intel_pm.c 172.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <drm/i915_powerwell.h>
34

B
Ben Widawsky 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

56 57 58
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
59
 *
60 61
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
62
 *
63 64
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
65 66
 */

67
static void i8xx_disable_fbc(struct drm_device *dev)
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

89
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
90 91 92 93 94 95 96 97 98 99 100
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
	int plane, i;
	u32 fbc_ctl, fbc_ctl2;

101
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

	/* FBC_CTL wants 64B units */
	cfb_pitch = (cfb_pitch / 64) - 1;
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

	/* Set it up... */
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
	fbc_ctl2 |= plane;
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
	I915_WRITE(FBC_FENCE_OFF, crtc->y);

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

128 129
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
130 131
}

132
static bool i8xx_fbc_enabled(struct drm_device *dev)
133 134 135 136 137 138
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

139
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

163
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
164 165
}

166
static void g4x_disable_fbc(struct drm_device *dev)
167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

181
static bool g4x_fbc_enabled(struct drm_device *dev)
182 183 184 185 186 187 188 189 190 191 192 193
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
194 195 196 197

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
198

199 200 201 202 203 204 205 206 207 208
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
209

210
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
211 212
}

213
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	/* Set persistent mode for front-buffer rendering, ala X. */
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
230 231 232
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
233 234 235 236 237 238
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
239
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
240 241 242 243 244 245 246 247 248 249
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

250
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
251 252
}

253
static void ironlake_disable_fbc(struct drm_device *dev)
254 255 256 257 258 259 260 261 262 263 264 265 266 267
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

268
static bool ironlake_fbc_enabled(struct drm_device *dev)
269 270 271 272 273 274
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

275 276 277 278 279 280 281 282 283
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

284
	I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
285 286 287 288 289

	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
		   IVB_DPFC_CTL_FENCE_EN |
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);

R
Rodrigo Vivi 已提交
290
	if (IS_IVYBRIDGE(dev)) {
291
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
R
Rodrigo Vivi 已提交
292
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
293
	} else {
294
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
295 296
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
			   HSW_BYPASS_FBC_QUEUE);
R
Rodrigo Vivi 已提交
297
	}
298

299 300 301 302 303 304
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

305
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
327
	if (work == dev_priv->fbc.fbc_work) {
328 329 330 331 332 333 334
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
		if (work->crtc->fb == work->fb) {
			dev_priv->display.enable_fbc(work->crtc,
						     work->interval);

335 336 337
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
			dev_priv->fbc.fb_id = work->crtc->fb->base.id;
			dev_priv->fbc.y = work->crtc->y;
338 339
		}

340
		dev_priv->fbc.fbc_work = NULL;
341 342 343 344 345 346 347 348
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
349
	if (dev_priv->fbc.fbc_work == NULL)
350 351 352 353 354
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
355
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
356 357
	 * entirely asynchronously.
	 */
358
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359
		/* tasklet was killed before being run, clean up */
360
		kfree(dev_priv->fbc.fbc_work);
361 362 363 364 365 366

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
367
	dev_priv->fbc.fbc_work = NULL;
368 369
}

370
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 372 373 374 375 376 377 378 379 380
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

381
	work = kzalloc(sizeof(*work), GFP_KERNEL);
382
	if (work == NULL) {
383
		DRM_ERROR("Failed to allocate FBC work structure\n");
384 385 386 387 388 389 390 391 392
		dev_priv->display.enable_fbc(crtc, interval);
		return;
	}

	work->crtc = crtc;
	work->fb = crtc->fb;
	work->interval = interval;
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

393
	dev_priv->fbc.fbc_work = work;
394 395 396 397 398 399 400 401 402 403 404

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
405 406
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407 408 409 410 411 412 413 414 415 416 417 418 419 420
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
421
	dev_priv->fbc.plane = -1;
422 423
}

424 425 426 427 428 429 430 431 432 433
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

434 435 436 437 438 439 440 441 442 443
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
444
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
461
	const struct drm_display_mode *adjusted_mode;
462
	unsigned int max_width, max_height;
463

464 465
	if (!I915_HAS_FBC(dev)) {
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
466
		return;
467
	}
468

469 470 471
	if (!i915_powersave) {
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
472
		return;
473
	}
474 475 476 477 478 479 480 481 482 483 484

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
485
		if (intel_crtc_active(tmp_crtc) &&
486
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
487
			if (crtc) {
488 489
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
490 491 492 493 494 495 496
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
497 498
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
499 500 501 502 503 504 505
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;
506
	adjusted_mode = &intel_crtc->config.adjusted_mode;
507

508 509
	if (i915_enable_fbc < 0 &&
	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
510 511
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
512
		goto out_disable;
513
	}
514
	if (!i915_enable_fbc) {
515 516
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
517 518
		goto out_disable;
	}
519 520
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
521 522 523
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
524 525
		goto out_disable;
	}
526 527

	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
528 529
		max_width = 4096;
		max_height = 2048;
530
	} else {
531 532
		max_width = 2048;
		max_height = 1536;
533
	}
534 535
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
536 537
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
538 539
		goto out_disable;
	}
540 541
	if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
	    intel_crtc->plane != PLANE_A) {
542
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
543
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
544 545 546 547 548 549 550 551
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
552 553
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
554 555 556 557 558 559 560
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

561
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
562 563
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
564 565 566
		goto out_disable;
	}

567 568 569 570 571
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
572 573 574
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

	intel_enable_fbc(crtc, 500);
606
	dev_priv->fbc.no_fbc_reason = FBC_OK;
607 608 609 610 611 612 613 614
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
615
	i915_gem_stolen_cleanup_compression(dev);
616 617
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

685
	dev_priv->ips.r_t = dev_priv->mem_freq;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
717
		dev_priv->ips.c_m = 0;
718
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
719
		dev_priv->ips.c_m = 1;
720
	} else {
721
		dev_priv->ips.c_m = 2;
722 723 724
	}
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

763
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

787
static void pineview_disable_cxsr(struct drm_device *dev)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

811
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

827
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

844
static int i845_get_fifo_size(struct drm_device *dev, int plane)
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

