631 2632
		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
2633
	}
2634 2635
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
				  const struct hsw_pipe_wm_parameters *params,
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
	struct hsw_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
2653
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2654 2655 2656 2657 2658 2659 2660 2661

	for (level = 0; level <= max_level; level++)
		ilk_compute_wm_level(dev_priv, level, params,
				     &pipe_wm->wm[level]);

	pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);

	/* At least LP0 must be valid */
2662
	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		const struct intel_wm_level *wm =
			&intel_crtc->wm.active.wm[level];

		if (!wm->enable)
			return;

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}

	ret_wm->enable = true;
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
			 const struct hsw_wm_maximums *max,
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);

	merged->fbc_wm_enabled = true;

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2707
		if (!ilk_validate_wm_level(level, max, wm))
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
			break;

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
			merged->fbc_wm_enabled = false;
			wm->fbc_val = 0;
		}
	}
}

2721 2722 2723 2724 2725 2726
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2727
static void hsw_compute_wm_results(struct drm_device *dev,
2728
				   const struct intel_pipe_wm *merged,
2729
				   enum intel_ddb_partitioning partitioning,
2730 2731
				   struct hsw_wm_values *results)
{
2732 2733
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2734

2735
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2736
	results->partitioning = partitioning;
2737

2738
	/* LP1+ register values */
2739
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2740
		const struct intel_wm_level *r;
2741

2742
		level = ilk_wm_lp_to_level(wm_lp, merged);
2743

2744
		r = &merged->wm[level];
2745
		if (!r->enable)
2746 2747
			break;

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
			((level * 2) << WM1_LP_LATENCY_SHIFT) |
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2760 2761
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
	}
2762

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	/* LP0 register values */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2773

2774 2775 2776 2777
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2778 2779 2780
	}
}

2781 2782
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2783 2784 2785
static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2786
{
2787 2788
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2789

2790 2791 2792 2793 2794
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2795 2796
	}

2797 2798
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2799 2800 2801
			return r2;
		else
			return r1;
2802
	} else if (level1 > level2) {
2803 2804 2805 2806 2807 2808
		return r1;
	} else {
		return r2;
	}
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
					 const struct hsw_wm_values *old,
					 const struct hsw_wm_values *new)
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

	for_each_pipe(pipe) {
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2869 2870 2871 2872 2873
/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2874
				struct hsw_wm_values *results)
2875
{
2876
	struct hsw_wm_values *previous = &dev_priv->wm.hw;
2877
	unsigned int dirty;
2878 2879
	uint32_t val;

2880
	dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2881
	if (!dirty)
2882 2883
		return;

2884
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2885
		I915_WRITE(WM3_LP_ILK, 0);
2886
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2887
		I915_WRITE(WM2_LP_ILK, 0);
2888
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2889 2890
		I915_WRITE(WM1_LP_ILK, 0);

2891
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2892
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2893
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2894
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2895
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2896 2897
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2898
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2899
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2900
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2901
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2902
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2903 2904
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2905
	if (dirty & WM_DIRTY_DDB) {
2906
		val = I915_READ(WM_MISC);
2907
		if (results->partitioning == INTEL_DDB_PART_1_2)
2908 2909 2910 2911
			val &= ~WM_MISC_DATA_PARTITION_5_6;
		else
			val |= WM_MISC_DATA_PARTITION_5_6;
		I915_WRITE(WM_MISC, val);
2912 2913
	}

2914
	if (dirty & WM_DIRTY_FBC) {
2915 2916 2917 2918 2919 2920 2921 2922
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2923
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2924
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2925
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2926
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2927
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2928 2929
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);

2930
	if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2931
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2932
	if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2933
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2934
	if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2935
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2936 2937

	dev_priv->wm.hw = *results;
2938 2939
}

2940
static void haswell_update_wm(struct drm_crtc *crtc)
2941
{
2942
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943
	struct drm_device *dev = crtc->dev;
2944
	struct drm_i915_private *dev_priv = dev->dev_private;
2945
	struct hsw_wm_maximums max;
2946
	struct hsw_pipe_wm_parameters params = {};
2947
	struct hsw_wm_values results = {};
2948
	enum intel_ddb_partitioning partitioning;
2949
	struct intel_pipe_wm pipe_wm = {};
2950
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2951
	struct intel_wm_config config = {};
2952

2953
	hsw_compute_wm_parameters(crtc, &params, &config);
2954 2955 2956 2957 2958

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2959

2960
	intel_crtc->wm.active = pipe_wm;
2961

2962
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2963 2964 2965
	ilk_wm_merge(dev, &max, &lp_wm_1_2);

	/* 5/6 split only in single pipe config on IVB+ */
2966 2967
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2968
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2969
		ilk_wm_merge(dev, &max, &lp_wm_5_6);
2970

2971
		best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2972
	} else {
2973
		best_lp_wm = &lp_wm_1_2;
2974 2975
	}

2976
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2977
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2978

2979 2980 2981
	hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);

	hsw_write_wm_values(dev_priv, &results);
2982 2983
}

2984 2985
static void haswell_update_sprite_wm(struct drm_plane *plane,
				     struct drm_crtc *crtc,
2986
				     uint32_t sprite_width, int pixel_size,
2987
				     bool enabled, bool scaled)
2988
{
2989
	struct intel_plane *intel_plane = to_intel_plane(plane);
2990

2991 2992 2993 2994
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.bytes_per_pixel = pixel_size;
2995

2996
	haswell_update_wm(crtc);
2997 2998
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
			      uint32_t sprite_width, int pixel_size,
			      const struct intel_watermark_params *display,
			      int display_latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	int clock;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
3010
	if (!intel_crtc_active(crtc)) {
3011 3012 3013 3014
		*sprite_wm = display->guard_size;
		return false;
	}