860
static int i830_get_fifo_size(struct drm_device *dev, int plane)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
	VALLEYVIEW_FIFO_SIZE,
	VALLEYVIEW_MAX_WM,
	VALLEYVIEW_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
	I965_CURSOR_FIFO,
	VALLEYVIEW_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static const struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static const struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1082
		if (intel_crtc_active(crtc)) {
1083 1084 1085 1086 1087 1088 1089 1090 1091
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1092
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1093
{
1094
	struct drm_device *dev = unused_crtc->dev;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1111
		const struct drm_display_mode *adjusted_mode;
1112
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1113 1114 1115 1116
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1176
	const struct drm_display_mode *adjusted_mode;
1177 1178 1179 1180 1181
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1182
	if (!intel_crtc_active(crtc)) {
1183 1184 1185 1186 1187
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1188
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1189
	clock = adjusted_mode->crtc_clock;
1190
	htotal = adjusted_mode->htotal;
1191
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1262
	const struct drm_display_mode *adjusted_mode;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1275
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1276
	clock = adjusted_mode->crtc_clock;
1277
	htotal = adjusted_mode->htotal;
1278
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

static bool vlv_compute_drain_latency(struct drm_device *dev,
				     int plane,
				     int *plane_prec_mult,
				     int *plane_dl,
				     int *cursor_prec_mult,
				     int *cursor_dl)
{
	struct drm_crtc *crtc;
	int clock, pixel_size;
	int entries;

	crtc = intel_get_crtc_for_plane(dev, plane);
1314
	if (!intel_crtc_active(crtc))
1315 1316
		return false;

1317
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */

	entries = (clock / 1000) * pixel_size;
	*plane_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
						     pixel_size);

	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
	*cursor_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

static void vlv_update_drain_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
							either 16 or 32 */

	/* For plane A, Cursor A */
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
				      &cursor_prec_mult, &cursora_dl)) {
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;

		I915_WRITE(VLV_DDL1, cursora_prec |
				(cursora_dl << DDL_CURSORA_SHIFT) |
				planea_prec | planea_dl);
	}

	/* For plane B, Cursor B */
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
				      &cursor_prec_mult, &cursorb_dl)) {
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;

		I915_WRITE(VLV_DDL2, cursorb_prec |
				(cursorb_dl << DDL_CURSORB_SHIFT) |
				planeb_prec | planeb_dl);
	}
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1379
static void valleyview_update_wm(struct drm_crtc *crtc)
1380
{
1381
	struct drm_device *dev = crtc->dev;
1382 1383 1384 1385
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1386
	int ignore_plane_sr, ignore_cursor_sr;
1387 1388 1389 1390
	unsigned int enabled = 0;

	vlv_update_drain_latency(dev);

1391
	if (g4x_compute_wm0(dev, PIPE_A,
1392 1393 1394
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1395
		enabled |= 1 << PIPE_A;
1396

1397
	if (g4x_compute_wm0(dev, PIPE_B,
1398 1399 1400
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1401
		enabled |= 1 << PIPE_B;
1402 1403 1404 1405 1406 1407

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1408 1409 1410 1411 1412
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1413
			     &ignore_plane_sr, &cursor_sr)) {
1414
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1415
	} else {
1416 1417
		I915_WRITE(FW_BLC_SELF_VLV,
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1418 1419
		plane_sr = cursor_sr = 0;
	}
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1432
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433 1434
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1435 1436
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1437 1438
}

1439
static void g4x_update_wm(struct drm_crtc *crtc)
1440
{
1441
	struct drm_device *dev = crtc->dev;
1442 1443 1444 1445 1446 1447
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;

1448
	if (g4x_compute_wm0(dev, PIPE_A,
1449 1450 1451
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1452
		enabled |= 1 << PIPE_A;
1453

1454
	if (g4x_compute_wm0(dev, PIPE_B,
1455 1456 1457
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1458
		enabled |= 1 << PIPE_B;
1459 1460 1461 1462 1463 1464

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1465
			     &plane_sr, &cursor_sr)) {
1466
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1467
	} else {
1468 1469
		I915_WRITE(FW_BLC_SELF,
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1470 1471
		plane_sr = cursor_sr = 0;
	}
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1484
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1485 1486 1487
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1488
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1489 1490 1491
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1492
static void i965_update_wm(struct drm_crtc *unused_crtc)
1493
{
1494
	struct drm_device *dev = unused_crtc->dev;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1505 1506
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1507
		int clock = adjusted_mode->crtc_clock;
1508
		int htotal = adjusted_mode->htotal;
1509
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		int pixel_size = crtc->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = ((htotal * 1000) / clock);

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
		   (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1560
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1561
{
1562
	struct drm_device *dev = unused_crtc->dev;
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
		wm_info = &i855_wm_info;

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1581
	if (intel_crtc_active(crtc)) {
1582
		const struct drm_display_mode *adjusted_mode;
1583 1584 1585 1586
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1587 1588
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1589
					       wm_info, fifo_size, cpp,
1590 1591 1592 1593 1594 1595 1596
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1597
	if (intel_crtc_active(crtc)) {
1598
		const struct drm_display_mode *adjusted_mode;
1599 1600 1601 1602
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1603 1604
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1605
					       wm_info, fifo_size, cpp,
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
	if (IS_I945G(dev) || IS_I945GM(dev))
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
	else if (IS_I915GM(dev))
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1631 1632
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1633
		int clock = adjusted_mode->crtc_clock;
1634
		int htotal = adjusted_mode->htotal;
1635
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		int pixel_size = enabled->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = (htotal * 1000) / clock;

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

	if (HAS_FW_BLC(dev)) {
		if (enabled) {
			if (IS_I945G(dev) || IS_I945GM(dev))
				I915_WRITE(FW_BLC_SELF,
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
			else if (IS_I915GM(dev))
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
			DRM_DEBUG_KMS("memory self refresh enabled\n");
		} else
			DRM_DEBUG_KMS("memory self refresh disabled\n");
	}
}

1684
static void i830_update_wm(struct drm_crtc *unused_crtc)
1685
{
1686
	struct drm_device *dev = unused_crtc->dev;
1687 1688
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1689
	const struct drm_display_mode *adjusted_mode;
1690 1691 1692 1693 1694 1695 1696
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1697 1698
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1699
				       &i830_wm_info,
1700
				       dev_priv->display.get_fifo_size(dev, 0),
1701
				       4, latency_ns);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
1735 1736 1737 1738
	} else if (INTEL_INFO(dev)->gen >= 6) {
		/* enable FBC WM (except on ILK, where it must remain off) */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
				  int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1771
	const struct drm_display_mode *adjusted_mode;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	unsigned long line_time_us;
	int hdisplay, htotal, pixel_size, clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1784
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1785
	clock = adjusted_mode->crtc_clock;
1786
	htotal = adjusted_mode->htotal;
1787
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

1817
static void ironlake_update_wm(struct drm_crtc *crtc)
1818
{
1819
	struct drm_device *dev = crtc->dev;
1820 1821 1822 1823 1824
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1825
	if (g4x_compute_wm0(dev, PIPE_A,
1826
			    &ironlake_display_wm_info,
1827
			    dev_priv->wm.pri_latency[0] * 100,
1828
			    &ironlake_cursor_wm_info,
1829
			    dev_priv->wm.cur_latency[0] * 100,
1830 1831 1832 1833 1834 1835
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1836
		enabled |= 1 << PIPE_A;
1837 1838
	}