3015
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049

	/* Use the small buffer method to calculate the sprite watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size -
		sprite_width * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*sprite_wm = entries + display->guard_size;
	if (*sprite_wm > (int)display->max_wm)
		*sprite_wm = display->max_wm;

	return true;
}

static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
				uint32_t sprite_width, int pixel_size,
				const struct intel_watermark_params *display,
				int latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*sprite_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
3050
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
	if (!clock) {
		*sprite_wm = 0;
		return false;
	}

	line_time_us = (sprite_width * 1000) / clock;
	if (!line_time_us) {
		*sprite_wm = 0;
		return false;
	}

	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = sprite_width * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*sprite_wm = entries + display->guard_size;

	return *sprite_wm > 0x3ff ? false : true;
}

3075 3076
static void sandybridge_update_sprite_wm(struct drm_plane *plane,
					 struct drm_crtc *crtc,
3077
					 uint32_t sprite_width, int pixel_size,
3078
					 bool enabled, bool scaled)
3079
{
3080
	struct drm_device *dev = plane->dev;
3081
	struct drm_i915_private *dev_priv = dev->dev_private;
3082
	int pipe = to_intel_plane(plane)->pipe;
3083
	int latency = dev_priv->wm.spr_latency[0] * 100;	/* In unit 0.1us */
3084 3085 3086 3087
	u32 val;
	int sprite_wm, reg;
	int ret;

3088
	if (!enabled)
3089 3090
		return;

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	switch (pipe) {
	case 0:
		reg = WM0_PIPEA_ILK;
		break;
	case 1:
		reg = WM0_PIPEB_ILK;
		break;
	case 2:
		reg = WM0_PIPEC_IVB;
		break;
	default:
		return; /* bad pipe */
	}

	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
					    &sandybridge_display_wm_info,
					    latency, &sprite_wm);
	if (!ret) {
3109 3110
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
			      pipe_name(pipe));
3111 3112 3113 3114 3115 3116
		return;
	}

	val = I915_READ(reg);
	val &= ~WM0_PIPE_SPRITE_MASK;
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3117
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3118 3119 3120 3121 3122


	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3123
					      dev_priv->wm.spr_latency[1] * 500,
3124 3125
					      &sprite_wm);
	if (!ret) {
3126 3127
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
			      pipe_name(pipe));
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
		return;
	}
	I915_WRITE(WM1S_LP_ILK, sprite_wm);

	/* Only IVB has two more LP watermarks for sprite */
	if (!IS_IVYBRIDGE(dev))
		return;

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3139
					      dev_priv->wm.spr_latency[2] * 500,
3140 3141
					      &sprite_wm);
	if (!ret) {
3142 3143
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
			      pipe_name(pipe));
3144 3145 3146 3147 3148 3149 3150
		return;
	}
	I915_WRITE(WM2S_LP_IVB, sprite_wm);

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3151
					      dev_priv->wm.spr_latency[3] * 500,
3152 3153
					      &sprite_wm);
	if (!ret) {
3154 3155
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
			      pipe_name(pipe));
3156 3157 3158 3159 3160
		return;
	}
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct hsw_wm_values *hw = &dev_priv->wm.hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	if (intel_crtc_active(crtc)) {
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct hsw_wm_values *hw = &dev_priv->wm.hw;
	struct drm_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);

	hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
		INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3261
void intel_update_watermarks(struct drm_crtc *crtc)
3262
{
3263
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3264 3265

	if (dev_priv->display.update_wm)
3266
		dev_priv->display.update_wm(crtc);
3267 3268
}

3269 3270
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3271
				    uint32_t sprite_width, int pixel_size,
3272
				    bool enabled, bool scaled)
3273
{
3274
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3275 3276

	if (dev_priv->display.update_sprite_wm)
3277
		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3278
						   pixel_size, enabled, scaled);
3279 3280
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

B
Ben Widawsky 已提交
3295
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3316 3317 3318 3319 3320 3321 3322 3323 3324
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3325 3326 3327 3328 3329
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3330 3331
	assert_spin_locked(&mchdev_lock);

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3349
static void ironlake_enable_drps(struct drm_device *dev)
3350 3351 3352 3353 3354
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3355 3356
	spin_lock_irq(&mchdev_lock);

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3380 3381
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3382

3383 3384 3385
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3402
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3403
		DRM_ERROR("stuck trying to change perf mode\n");
3404
	mdelay(1);
3405 3406 3407

	ironlake_set_drps(dev, fstart);

3408
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3409
		I915_READ(0x112e0);
3410 3411 3412
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->ips.last_time2);
3413 3414

	spin_unlock_irq(&mchdev_lock);
3415 3416
}

3417
static void ironlake_disable_drps(struct drm_device *dev)
3418 3419
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3420 3421 3422 3423 3424
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3425 3426 3427 3428 3429 3430 3431 3432 3433

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3434
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3435
	mdelay(1);
3436 3437
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3438
	mdelay(1);
3439

3440
	spin_unlock_irq(&mchdev_lock);
3441 3442
}

3443 3444 3445 3446 3447
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3448
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3449
{
3450
	u32 limits;
3451

3452 3453 3454 3455 3456 3457
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3458 3459
	limits = dev_priv->rps.max_delay << 24;
	if (val <= dev_priv->rps.min_delay)
3460
		limits |= dev_priv->rps.min_delay << 16;
3461 3462 3463 3464

	return limits;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
		if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
			new_power = LOW_POWER;
		else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val == dev_priv->rps.min_delay)
		new_power = LOW_POWER;
	if (val == dev_priv->rps.max_delay)
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3557 3558 3559
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3560

3561
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3562 3563
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);
3564

3565
	if (val == dev_priv->rps.cur_delay)
3566 3567
		return;

3568 3569
	gen6_set_rps_thresholds(dev_priv, val);