1839
	if (g4x_compute_wm0(dev, PIPE_B,
1840
			    &ironlake_display_wm_info,
1841
			    dev_priv->wm.pri_latency[0] * 100,
1842
			    &ironlake_cursor_wm_info,
1843
			    dev_priv->wm.cur_latency[0] * 100,
1844 1845 1846 1847 1848 1849
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1850
		enabled |= 1 << PIPE_B;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled))
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1867
				   dev_priv->wm.pri_latency[1] * 500,
1868 1869 1870 1871 1872 1873 1874
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1875
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1876 1877 1878 1879 1880 1881
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1882
				   dev_priv->wm.pri_latency[2] * 500,
1883 1884 1885 1886 1887 1888 1889
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1890
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

1901
static void sandybridge_update_wm(struct drm_crtc *crtc)
1902
{
1903
	struct drm_device *dev = crtc->dev;
1904
	struct drm_i915_private *dev_priv = dev->dev_private;
1905
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
1906 1907 1908 1909 1910
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1911
	if (g4x_compute_wm0(dev, PIPE_A,
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1922
		enabled |= 1 << PIPE_A;
1923 1924
	}

1925
	if (g4x_compute_wm0(dev, PIPE_B,
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1936
		enabled |= 1 << PIPE_B;
1937 1938
	}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1960
				   dev_priv->wm.pri_latency[1] * 500,
1961 1962 1963 1964 1965 1966 1967
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1968
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1969 1970 1971 1972 1973 1974
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1975
				   dev_priv->wm.pri_latency[2] * 500,
1976 1977 1978 1979 1980 1981 1982
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1983
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1984 1985 1986 1987 1988 1989
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3, enabled,
1990
				   dev_priv->wm.pri_latency[3] * 500,
1991 1992 1993 1994 1995 1996 1997
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
1998
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1999 2000 2001 2002 2003
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2004
static void ivybridge_update_wm(struct drm_crtc *crtc)
2005
{
2006
	struct drm_device *dev = crtc->dev;
2007
	struct drm_i915_private *dev_priv = dev->dev_private;
2008
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
2009 2010 2011 2012 2013 2014
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
	unsigned int enabled;

	enabled = 0;
2015
	if (g4x_compute_wm0(dev, PIPE_A,
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
2026
		enabled |= 1 << PIPE_A;
2027 2028
	}

2029
	if (g4x_compute_wm0(dev, PIPE_B,
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2040
		enabled |= 1 << PIPE_B;
2041 2042
	}

2043
	if (g4x_compute_wm0(dev, PIPE_C,
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEC_IVB);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEC_IVB, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2054
		enabled |= 1 << PIPE_C;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
2078
				   dev_priv->wm.pri_latency[1] * 500,
2079 2080 2081 2082 2083 2084 2085
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
2086
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2087 2088 2089 2090 2091 2092
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
2093
				   dev_priv->wm.pri_latency[2] * 500,
2094 2095 2096 2097 2098 2099 2100
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
2101
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2102 2103 2104 2105
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

2106
	/* WM3, note we have to correct the cursor latency */
2107
	if (!ironlake_compute_srwm(dev, 3, enabled,
2108
				   dev_priv->wm.pri_latency[3] * 500,
2109 2110
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
2111 2112
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
	    !ironlake_compute_srwm(dev, 3, enabled,
2113
				   dev_priv->wm.cur_latency[3] * 500,
2114 2115 2116
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2117 2118 2119 2120
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
2121
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2122 2123 2124 2125 2126
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2127 2128
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
2129 2130
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2131
	uint32_t pixel_rate;
2132

2133
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
2134 2135 2136 2137

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

2138
	if (intel_crtc->config.pch_pfit.enabled) {
2139
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2140
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2141

2142 2143
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

2158
/* latency must be in 0.1us units. */
2159
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2160 2161 2162 2163
			       uint32_t latency)
{
	uint64_t ret;

2164 2165 2166
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2167 2168 2169 2170 2171 2172
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

2173
/* latency must be in 0.1us units. */
2174
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2175 2176 2177 2178 2179
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

2180 2181 2182
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2183 2184 2185 2186 2187 2188
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

2189
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2190 2191 2192 2193 2194
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

2195 2196 2197 2198
struct hsw_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
2199 2200 2201
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
2202 2203
};

2204 2205 2206 2207 2208 2209 2210
struct hsw_wm_maximums {
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2211 2212 2213 2214 2215 2216 2217
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

2218 2219 2220 2221
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2222
static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2223 2224
				   uint32_t mem_value,
				   bool is_lp)
2225
{
2226 2227
	uint32_t method1, method2;

2228
	if (!params->active || !params->pri.enabled)
2229 2230
		return 0;

2231
	method1 = ilk_wm_method1(params->pixel_rate,
2232
				 params->pri.bytes_per_pixel,
2233 2234 2235 2236 2237
				 mem_value);

	if (!is_lp)
		return method1;

2238
	method2 = ilk_wm_method2(params->pixel_rate,
2239
				 params->pipe_htotal,
2240 2241
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
2242 2243 2244
				 mem_value);

	return min(method1, method2);
2245 2246
}

2247 2248 2249 2250
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2251
static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2252 2253 2254 2255
				   uint32_t mem_value)
{
	uint32_t method1, method2;

2256
	if (!params->active || !params->spr.enabled)
2257 2258
		return 0;

2259
	method1 = ilk_wm_method1(params->pixel_rate,
2260
				 params->spr.bytes_per_pixel,
2261
				 mem_value);
2262
	method2 = ilk_wm_method2(params->pixel_rate,
2263
				 params->pipe_htotal,
2264 2265
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
2266 2267 2268 2269
				 mem_value);
	return min(method1, method2);
}

2270 2271 2272 2273
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2274
static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2275 2276
				   uint32_t mem_value)
{
2277
	if (!params->active || !params->cur.enabled)
2278 2279
		return 0;

2280
	return ilk_wm_method2(params->pixel_rate,
2281
			      params->pipe_htotal,
2282 2283
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2284 2285 2286
			      mem_value);
}

2287
/* Only for WM_LP. */
2288
static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2289
				   uint32_t pri_val)
2290
{
2291
	if (!params->active || !params->pri.enabled)
2292 2293
		return 0;

2294
	return ilk_wm_fbc(pri_val,
2295 2296
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2297 2298
}

2299 2300
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2301 2302 2303
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2304 2305 2306 2307 2308 2309 2310 2311
		return 768;
	else
		return 512;
}