3570 3571 3572 3573 3574 3575 3576 3577
	if (IS_HASWELL(dev))
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(val));
	else
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(val) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
3578 3579 3580 3581

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
3582 3583
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   gen6_rps_limits(dev_priv, val));
3584

3585 3586
	POSTING_READ(GEN6_RPNSWREQ);

3587
	dev_priv->rps.cur_delay = val;
3588 3589

	trace_intel_gpu_freq_change(val * 50);
3590 3591
}

3592 3593 3594
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3595 3596 3597 3598 3599 3600 3601
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		dev_priv->rps.last_adj = 0;
	}
3602 3603 3604 3605 3606 3607
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3608 3609 3610 3611 3612 3613 3614
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		dev_priv->rps.last_adj = 0;
	}
3615 3616 3617
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3618 3619 3620
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3621

3622 3623 3624 3625
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);

3626
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3627
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3628
			 dev_priv->rps.cur_delay,
3629
			 vlv_gpu_freq(dev_priv, val), val);
3630 3631 3632 3633

	if (val == dev_priv->rps.cur_delay)
		return;

3634
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3635

3636
	dev_priv->rps.cur_delay = val;
3637

3638
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3639 3640
}

3641
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3642 3643 3644 3645
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3646
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3647 3648 3649 3650 3651
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3652
	spin_lock_irq(&dev_priv->irq_lock);
3653
	dev_priv->rps.pm_iir = 0;
3654
	spin_unlock_irq(&dev_priv->irq_lock);
3655

3656
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3657 3658
}

3659
static void gen6_disable_rps(struct drm_device *dev)
3660 3661 3662 3663
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3664
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3665

3666 3667 3668 3669 3670 3671 3672 3673
	gen6_disable_rps_interrupts(dev);
}

static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3674

3675
	gen6_disable_rps_interrupts(dev);
3676 3677 3678 3679 3680

	if (dev_priv->vlv_pctx) {
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
		dev_priv->vlv_pctx = NULL;
	}
3681 3682
}

B
Ben Widawsky 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
	if (IS_GEN6(dev))
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");

	if (IS_HASWELL(dev))
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");

	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
			(mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			(mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			(mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
}

3697 3698
int intel_enable_rc6(const struct drm_device *dev)
{
3699 3700 3701 3702
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

3703
	/* Respect the kernel parameter if it is set */
3704 3705 3706
	if (i915_enable_rc6 >= 0)
		return i915_enable_rc6;

3707 3708 3709
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3710

B
Ben Widawsky 已提交
3711
	if (IS_HASWELL(dev))
3712
		return INTEL_RC6_ENABLE;
3713

3714
	/* snb/ivb have more than one rc6 state. */
B
Ben Widawsky 已提交
3715
	if (INTEL_INFO(dev)->gen == 6)
3716
		return INTEL_RC6_ENABLE;
3717

3718 3719 3720
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}

3721 3722 3723
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3724
	u32 enabled_intrs;
3725 3726

	spin_lock_irq(&dev_priv->irq_lock);
3727
	WARN_ON(dev_priv->rps.pm_iir);
P
Paulo Zanoni 已提交
3728
	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3729 3730
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
	spin_unlock_irq(&dev_priv->irq_lock);
3731

3732
	/* only unmask PM interrupts we need. Mask all others. */
3733 3734 3735 3736 3737 3738 3739 3740 3741
	enabled_intrs = GEN6_PM_RPS_EVENTS;

	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
		enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;

	I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3742 3743
}

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
	uint32_t rc6_mask = 0, rp_state_cap;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3756
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			GEN6_RC_CTL_EI_MODE(1) |
			rc6_mask);

	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_delay << 24 |
		   dev_priv->rps.min_delay << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);

	gen6_enable_rps_interrupts(dev);

3813
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3814 3815
}

3816
static void gen6_enable_rps(struct drm_device *dev)
3817
{
3818
	struct drm_i915_private *dev_priv = dev->dev_private;
3819
	struct intel_ring_buffer *ring;
3820 3821
	u32 rp_state_cap;
	u32 gt_perf_status;
3822
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3823 3824
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3825
	int i, ret;
3826

3827
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3828

3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3843
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3844

3845 3846 3847
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);

3848 3849
	/* In units of 50MHz */
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3850 3851 3852 3853
	dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
	dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3854
	dev_priv->rps.cur_delay = 0;
3855

3856 3857 3858 3859 3860 3861 3862 3863 3864
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3865 3866
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3867 3868 3869

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3870
	if (IS_IVYBRIDGE(dev))
3871 3872 3873
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3874
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3875 3876
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3877
	/* Check if we are enabling RC6 */
3878 3879 3880 3881
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3882 3883 3884 3885
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3886

3887 3888 3889
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3890

B
Ben Widawsky 已提交
3891
	intel_print_rc6_info(dev, rc6_mask);
3892 3893 3894 3895 3896 3897

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3898 3899
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3900 3901
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3902
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3903
	if (!ret) {
B
Ben Widawsky 已提交
3904 3905
		pcu_mbox = 0;
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3906
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3907
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3908 3909
					 (dev_priv->rps.max_delay & 0xff) * 50,
					 (pcu_mbox & 0xff) * 50);
3910
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
B
Ben Widawsky 已提交
3911 3912 3913
		}
	} else {
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3914 3915
	}

3916 3917
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3918

3919
	gen6_enable_rps_interrupts(dev);
3920

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3935
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3936 3937
}

3938
void gen6_update_ring_freq(struct drm_device *dev)
3939
{
3940
	struct drm_i915_private *dev_priv = dev->dev_private;
3941
	int min_freq = 15;
3942 3943
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3944
	int scaling_factor = 180;
3945
	struct cpufreq_policy *policy;
3946

3947
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3948

3949 3950 3951 3952 3953 3954 3955 3956 3957
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
3958
		max_ia_freq = tsc_khz;
3959
	}
3960 3961 3962 3963

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3964
	min_ring_freq = I915_READ(DCLK) & 0xf;
3965 3966
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3967

3968 3969 3970 3971 3972
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3973
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3974
	     gpu_freq--) {
3975
		int diff = dev_priv->rps.max_delay - gpu_freq;
3976 3977
		unsigned int ia_freq = 0, ring_freq = 0;

3978 3979 3980 3981
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
3982
			ring_freq = mult_frac(gpu_freq, 5, 4);
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3999

B
Ben Widawsky 已提交
4000 4001
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4002 4003 4004
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4005 4006 4007
	}
}

4008 4009 4010 4011
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp0;

4012
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4025
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4026
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4027
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4028 4029 4030 4031 4032 4033 4034
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
4035
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4036 4037
}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4054
								      I915_GTT_OFFSET_NONE,
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4080 4081 4082 4083
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
4084
	u32 gtfifodbg, val, rc6_mode = 0;
4085 4086 4087 4088 4089
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4090 4091
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4092 4093 4094
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4095 4096
	valleyview_setup_pctx(dev);

4097 4098
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4122
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4123 4124

	/* allows RC6 residency counter to work */
4125 4126 4127 4128
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4129
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4130
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4131 4132 4133

	intel_print_rc6_info(dev, rc6_mode);

4134
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4135

4136
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4137 4138 4139 4140 4141

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4142
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4143
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
4144
			 dev_priv->rps.cur_delay);
4145 4146 4147

	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4148
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4149
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
4150
			 dev_priv->rps.max_delay);
4151

4152 4153
	dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4154
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4155
			 dev_priv->rps.rpe_delay);
4156

4157 4158
	dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4159
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
4160
			 dev_priv->rps.min_delay);
4161

4162
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4163
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4164
			 dev_priv->rps.rpe_delay);
4165

4166
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4167

4168
	gen6_enable_rps_interrupts(dev);
4169

4170
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4171 4172
}

4173
void ironlake_teardown_rc6(struct drm_device *dev)
4174 4175 4176
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4177 4178 4179 4180
	if (dev_priv->ips.renderctx) {
		i915_gem_object_unpin(dev_priv->ips.renderctx);
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4181 4182
	}

4183 4184 4185 4186
	if (dev_priv->ips.pwrctx) {
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4187 4188 4189
	}
}

4190
static void ironlake_disable_rc6(struct drm_device *dev)
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4212 4213 4214
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4215 4216
		return -ENOMEM;

4217 4218 4219
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4220 4221 4222 4223 4224 4225 4226
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4227
static void ironlake_enable_rc6(struct drm_device *dev)
4228 4229
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4230
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4231
	bool was_interruptible;
4232 4233 4234 4235 4236 4237 4238 4239
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4240 4241
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4242
	ret = ironlake_setup_rc6(dev);
4243
	if (ret)
4244 4245
		return;

4246 4247 4248
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4249 4250 4251 4252
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4253
	ret = intel_ring_begin(ring, 6);
4254 4255
	if (ret) {
		ironlake_teardown_rc6(dev);
4256
		dev_priv->mm.interruptible = was_interruptible;
4257 4258 4259
		return;
	}

4260 4261
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4262
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4263 4264 4265 4266 4267 4268 4269 4270
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4271 4272 4273 4274 4275 4276

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4277 4278
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4279
	if (ret) {
4280
		DRM_ERROR("failed to enable ironlake power savings\n");
4281 4282 4283 4284
		ironlake_teardown_rc6(dev);
		return;
	}

4285
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4286
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4287 4288

	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
4289 4290
}

4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4320
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4321 4322 4323 4324 4325 4326
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4327 4328
	assert_spin_locked(&mchdev_lock);

4329
	diff1 = now - dev_priv->ips.last_time1;
4330 4331 4332 4333 4334 4335 4336

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4337
		return dev_priv->ips.chipset_power;
4338 4339 4340 4341 4342 4343 4344 4345

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4346 4347
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4348 4349
		diff += total_count;
	} else {
4350
		diff = total_count - dev_priv->ips.last_count1;
4351 4352 4353
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4354 4355
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4366 4367
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4368

4369
	dev_priv->ips.chipset_power = ret;
4370 4371 4372 4373

	return ret;
}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
	if (dev_priv->info->is_mobile)
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4546
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4547 4548 4549 4550 4551 4552
{
	struct timespec now, diff1;
	u64 diff;
	unsigned long diffms;
	u32 count;

4553
	assert_spin_locked(&mchdev_lock);
4554 4555

	getrawmonotonic(&now);
4556
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4557 4558 4559 4560 4561 4562 4563 4564

	/* Don't divide by 0 */
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4565 4566
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4567 4568
		diff += count;
	} else {
4569
		diff = count - dev_priv->ips.last_count2;
4570 4571
	}

4572 4573
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4574 4575 4576 4577

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4578
	dev_priv->ips.gfx_power = diff;
4579 4580
}

4581 4582 4583 4584 4585
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
	if (dev_priv->info->gen != 5)
		return;

4586
	spin_lock_irq(&mchdev_lock);
4587 4588 4589

	__i915_update_gfx_val(dev_priv);

4590
	spin_unlock_irq(&mchdev_lock);
4591 4592
}

4593
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4594 4595 4596 4597
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4598 4599
	assert_spin_locked(&mchdev_lock);

4600
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4620
	corr2 = (corr * dev_priv->ips.corr);
4621 4622 4623 4624

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4625
	__i915_update_gfx_val(dev_priv);
4626