/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2312
				     const struct intel_wm_config *config,
2313 2314 2315 2316 2317 2318 2319
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);
	unsigned int max;

	/* if sprites aren't enabled, sprites get nothing */
2320
	if (is_sprite && !config->sprites_enabled)
2321 2322 2323
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2324
	if (level == 0 || config->num_pipes_active > 1) {
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2336
	if (config->sprites_enabled) {
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2348 2349 2350
	if (INTEL_INFO(dev)->gen >= 8)
		max = level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		/* IVB/HSW primary/sprite plane watermarks */
		max = level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		max = level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		max = level == 0 ? 63 : 255;

	return min(fifo_size, max);
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2365 2366
				      int level,
				      const struct intel_wm_config *config)
2367 2368
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2369
	if (level > 0 && config->num_pipes_active > 1)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		return 64;

	/* otherwise just report max that registers can hold */
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

/* Calculate the maximum FBC watermark */
2380
static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
2381 2382
{
	/* max that registers can hold */
2383 2384 2385 2386
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
2387 2388
}

2389 2390 2391 2392 2393
static void ilk_compute_wm_maximums(struct drm_device *dev,
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
				    struct hsw_wm_maximums *max)
2394
{
2395 2396 2397
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2398
	max->fbc = ilk_fbc_wm_max(dev);
2399 2400
}

2401 2402 2403
static bool ilk_validate_wm_level(int level,
				  const struct hsw_wm_maximums *max,
				  struct intel_wm_level *result)
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2442 2443
static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
				 int level,
2444
				 const struct hsw_pipe_wm_parameters *p,
2445
				 struct intel_wm_level *result)
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2465 2466
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2467 2468
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2469 2470
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2471
	u32 linetime, ips_linetime;
2472

2473 2474
	if (!intel_crtc_active(crtc))
		return 0;
2475

2476 2477 2478
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2479 2480 2481
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
					 intel_ddi_get_cdclk_freq(dev_priv));
2482

2483 2484
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2485 2486
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (IS_HASWELL(dev)) {
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2497 2498 2499 2500
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2501 2502 2503 2504 2505 2506 2507
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2508 2509 2510 2511 2512 2513 2514
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2515 2516 2517
	}
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2536
static int ilk_wm_max_level(const struct drm_device *dev)
2537 2538 2539
{
	/* how many WM levels are we expecting */
	if (IS_HASWELL(dev))
2540
		return 4;
2541
	else if (INTEL_INFO(dev)->gen >= 6)
2542
		return 3;
2543
	else
2544 2545 2546 2547 2548 2549 2550 2551
		return 2;
}

static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level = ilk_wm_max_level(dev);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
static void intel_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2585 2586 2587 2588

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2589 2590
}

2591 2592
static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
				      struct hsw_pipe_wm_parameters *p,
2593
				      struct intel_wm_config *config)
2594
{
2595 2596 2597 2598
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2599

2600 2601
	p->active = intel_crtc_active(crtc);
	if (p->active) {
2602
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2603
		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2604 2605
		p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
		p->cur.bytes_per_pixel = 4;
2606
		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2607 2608 2609 2610
		p->cur.horiz_pixels = 64;
		/* TODO: for now, assume primary and cursor planes are always enabled. */
		p->pri.enabled = true;
		p->cur.enabled = true;
2611 2612
	}

2613
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2614
		config->num_pipes_active += intel_crtc_active(crtc);
2615

2616 2617 2618
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2619 2620
		if (intel_plane->pipe == pipe)
			p->spr = intel_plane->wm;
2621

2622 2623
		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
2624
	}
2625 2626
}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
				  const struct hsw_pipe_wm_parameters *params,
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
	struct hsw_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
2644
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2645 2646 2647 2648 2649 2650 2651 2652

	for (level = 0; level <= max_level; level++)
		ilk_compute_wm_level(dev_priv, level, params,
				     &pipe_wm->wm[level]);

	pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);

	/* At least LP0 must be valid */
2653
	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		const struct intel_wm_level *wm =
			&intel_crtc->wm.active.wm[level];

		if (!wm->enable)
			return;

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}

	ret_wm->enable = true;
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
			 const struct hsw_wm_maximums *max,
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);

	merged->fbc_wm_enabled = true;

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2698
		if (!ilk_validate_wm_level(level, max, wm))
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
			break;

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
			merged->fbc_wm_enabled = false;
			wm->fbc_val = 0;
		}
	}
}

2712 2713 2714 2715 2716 2717
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2718
static void hsw_compute_wm_results(struct drm_device *dev,
2719
				   const struct intel_pipe_wm *merged,
2720
				   enum intel_ddb_partitioning partitioning,
2721 2722
				   struct hsw_wm_values *results)
{
2723 2724
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2725

2726
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2727
	results->partitioning = partitioning;
2728

2729
	/* LP1+ register values */
2730
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2731
		const struct intel_wm_level *r;
2732

2733
		level = ilk_wm_lp_to_level(wm_lp, merged);
2734

2735
		r = &merged->wm[level];
2736
		if (!r->enable)
2737 2738
			break;

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
			((level * 2) << WM1_LP_LATENCY_SHIFT) |
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2751 2752
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
	}
2753

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	/* LP0 register values */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2764

2765 2766 2767 2768
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2769 2770 2771
	}
}

2772 2773
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2774 2775 2776
static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2777
{
2778 2779
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2780

2781 2782 2783 2784 2785
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2786 2787
	}

2788 2789
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2790 2791 2792
			return r2;
		else
			return r1;
2793
	} else if (level1 > level2) {
2794 2795 2796 2797 2798 2799
		return r1;
	} else {
		return r2;
	}
}

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
					 const struct hsw_wm_values *old,
					 const struct hsw_wm_values *new)
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

	for_each_pipe(pipe) {
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2860 2861 2862 2863 2864
/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2865
				struct hsw_wm_values *results)
2866
{
2867
	struct hsw_wm_values *previous = &dev_priv->wm.hw;
2868
	unsigned int dirty;
2869 2870
	uint32_t val;

2871
	dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
2872
	if (!dirty)
2873 2874
		return;

2875
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
2876
		I915_WRITE(WM3_LP_ILK, 0);
2877
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
2878
		I915_WRITE(WM2_LP_ILK, 0);
2879
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
2880 2881
		I915_WRITE(WM1_LP_ILK, 0);

2882
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2883
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2884
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2885
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2886
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2887 2888
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2889
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2890
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2891
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2892
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2893
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2894 2895
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2896
	if (dirty & WM_DIRTY_DDB) {
2897
		val = I915_READ(WM_MISC);
2898
		if (results->partitioning == INTEL_DDB_PART_1_2)
2899 2900 2901 2902
			val &= ~WM_MISC_DATA_PARTITION_5_6;
		else
			val |= WM_MISC_DATA_PARTITION_5_6;
		I915_WRITE(WM_MISC, val);
2903 2904
	}

2905
	if (dirty & WM_DIRTY_FBC) {
2906 2907 2908 2909 2910 2911 2912 2913
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2914
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2915
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2916
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2917
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2918
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2919 2920
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);

2921
	if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
2922
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2923
	if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
2924
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2925
	if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
2926
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2927 2928

	dev_priv->wm.hw = *results;
2929 2930
}

2931
static void haswell_update_wm(struct drm_crtc *crtc)
2932
{
2933
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2934
	struct drm_device *dev = crtc->dev;
2935
	struct drm_i915_private *dev_priv = dev->dev_private;
2936
	struct hsw_wm_maximums max;
2937
	struct hsw_pipe_wm_parameters params = {};
2938
	struct hsw_wm_values results = {};
2939
	enum intel_ddb_partitioning partitioning;
2940
	struct intel_pipe_wm pipe_wm = {};
2941
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2942
	struct intel_wm_config config = {};
2943

2944
	hsw_compute_wm_parameters(crtc, &params, &config);
2945 2946 2947 2948 2949

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
2950

2951
	intel_crtc->wm.active = pipe_wm;
2952

2953
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2954 2955 2956
	ilk_wm_merge(dev, &max, &lp_wm_1_2);

	/* 5/6 split only in single pipe config on IVB+ */
2957 2958
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2959
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2960
		ilk_wm_merge(dev, &max, &lp_wm_5_6);
2961

2962
		best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2963
	} else {
2964
		best_lp_wm = &lp_wm_1_2;
2965 2966
	}

2967
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
2968
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2969

2970 2971 2972
	hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);

	hsw_write_wm_values(dev_priv, &results);
2973 2974
}

2975 2976
static void haswell_update_sprite_wm(struct drm_plane *plane,
				     struct drm_crtc *crtc,
2977
				     uint32_t sprite_width, int pixel_size,
2978
				     bool enabled, bool scaled)
2979
{
2980
	struct intel_plane *intel_plane = to_intel_plane(plane);
2981

2982 2983 2984 2985
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.bytes_per_pixel = pixel_size;
2986

2987
	haswell_update_wm(crtc);
2988 2989
}

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
			      uint32_t sprite_width, int pixel_size,
			      const struct intel_watermark_params *display,
			      int display_latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	int clock;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
3001
	if (!intel_crtc_active(crtc)) {
3002 3003 3004 3005
		*sprite_wm = display->guard_size;
		return false;
	}

3006
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

	/* Use the small buffer method to calculate the sprite watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size -
		sprite_width * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*sprite_wm = entries + display->guard_size;
	if (*sprite_wm > (int)display->max_wm)
		*sprite_wm = display->max_wm;

	return true;
}

static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
				uint32_t sprite_width, int pixel_size,
				const struct intel_watermark_params *display,
				int latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*sprite_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
3041
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	if (!clock) {
		*sprite_wm = 0;
		return false;
	}

	line_time_us = (sprite_width * 1000) / clock;
	if (!line_time_us) {
		*sprite_wm = 0;
		return false;
	}

	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = sprite_width * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*sprite_wm = entries + display->guard_size;

	return *sprite_wm > 0x3ff ? false : true;
}

3066 3067
static void sandybridge_update_sprite_wm(struct drm_plane *plane,
					 struct drm_crtc *crtc,
3068
					 uint32_t sprite_width, int pixel_size,
3069
					 bool enabled, bool scaled)
3070
{
3071
	struct drm_device *dev = plane->dev;
3072
	struct drm_i915_private *dev_priv = dev->dev_private;
3073
	int pipe = to_intel_plane(plane)->pipe;
3074
	int latency = dev_priv->wm.spr_latency[0] * 100;	/* In unit 0.1us */
3075 3076 3077 3078
	u32 val;
	int sprite_wm, reg;
	int ret;

3079
	if (!enabled)
3080 3081
		return;

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	switch (pipe) {
	case 0:
		reg = WM0_PIPEA_ILK;
		break;
	case 1:
		reg = WM0_PIPEB_ILK;
		break;
	case 2:
		reg = WM0_PIPEC_IVB;
		break;
	default:
		return; /* bad pipe */
	}

	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
					    &sandybridge_display_wm_info,
					    latency, &sprite_wm);
	if (!ret) {
3100 3101
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
			      pipe_name(pipe));
3102 3103 3104 3105 3106 3107
		return;
	}

	val = I915_READ(reg);
	val &= ~WM0_PIPE_SPRITE_MASK;
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3108
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3109 3110 3111 3112 3113


	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3114
					      dev_priv->wm.spr_latency[1] * 500,
3115 3116
					      &sprite_wm);
	if (!ret) {
3117 3118
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
			      pipe_name(pipe));
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		return;
	}
	I915_WRITE(WM1S_LP_ILK, sprite_wm);

	/* Only IVB has two more LP watermarks for sprite */
	if (!IS_IVYBRIDGE(dev))
		return;

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3130
					      dev_priv->wm.spr_latency[2] * 500,
3131 3132
					      &sprite_wm);
	if (!ret) {
3133 3134
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
			      pipe_name(pipe));
3135 3136 3137 3138 3139 3140 3141
		return;
	}
	I915_WRITE(WM2S_LP_IVB, sprite_wm);

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
3142
					      dev_priv->wm.spr_latency[3] * 500,
3143 3144
					      &sprite_wm);
	if (!ret) {
3145 3146
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
			      pipe_name(pipe));
3147 3148 3149 3150 3151
		return;
	}
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
}

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct hsw_wm_values *hw = &dev_priv->wm.hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	if (intel_crtc_active(crtc)) {
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct hsw_wm_values *hw = &dev_priv->wm.hw;
	struct drm_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);

	hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
		INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3252
void intel_update_watermarks(struct drm_crtc *crtc)
3253
{
3254
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3255 3256

	if (dev_priv->display.update_wm)
3257
		dev_priv->display.update_wm(crtc);
3258 3259
}

3260 3261
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3262
				    uint32_t sprite_width, int pixel_size,
3263
				    bool enabled, bool scaled)
3264
{
3265
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3266 3267

	if (dev_priv->display.update_sprite_wm)
3268
		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3269
						   pixel_size, enabled, scaled);
3270 3271
}

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

B
Ben Widawsky 已提交
3286
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3307 3308 3309 3310 3311 3312 3313 3314 3315
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3316 3317 3318 3319 3320
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3321 3322
	assert_spin_locked(&mchdev_lock);