4627
	return dev_priv->ips.gfx_power + state2;
4628 4629
}

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4657
	spin_lock_irq(&mchdev_lock);
4658 4659 4660 4661
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4662 4663
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4664 4665 4666 4667

	ret = chipset_val + graphics_val;

out_unlock:
4668
	spin_unlock_irq(&mchdev_lock);
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4684
	spin_lock_irq(&mchdev_lock);
4685 4686 4687 4688 4689 4690
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4691 4692
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4693 4694

out_unlock:
4695
	spin_unlock_irq(&mchdev_lock);
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4712
	spin_lock_irq(&mchdev_lock);
4713 4714 4715 4716 4717 4718
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4719 4720
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4721 4722

out_unlock:
4723
	spin_unlock_irq(&mchdev_lock);
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4737
	struct intel_ring_buffer *ring;
4738
	bool ret = false;
4739
	int i;
4740

4741
	spin_lock_irq(&mchdev_lock);
4742 4743 4744 4745
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4746 4747
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4748 4749

out_unlock:
4750
	spin_unlock_irq(&mchdev_lock);
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4767
	spin_lock_irq(&mchdev_lock);
4768 4769 4770 4771 4772 4773
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4774
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4775

4776
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4777 4778 4779
		ret = false;

out_unlock:
4780
	spin_unlock_irq(&mchdev_lock);
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4808 4809
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4810
	spin_lock_irq(&mchdev_lock);
4811
	i915_mch_dev = dev_priv;
4812
	spin_unlock_irq(&mchdev_lock);
4813 4814 4815 4816 4817 4818

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4819
	spin_lock_irq(&mchdev_lock);
4820
	i915_mch_dev = NULL;
4821
	spin_unlock_irq(&mchdev_lock);
4822
}
4823
static void intel_init_emon(struct drm_device *dev)
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

4891
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4892 4893
}

4894 4895
void intel_disable_gt_powersave(struct drm_device *dev)
{
4896 4897
	struct drm_i915_private *dev_priv = dev->dev_private;

4898 4899 4900
	/* Interrupts should be disabled already to avoid re-arming. */
	WARN_ON(dev->irq_enabled);

4901
	if (IS_IRONLAKE_M(dev)) {
4902
		ironlake_disable_drps(dev);
4903
		ironlake_disable_rc6(dev);
4904
	} else if (INTEL_INFO(dev)->gen >= 6) {
4905
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4906
		cancel_work_sync(&dev_priv->rps.work);
4907
		mutex_lock(&dev_priv->rps.hw_lock);
4908 4909 4910 4911
		if (IS_VALLEYVIEW(dev))
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
4912
		dev_priv->rps.enabled = false;
4913
		mutex_unlock(&dev_priv->rps.hw_lock);
4914
	}
4915 4916
}

4917 4918 4919 4920 4921 4922 4923
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

4924
	mutex_lock(&dev_priv->rps.hw_lock);
4925 4926 4927

	if (IS_VALLEYVIEW(dev)) {
		valleyview_enable_rps(dev);
4928 4929 4930
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
		gen6_update_ring_freq(dev);
4931 4932 4933 4934
	} else {
		gen6_enable_rps(dev);
		gen6_update_ring_freq(dev);
	}
4935
	dev_priv->rps.enabled = true;
4936
	mutex_unlock(&dev_priv->rps.hw_lock);
4937 4938
}

4939 4940
void intel_enable_gt_powersave(struct drm_device *dev)
{
4941 4942
	struct drm_i915_private *dev_priv = dev->dev_private;

4943 4944 4945 4946
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
4947
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4948 4949 4950 4951 4952 4953 4954
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 */
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
				      round_jiffies_up_relative(HZ));
4955 4956 4957
	}
}

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

4970 4971 4972 4973 4974 4975 4976 4977 4978
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
4979
		intel_flush_primary_plane(dev_priv, pipe);
4980 4981 4982
	}
}

4983
static void ironlake_init_clock_gating(struct drm_device *dev)
4984 4985
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4986
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4987

4988 4989 4990 4991
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
4992 4993 4994
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5012
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5028
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5029 5030 5031 5032 5033 5034 5035 5036
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5037 5038
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5039 5040 5041 5042 5043 5044
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5045

5046
	/* WaDisableRenderCachePipelinedFlush:ilk */
5047 5048
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5049

5050
	g4x_disable_trickle_feed(dev);
5051

5052 5053 5054 5055 5056 5057 5058
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5059
	uint32_t val;
5060 5061 5062 5063 5064 5065

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5066 5067 5068
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5069 5070
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5071 5072 5073
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5074
	for_each_pipe(pipe) {
5075 5076 5077
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5078
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5079
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5080 5081 5082
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5083 5084
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5085 5086 5087 5088 5089
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5090 5091
}

5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
		DRM_INFO("This can cause pipe underruns and display issues.\n");
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
	}
}

5105
static void gen6_init_clock_gating(struct drm_device *dev)
5106 5107
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5108
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5109

5110
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5111 5112 5113 5114 5115

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5116
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5117 5118 5119
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5120
	/* WaSetupGtModeTdRowDispatch:snb */
5121 5122 5123 5124
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5125 5126 5127 5128 5129
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	I915_WRITE(CACHE_MODE_0,
5130
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5146
	 *
5147 5148
	 * Also apply WaDisableVDSUnitClockGating:snb and
	 * WaDisableRCPBUnitClockGating:snb.
5149 5150
	 */
	I915_WRITE(GEN6_UCGCTL2,
5151
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5152 5153 5154 5155
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

	/* Bspec says we need to always set all mask bits. */
5156 5157
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5158 5159 5160 5161 5162 5163 5164 5165 5166

	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5167 5168
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5169 5170 5171 5172 5173 5174 5175
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5176 5177 5178 5179
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5180

5181
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5182 5183 5184 5185 5186

	/* The default value should be 0x200 according to docs, but the two
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5187 5188

	cpt_init_clock_gating(dev);
5189 5190

	gen6_check_mch_setup(dev);
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

5202 5203 5204
	if (IS_HASWELL(dev_priv->dev))
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;

5205 5206 5207
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5220 5221 5222 5223 5224

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5225 5226
}

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

B
Ben Widawsky 已提交
5239 5240 5241
static void gen8_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5242
	enum pipe i;
B
Ben Widawsky 已提交
5243 5244 5245 5246

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5247 5248 5249 5250

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5251 5252 5253 5254
	WARN(!i915_preliminary_hw_support,
	     "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5255 5256
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5257 5258
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5259 5260 5261
	I915_WRITE(_3D_CHICKEN3,
		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));

5262 5263 5264
	I915_WRITE(COMMON_SLICE_CHICKEN2,
		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));

5265 5266 5267
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));

5268 5269
	/* WaSwitchSolVfFArbitrationPriority */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

	/* WaPsrDPAMaskVBlankInSRD */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

	/* WaPsrDPRSUnmaskVBlankInSRD */
	for_each_pipe(i) {
		I915_WRITE(CHICKEN_PIPESL_1(i),
			   I915_READ(CHICKEN_PIPESL_1(i) |
				     DPRS_MASK_VBLANK_SRD));
	}
B
Ben Widawsky 已提交
5281 5282
}

5283 5284 5285 5286 5287 5288 5289 5290 5291
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5292
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5293 5294 5295
	 */
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);

5296
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5297 5298 5299
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5300
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
5301 5302 5303 5304 5305
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
			GEN7_WA_L3_CHICKEN_MODE);

5306 5307 5308 5309 5310
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5311
	/* This is required by WaCatErrorRejectionIssue:hsw */
5312 5313 5314 5315
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5316
	/* WaVSRefCountFullforceMissDisable:hsw */
5317 5318
	gen7_setup_fixed_func_scheduler(dev_priv);

5319
	/* WaDisable4x2SubspanOptimization:hsw */
5320 5321
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5322

5323
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5324 5325
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5326 5327 5328
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5329

5330
	lpt_init_clock_gating(dev);
5331 5332
}

5333
static void ivybridge_init_clock_gating(struct drm_device *dev)
5334 5335
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5336
	uint32_t snpcr;
5337 5338 5339 5340 5341

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

5342
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5343

5344
	/* WaDisableEarlyCull:ivb */
5345 5346 5347
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5348
	/* WaDisableBackToBackFlipFix:ivb */
5349 5350 5351 5352
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5353
	/* WaDisablePSDDualDispatchEnable:ivb */
5354 5355 5356 5357 5358 5359 5360
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
	else
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5361
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5362 5363 5364
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5365
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5366 5367 5368
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5369 5370 5371 5372 5373 5374 5375 5376
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	else
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5377

5378
	/* WaForceL3Serialization:ivb */
5379 5380 5381
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5393
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5394 5395 5396 5397 5398
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5399
	/* This is required by WaCatErrorRejectionIssue:ivb */
5400 5401 5402 5403
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5404
	g4x_disable_trickle_feed(dev);
5405

5406
	/* WaVSRefCountFullforceMissDisable:ivb */
5407
	gen7_setup_fixed_func_scheduler(dev_priv);
5408

5409
	/* WaDisable4x2SubspanOptimization:ivb */
5410 5411
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5412 5413 5414 5415 5416

	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5417

5418 5419
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5420 5421

	gen6_check_mch_setup(dev);
5422 5423
}

5424
static void valleyview_init_clock_gating(struct drm_device *dev)
5425 5426
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5427 5428 5429 5430 5431 5432 5433 5434 5435
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	mutex_unlock(&dev_priv->rps.hw_lock);
	switch ((val >> 6) & 3) {
	case 0:
		dev_priv->mem_freq = 800;
		break;
5436
	case 1:
5437 5438
		dev_priv->mem_freq = 1066;
		break;
5439
	case 2:
5440 5441
		dev_priv->mem_freq = 1333;
		break;
5442
	case 3:
5443
		dev_priv->mem_freq = 1333;
5444
		break;
5445 5446
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5447

5448
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5449

5450
	/* WaDisableEarlyCull:vlv */
5451 5452 5453
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5454
	/* WaDisableBackToBackFlipFix:vlv */
5455 5456 5457 5458
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5459
	/* WaDisablePSDDualDispatchEnable:vlv */
5460
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5461 5462
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5463

5464
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5465 5466 5467
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5468
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
5469
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5470 5471
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);

5472
	/* WaForceL3Serialization:vlv */
5473 5474 5475
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5476
	/* WaDisableDopClockGating:vlv */
5477 5478 5479
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5480
	/* This is required by WaCatErrorRejectionIssue:vlv */
5481 5482 5483 5484
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5496
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5497
	 *
5498 5499
	 * Also apply WaDisableVDSUnitClockGating:vlv and
	 * WaDisableRCPBUnitClockGating:vlv.
5500 5501 5502
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5503
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5504 5505 5506 5507
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5508 5509
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);

5510
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5511

5512 5513
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5514

5515
	/*
5516
	 * WaDisableVLVClockGating_VBIIssue:vlv
5517 5518 5519
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);

	/* Conservative clock gating settings for now */
	I915_WRITE(0x9400, 0xffffffff);
	I915_WRITE(0x9404, 0xffffffff);
	I915_WRITE(0x9408, 0xffffffff);
	I915_WRITE(0x940c, 0xffffffff);
	I915_WRITE(0x9410, 0xffffffff);
	I915_WRITE(0x9414, 0xffffffff);
	I915_WRITE(0x9418, 0xffffffff);
5530 5531
}

5532
static void g4x_init_clock_gating(struct drm_device *dev)
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5548 5549 5550 5551