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3340
static void ironlake_enable_drps(struct drm_device *dev)
3341 3342 3343 3344 3345
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3346 3347
	spin_lock_irq(&mchdev_lock);

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3371 3372
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3373

3374 3375 3376
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3393
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3394
		DRM_ERROR("stuck trying to change perf mode\n");
3395
	mdelay(1);
3396 3397 3398

	ironlake_set_drps(dev, fstart);

3399
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3400
		I915_READ(0x112e0);
3401 3402 3403
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->ips.last_time2);
3404 3405

	spin_unlock_irq(&mchdev_lock);
3406 3407
}

3408
static void ironlake_disable_drps(struct drm_device *dev)
3409 3410
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3411 3412 3413 3414 3415
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3416 3417 3418 3419 3420 3421 3422 3423 3424

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3425
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3426
	mdelay(1);
3427 3428
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3429
	mdelay(1);
3430

3431
	spin_unlock_irq(&mchdev_lock);
3432 3433
}

3434 3435 3436 3437 3438
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3439
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3440
{
3441
	u32 limits;
3442

3443 3444 3445 3446 3447 3448
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3449 3450
	limits = dev_priv->rps.max_delay << 24;
	if (val <= dev_priv->rps.min_delay)
3451
		limits |= dev_priv->rps.min_delay << 16;
3452 3453 3454 3455

	return limits;
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
		if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
			new_power = LOW_POWER;
		else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val == dev_priv->rps.min_delay)
		new_power = LOW_POWER;
	if (val == dev_priv->rps.max_delay)
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3548 3549 3550
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3551

3552
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3553 3554
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);
3555

3556
	if (val == dev_priv->rps.cur_delay)
3557 3558
		return;

3559 3560
	gen6_set_rps_thresholds(dev_priv, val);

3561 3562 3563 3564 3565 3566 3567 3568
	if (IS_HASWELL(dev))
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(val));
	else
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(val) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
3569 3570 3571 3572

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
3573 3574
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   gen6_rps_limits(dev_priv, val));
3575

3576 3577
	POSTING_READ(GEN6_RPNSWREQ);

3578
	dev_priv->rps.cur_delay = val;
3579 3580

	trace_intel_gpu_freq_change(val * 50);
3581 3582
}

3583 3584 3585
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3586 3587 3588 3589 3590 3591 3592
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
		dev_priv->rps.last_adj = 0;
	}
3593 3594 3595 3596 3597 3598
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3599 3600 3601 3602 3603 3604 3605
	if (dev_priv->rps.enabled) {
		if (dev_priv->info->is_valleyview)
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		else
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
		dev_priv->rps.last_adj = 0;
	}
3606 3607 3608
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3609 3610 3611
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3612

3613 3614 3615 3616
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);

3617
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3618
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
3619
			 dev_priv->rps.cur_delay,
3620
			 vlv_gpu_freq(dev_priv, val), val);
3621 3622 3623 3624

	if (val == dev_priv->rps.cur_delay)
		return;

3625
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3626

3627
	dev_priv->rps.cur_delay = val;
3628

3629
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3630 3631
}

3632
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3633 3634 3635 3636
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3637
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3638 3639 3640 3641 3642
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3643
	spin_lock_irq(&dev_priv->irq_lock);
3644
	dev_priv->rps.pm_iir = 0;
3645
	spin_unlock_irq(&dev_priv->irq_lock);
3646

3647
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3648 3649
}

3650
static void gen6_disable_rps(struct drm_device *dev)
3651 3652 3653 3654
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3655
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3656

3657 3658 3659 3660 3661 3662 3663 3664
	gen6_disable_rps_interrupts(dev);
}

static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3665

3666
	gen6_disable_rps_interrupts(dev);
3667 3668 3669 3670 3671

	if (dev_priv->vlv_pctx) {
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
		dev_priv->vlv_pctx = NULL;
	}
3672 3673
}

B
Ben Widawsky 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
	if (IS_GEN6(dev))
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");

	if (IS_HASWELL(dev))
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");

	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
			(mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			(mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			(mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
}

3688 3689
int intel_enable_rc6(const struct drm_device *dev)
{
3690 3691 3692 3693
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

3694
	/* Respect the kernel parameter if it is set */
3695 3696 3697
	if (i915_enable_rc6 >= 0)
		return i915_enable_rc6;

3698 3699 3700
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3701

B
Ben Widawsky 已提交
3702
	if (IS_HASWELL(dev))
3703
		return INTEL_RC6_ENABLE;
3704

3705
	/* snb/ivb have more than one rc6 state. */
B
Ben Widawsky 已提交
3706
	if (INTEL_INFO(dev)->gen == 6)
3707
		return INTEL_RC6_ENABLE;
3708

3709 3710 3711
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}

3712 3713 3714
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3715
	u32 enabled_intrs;
3716 3717

	spin_lock_irq(&dev_priv->irq_lock);
3718
	WARN_ON(dev_priv->rps.pm_iir);
P
Paulo Zanoni 已提交
3719
	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3720 3721
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
	spin_unlock_irq(&dev_priv->irq_lock);
3722

3723
	/* only unmask PM interrupts we need. Mask all others. */
3724 3725 3726 3727 3728 3729 3730 3731 3732
	enabled_intrs = GEN6_PM_RPS_EVENTS;

	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
		enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;

	I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3733 3734
}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
	uint32_t rc6_mask = 0, rp_state_cap;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3747
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			GEN6_RC_CTL_EI_MODE(1) |
			rc6_mask);

	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_delay << 24 |
		   dev_priv->rps.min_delay << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);

	gen6_enable_rps_interrupts(dev);

3804
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3805 3806
}

3807
static void gen6_enable_rps(struct drm_device *dev)
3808
{
3809
	struct drm_i915_private *dev_priv = dev->dev_private;
3810
	struct intel_ring_buffer *ring;
3811 3812
	u32 rp_state_cap;
	u32 gt_perf_status;
3813
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3814 3815
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3816
	int i, ret;
3817

3818
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3834
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3835

3836 3837 3838
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);

3839 3840
	/* In units of 50MHz */
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3841 3842 3843 3844
	dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
	dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3845
	dev_priv->rps.cur_delay = 0;
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3856 3857
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3858 3859 3860

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3861
	if (IS_IVYBRIDGE(dev))
3862 3863 3864
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3865
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3866 3867
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3868
	/* Check if we are enabling RC6 */
3869 3870 3871 3872
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3873 3874 3875 3876
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3877

3878 3879 3880
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3881

B
Ben Widawsky 已提交
3882
	intel_print_rc6_info(dev, rc6_mask);
3883 3884 3885 3886 3887 3888

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3889 3890
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3891 3892
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
3893
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3894
	if (!ret) {
B
Ben Widawsky 已提交
3895 3896
		pcu_mbox = 0;
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3897
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3898
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3899 3900
					 (dev_priv->rps.max_delay & 0xff) * 50,
					 (pcu_mbox & 0xff) * 50);
3901
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
B
Ben Widawsky 已提交
3902 3903 3904
		}
	} else {
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3905 3906
	}

3907 3908
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3909

3910
	gen6_enable_rps_interrupts(dev);
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3926
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3927 3928
}

3929
void gen6_update_ring_freq(struct drm_device *dev)
3930
{
3931
	struct drm_i915_private *dev_priv = dev->dev_private;
3932
	int min_freq = 15;
3933 3934
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3935
	int scaling_factor = 180;
3936
	struct cpufreq_policy *policy;
3937

3938
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3939

3940 3941 3942 3943 3944 3945 3946 3947 3948
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
3949
		max_ia_freq = tsc_khz;
3950
	}
3951 3952 3953 3954

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3955
	min_ring_freq = I915_READ(DCLK) & 0xf;
3956 3957
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3958

3959 3960 3961 3962 3963
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3964
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3965
	     gpu_freq--) {
3966
		int diff = dev_priv->rps.max_delay - gpu_freq;
3967 3968
		unsigned int ia_freq = 0, ring_freq = 0;

3969 3970 3971 3972
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
3973
			ring_freq = mult_frac(gpu_freq, 5, 4);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3990

B
Ben Widawsky 已提交
3991 3992
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3993 3994 3995
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3996 3997 3998
	}
}

3999 4000 4001 4002
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp0;

4003
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4016
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4017
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4018
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4019 4020 4021 4022 4023 4024 4025
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
4026
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4027 4028
}

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4045
								      I915_GTT_OFFSET_NONE,
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4071 4072 4073 4074
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
4075
	u32 gtfifodbg, val, rc6_mode = 0;
4076 4077 4078 4079 4080
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4081 4082
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4083 4084 4085
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4086 4087
	valleyview_setup_pctx(dev);

4088 4089
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4113
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4114 4115

	/* allows RC6 residency counter to work */
4116 4117 4118 4119
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4120
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4121
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4122 4123 4124

	intel_print_rc6_info(dev, rc6_mode);

4125
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4126

4127
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4128 4129 4130 4131 4132

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_delay = (val >> 8) & 0xff;
4133
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4134
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
4135
			 dev_priv->rps.cur_delay);
4136 4137 4138

	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
4139
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4140
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
4141
			 dev_priv->rps.max_delay);
4142

4143 4144
	dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4145
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4146
			 dev_priv->rps.rpe_delay);
4147

4148 4149
	dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4150
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
4151
			 dev_priv->rps.min_delay);
4152

4153
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4154
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4155
			 dev_priv->rps.rpe_delay);
4156

4157
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
4158

4159
	gen6_enable_rps_interrupts(dev);
4160

4161
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4162 4163
}

4164
void ironlake_teardown_rc6(struct drm_device *dev)
4165 4166 4167
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4168 4169 4170 4171
	if (dev_priv->ips.renderctx) {
		i915_gem_object_unpin(dev_priv->ips.renderctx);
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
4172 4173
	}

4174 4175 4176 4177
	if (dev_priv->ips.pwrctx) {
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
4178 4179 4180
	}
}

4181
static void ironlake_disable_rc6(struct drm_device *dev)
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4203 4204 4205
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
4206 4207
		return -ENOMEM;

4208 4209 4210
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
4211 4212 4213 4214 4215 4216 4217
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

4218
static void ironlake_enable_rc6(struct drm_device *dev)
4219 4220
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4221
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
4222
	bool was_interruptible;
4223 4224 4225 4226 4227 4228 4229 4230
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

4231 4232
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4233
	ret = ironlake_setup_rc6(dev);
4234
	if (ret)
4235 4236
		return;

4237 4238 4239
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

4240 4241 4242 4243
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
4244
	ret = intel_ring_begin(ring, 6);
4245 4246
	if (ret) {
		ironlake_teardown_rc6(dev);
4247
		dev_priv->mm.interruptible = was_interruptible;
4248 4249 4250
		return;
	}

4251 4252
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
4253
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4254 4255 4256 4257 4258 4259 4260 4261
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
4262 4263 4264 4265 4266 4267

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
4268 4269
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
4270
	if (ret) {
4271
		DRM_ERROR("failed to enable ironlake power savings\n");
4272 4273 4274 4275
		ironlake_teardown_rc6(dev);
		return;
	}

4276
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4277
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
4278 4279

	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
4280 4281
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

4311
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4312 4313 4314 4315 4316 4317
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

4318 4319
	assert_spin_locked(&mchdev_lock);

4320
	diff1 = now - dev_priv->ips.last_time1;
4321 4322 4323 4324 4325 4326 4327

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
4328
		return dev_priv->ips.chipset_power;
4329 4330 4331 4332 4333 4334 4335 4336

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
4337 4338
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
4339 4340
		diff += total_count;
	} else {
4341
		diff = total_count - dev_priv->ips.last_count1;
4342 4343 4344
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4345 4346
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

4357 4358
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
4359

4360
	dev_priv->ips.chipset_power = ret;
4361 4362 4363 4364

	return ret;
}

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
	if (dev_priv->info->is_mobile)
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4537
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4538 4539 4540 4541 4542 4543
{
	struct timespec now, diff1;
	u64 diff;
	unsigned long diffms;
	u32 count;

4544
	assert_spin_locked(&mchdev_lock);
4545 4546

	getrawmonotonic(&now);
4547
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4548 4549 4550 4551 4552 4553 4554 4555

	/* Don't divide by 0 */
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4556 4557
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4558 4559
		diff += count;
	} else {
4560
		diff = count - dev_priv->ips.last_count2;
4561 4562
	}

4563 4564
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4565 4566 4567 4568

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4569
	dev_priv->ips.gfx_power = diff;
4570 4571
}

4572 4573 4574 4575 4576
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
	if (dev_priv->info->gen != 5)
		return;

4577
	spin_lock_irq(&mchdev_lock);
4578 4579 4580

	__i915_update_gfx_val(dev_priv);

4581
	spin_unlock_irq(&mchdev_lock);
4582 4583
}

4584
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4585 4586 4587 4588
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4589 4590
	assert_spin_locked(&mchdev_lock);

4591
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4611
	corr2 = (corr * dev_priv->ips.corr);
4612 4613 4614 4615

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4616
	__i915_update_gfx_val(dev_priv);
4617