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5552

5553
	g4x_disable_trickle_feed(dev);
5554 5555
}

5556
static void crestline_init_clock_gating(struct drm_device *dev)
5557 5558 5559 5560 5561 5562 5563 5564
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5565 5566
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5567 5568
}

5569
static void broadwater_init_clock_gating(struct drm_device *dev)
5570 5571 5572 5573 5574 5575 5576 5577 5578
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
5579 5580
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5581 5582
}

5583
static void gen3_init_clock_gating(struct drm_device *dev)
5584 5585 5586 5587 5588 5589 5590
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
5591 5592 5593

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5594 5595 5596

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5597 5598
}

5599
static void i85x_init_clock_gating(struct drm_device *dev)
5600 5601 5602 5603 5604 5605
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}

5606
static void i830_init_clock_gating(struct drm_device *dev)
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

5620 5621 5622 5623 5624 5625
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

5639 5640 5641 5642 5643
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
5644 5645 5646 5647 5648 5649 5650 5651 5652
static bool hsw_power_well_enabled(struct drm_device *dev,
				   struct i915_power_well *power_well)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
bool intel_display_power_enabled_sw(struct drm_device *dev,
				    enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_domains *power_domains;

	power_domains = &dev_priv->power_domains;

	return power_domains->domain_use_count[domain];
}

5664 5665
bool intel_display_power_enabled(struct drm_device *dev,
				 enum intel_display_power_domain domain)
5666 5667
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5668 5669 5670 5671
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;
5672

5673 5674 5675 5676 5677 5678
	power_domains = &dev_priv->power_domains;

	is_enabled = true;

	mutex_lock(&power_domains->lock);
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5679 5680 5681
		if (power_well->always_on)
			continue;

5682 5683 5684 5685 5686 5687 5688 5689
		if (!power_well->is_enabled(dev, power_well)) {
			is_enabled = false;
			break;
		}
	}
	mutex_unlock(&power_domains->lock);

	return is_enabled;
5690 5691
}

5692 5693 5694 5695 5696
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	unsigned long irqflags;

5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
	if (IS_BROADWELL(dev)) {
		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
			   dev_priv->de_irq_mask[PIPE_B]);
		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
			   ~dev_priv->de_irq_mask[PIPE_B] |
			   GEN8_PIPE_VBLANK);
		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
			   dev_priv->de_irq_mask[PIPE_C]);
		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
			   ~dev_priv->de_irq_mask[PIPE_C] |
			   GEN8_PIPE_VBLANK);
		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
	}
}

static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	enum pipe p;
	unsigned long irqflags;

	/*
	 * After this, the registers on the pipes that are part of the power
	 * well will become zero, so we have to adjust our counters according to
	 * that.
	 *
	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
	 */
	spin_lock_irqsave(&dev->vbl_lock, irqflags);
	for_each_pipe(p)
		if (p != PIPE_A)
			dev->vblank[p].last = 0;
	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
}

5748 5749
static void hsw_set_power_well(struct drm_device *dev,
			       struct i915_power_well *power_well, bool enable)
5750 5751
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5752 5753
	bool is_enabled, enable_requested;
	uint32_t tmp;
5754

5755 5756
	WARN_ON(dev_priv->pc8.enabled);

5757
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5758 5759
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5760

5761 5762
	if (enable) {
		if (!enable_requested)
5763 5764
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
5765

5766 5767 5768
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5769
				      HSW_PWR_WELL_STATE_ENABLED), 20))
5770 5771
				DRM_ERROR("Timeout enabling power well\n");
		}
5772

5773
		hsw_power_well_post_enable(dev_priv);
5774 5775 5776
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5777
			POSTING_READ(HSW_PWR_WELL_DRIVER);
5778
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5779

5780
			hsw_power_well_post_disable(dev_priv);
5781 5782
		}
	}
5783
}
5784

5785 5786
static void __intel_power_well_get(struct drm_device *dev,
				   struct i915_power_well *power_well)
5787
{
5788 5789 5790 5791
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!power_well->count++ && power_well->set) {
		hsw_disable_package_c8(dev_priv);
5792
		power_well->set(dev, power_well, true);
5793
	}
5794 5795
}

5796 5797
static void __intel_power_well_put(struct drm_device *dev,
				   struct i915_power_well *power_well)
5798
{
5799 5800
	struct drm_i915_private *dev_priv = dev->dev_private;

5801
	WARN_ON(!power_well->count);
5802

5803 5804
	if (!--power_well->count && power_well->set &&
	    i915_disable_power_well) {
5805
		power_well->set(dev, power_well, false);
5806 5807
		hsw_enable_package_c8(dev_priv);
	}
5808 5809
}

5810 5811 5812 5813
void intel_display_power_get(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5814
	struct i915_power_domains *power_domains;
5815 5816
	struct i915_power_well *power_well;
	int i;
5817

5818 5819 5820
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
5821

5822 5823
	for_each_power_well(i, power_well, BIT(domain), power_domains)
		__intel_power_well_get(dev, power_well);
5824

5825 5826
	power_domains->domain_use_count[domain]++;

5827
	mutex_unlock(&power_domains->lock);
5828 5829 5830 5831 5832 5833
}

void intel_display_power_put(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5834
	struct i915_power_domains *power_domains;
5835 5836
	struct i915_power_well *power_well;
	int i;
5837

5838 5839 5840
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
5841 5842 5843

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
5844 5845 5846

	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
		__intel_power_well_put(dev, power_well);
5847

5848
	mutex_unlock(&power_domains->lock);
5849 5850
}

5851
static struct i915_power_domains *hsw_pwr;
5852 5853 5854 5855

/* Display audio driver power well request */
void i915_request_power_well(void)
{
5856 5857
	struct drm_i915_private *dev_priv;

5858 5859 5860
	if (WARN_ON(!hsw_pwr))
		return;

5861 5862
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
I
Imre Deak 已提交
5863
	intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5864 5865 5866 5867 5868 5869
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
void i915_release_power_well(void)
{
5870 5871
	struct drm_i915_private *dev_priv;

5872 5873 5874
	if (WARN_ON(!hsw_pwr))
		return;

5875 5876
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
I
Imre Deak 已提交
5877
	intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5878 5879 5880
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

5881 5882 5883 5884 5885 5886 5887 5888
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
	},
};

5889
static struct i915_power_well hsw_power_wells[] = {
5890 5891 5892 5893 5894
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
	},
5895 5896 5897 5898 5899 5900 5901 5902 5903
	{
		.name = "display",
		.domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
		.is_enabled = hsw_power_well_enabled,
		.set = hsw_set_power_well,
	},
};

static struct i915_power_well bdw_power_wells[] = {
5904 5905 5906 5907 5908
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
	},
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
	{
		.name = "display",
		.domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
		.is_enabled = hsw_power_well_enabled,
		.set = hsw_set_power_well,
	},
};

#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

5922
int intel_power_domains_init(struct drm_device *dev)
5923 5924
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5925
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5926

5927
	mutex_init(&power_domains->lock);
5928

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
	if (IS_HASWELL(dev)) {
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
	} else if (IS_BROADWELL(dev)) {
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
	} else {
5940
		set_power_wells(power_domains, i9xx_always_on_power_well);
5941
	}
5942 5943 5944 5945

	return 0;
}

5946
void intel_power_domains_remove(struct drm_device *dev)
5947 5948 5949 5950
{
	hsw_pwr = NULL;
}

5951
static void intel_power_domains_resume(struct drm_device *dev)
5952 5953
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5954 5955
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
5956
	int i;
5957

5958
	mutex_lock(&power_domains->lock);
5959 5960 5961 5962
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->set)
			power_well->set(dev, power_well, power_well->count > 0);
	}
5963
	mutex_unlock(&power_domains->lock);
5964 5965
}

5966 5967 5968 5969 5970
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
5971
 */
5972
void intel_power_domains_init_hw(struct drm_device *dev)
5973 5974 5975
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5976
	/* For now, we need the power well to be always enabled. */
5977
	intel_display_set_init_power(dev, true);
5978
	intel_power_domains_resume(dev);
5979

5980 5981 5982
	if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
		return;

5983 5984
	/* We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now. */
5985
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5986
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5987 5988
}

5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
	hsw_disable_package_c8(dev_priv);
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
	hsw_enable_package_c8(dev_priv);
}

6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_get_sync(device);
	WARN(dev_priv->pm.suspended, "Device still suspended.\n");
}

void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	dev_priv->pm.suspended = false;

	if (!HAS_RUNTIME_PM(dev))
		return;

	pm_runtime_set_active(device);

	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);
	pm_runtime_use_autosuspend(device);
}

void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	if (!HAS_RUNTIME_PM(dev))
		return;

	/* Make sure we're not suspended first. */
	pm_runtime_get_sync(device);
	pm_runtime_disable(device);
}

6054 6055 6056 6057 6058 6059
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_HAS_FBC(dev)) {
6060
		if (INTEL_INFO(dev)->gen >= 7) {
6061
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6062 6063 6064 6065 6066
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
6067 6068 6069 6070 6071
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
6072
		} else {
6073 6074 6075 6076 6077 6078
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
	}

6079 6080 6081 6082 6083 6084
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6085 6086
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
6087 6088
		intel_setup_wm_latency(dev);

6089
		if (IS_GEN5(dev)) {
6090 6091 6092
			if (dev_priv->wm.pri_latency[1] &&
			    dev_priv->wm.spr_latency[1] &&
			    dev_priv->wm.cur_latency[1])
6093 6094 6095 6096 6097 6098 6099 6100
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
		} else if (IS_GEN6(dev)) {
6101 6102 6103
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6104 6105 6106 6107 6108 6109 6110 6111 6112
				dev_priv->display.update_wm = sandybridge_update_wm;
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
		} else if (IS_IVYBRIDGE(dev)) {
6113 6114 6115
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6116
				dev_priv->display.update_wm = ivybridge_update_wm;
6117 6118 6119 6120 6121 6122 6123
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6124
		} else if (IS_HASWELL(dev)) {
6125 6126 6127
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6128
				dev_priv->display.update_wm = haswell_update_wm;
6129 6130
				dev_priv->display.update_sprite_wm =
					haswell_update_sprite_wm;
6131 6132 6133 6134 6135
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
6136
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
B
Ben Widawsky 已提交
6137 6138
		} else if (INTEL_INFO(dev)->gen == 8) {
			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_I865G(dev)) {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

B
Ben Widawsky 已提交
6192 6193
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
6194
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
6218
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6238

6239
int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6240
{
6241
	int div;
6242

6243
	/* 4 x czclk */
6244
	switch (dev_priv->mem_freq) {
6245
	case 800:
6246
		div = 10;
6247 6248
		break;
	case 1066:
6249
		div = 12;
6250 6251
		break;
	case 1333:
6252
		div = 16;
6253 6254 6255 6256 6257
		break;
	default:
		return -1;
	}

6258
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6259 6260
}

6261
int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6262
{
6263
	int mul;
6264

6265
	/* 4 x czclk */
6266
	switch (dev_priv->mem_freq) {
6267
	case 800:
6268
		mul = 10;
6269 6270
		break;
	case 1066:
6271
		mul = 12;
6272 6273
		break;
	case 1333:
6274
		mul = 16;
6275 6276 6277 6278 6279
		break;
	default:
		return -1;
	}

6280
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6281 6282
}

6283 6284 6285 6286 6287 6288 6289
void intel_pm_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
}