4618
	return dev_priv->ips.gfx_power + state2;
4619 4620
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4648
	spin_lock_irq(&mchdev_lock);
4649 4650 4651 4652
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4653 4654
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4655 4656 4657 4658

	ret = chipset_val + graphics_val;

out_unlock:
4659
	spin_unlock_irq(&mchdev_lock);
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4675
	spin_lock_irq(&mchdev_lock);
4676 4677 4678 4679 4680 4681
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4682 4683
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4684 4685

out_unlock:
4686
	spin_unlock_irq(&mchdev_lock);
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4703
	spin_lock_irq(&mchdev_lock);
4704 4705 4706 4707 4708 4709
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4710 4711
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4712 4713

out_unlock:
4714
	spin_unlock_irq(&mchdev_lock);
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4728
	struct intel_ring_buffer *ring;
4729
	bool ret = false;
4730
	int i;
4731

4732
	spin_lock_irq(&mchdev_lock);
4733 4734 4735 4736
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4737 4738
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4739 4740

out_unlock:
4741
	spin_unlock_irq(&mchdev_lock);
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4758
	spin_lock_irq(&mchdev_lock);
4759 4760 4761 4762 4763 4764
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4765
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4766

4767
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4768 4769 4770
		ret = false;

out_unlock:
4771
	spin_unlock_irq(&mchdev_lock);
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4799 4800
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4801
	spin_lock_irq(&mchdev_lock);
4802
	i915_mch_dev = dev_priv;
4803
	spin_unlock_irq(&mchdev_lock);
4804 4805 4806 4807 4808 4809

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4810
	spin_lock_irq(&mchdev_lock);
4811
	i915_mch_dev = NULL;
4812
	spin_unlock_irq(&mchdev_lock);
4813
}
4814
static void intel_init_emon(struct drm_device *dev)
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

4882
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4883 4884
}

4885 4886
void intel_disable_gt_powersave(struct drm_device *dev)
{
4887 4888
	struct drm_i915_private *dev_priv = dev->dev_private;

4889 4890 4891
	/* Interrupts should be disabled already to avoid re-arming. */
	WARN_ON(dev->irq_enabled);

4892
	if (IS_IRONLAKE_M(dev)) {
4893
		ironlake_disable_drps(dev);
4894
		ironlake_disable_rc6(dev);
4895
	} else if (INTEL_INFO(dev)->gen >= 6) {
4896
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4897
		cancel_work_sync(&dev_priv->rps.work);
4898
		mutex_lock(&dev_priv->rps.hw_lock);
4899 4900 4901 4902
		if (IS_VALLEYVIEW(dev))
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
4903
		dev_priv->rps.enabled = false;
4904
		mutex_unlock(&dev_priv->rps.hw_lock);
4905
	}
4906 4907
}

4908 4909 4910 4911 4912 4913 4914
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

4915
	mutex_lock(&dev_priv->rps.hw_lock);
4916 4917 4918

	if (IS_VALLEYVIEW(dev)) {
		valleyview_enable_rps(dev);
4919 4920 4921
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
		gen6_update_ring_freq(dev);
4922 4923 4924 4925
	} else {
		gen6_enable_rps(dev);
		gen6_update_ring_freq(dev);
	}
4926
	dev_priv->rps.enabled = true;
4927
	mutex_unlock(&dev_priv->rps.hw_lock);
4928 4929
}

4930 4931
void intel_enable_gt_powersave(struct drm_device *dev)
{
4932 4933
	struct drm_i915_private *dev_priv = dev->dev_private;

4934 4935 4936 4937
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
4938
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4939 4940 4941 4942 4943 4944 4945
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 */
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
				      round_jiffies_up_relative(HZ));
4946 4947 4948
	}
}

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

4961 4962 4963 4964 4965 4966 4967 4968 4969
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
4970
		intel_flush_primary_plane(dev_priv, pipe);
4971 4972 4973
	}
}

4974
static void ironlake_init_clock_gating(struct drm_device *dev)
4975 4976
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4977
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4978

4979 4980 4981 4982
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
4983 4984 4985
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5003
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5019
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5020 5021 5022 5023 5024 5025 5026 5027
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5028 5029
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5030 5031 5032 5033 5034 5035
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5036

5037
	/* WaDisableRenderCachePipelinedFlush:ilk */
5038 5039
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5040

5041
	g4x_disable_trickle_feed(dev);
5042

5043 5044 5045 5046 5047 5048 5049
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5050
	uint32_t val;
5051 5052 5053 5054 5055 5056

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5057 5058 5059
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5060 5061
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5062 5063 5064
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5065
	for_each_pipe(pipe) {
5066 5067 5068
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5069
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5070
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5071 5072 5073
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5074 5075
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5076 5077 5078 5079 5080
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5081 5082
}

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
		DRM_INFO("This can cause pipe underruns and display issues.\n");
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
	}
}

5096
static void gen6_init_clock_gating(struct drm_device *dev)
5097 5098
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5099
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5100

5101
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5102 5103 5104 5105 5106

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5107
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5108 5109 5110
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5111
	/* WaSetupGtModeTdRowDispatch:snb */
5112 5113 5114 5115
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

5116 5117 5118 5119 5120
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	I915_WRITE(CACHE_MODE_0,
5121
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5137
	 *
5138 5139
	 * Also apply WaDisableVDSUnitClockGating:snb and
	 * WaDisableRCPBUnitClockGating:snb.
5140 5141
	 */
	I915_WRITE(GEN6_UCGCTL2,
5142
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5143 5144 5145 5146
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

	/* Bspec says we need to always set all mask bits. */
5147 5148
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
5149 5150 5151 5152 5153 5154 5155 5156 5157

	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5158 5159
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5160 5161 5162 5163 5164 5165 5166
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5167 5168 5169 5170
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5171

5172
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5173 5174 5175 5176 5177

	/* The default value should be 0x200 according to docs, but the two
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
5178 5179

	cpt_init_clock_gating(dev);
5180 5181

	gen6_check_mch_setup(dev);
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

5193 5194 5195
	if (IS_HASWELL(dev_priv->dev))
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;

5196 5197 5198
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5211 5212 5213 5214 5215

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5216 5217
}

5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

B
Ben Widawsky 已提交
5230 5231 5232
static void gen8_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5233
	enum pipe i;
B
Ben Widawsky 已提交
5234 5235 5236 5237

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5238 5239 5240 5241

	/* FIXME(BDW): Check all the w/a, some might only apply to
	 * pre-production hw. */

5242 5243 5244 5245
	WARN(!i915_preliminary_hw_support,
	     "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5246 5247
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5248 5249
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));

5250 5251 5252
	I915_WRITE(_3D_CHICKEN3,
		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));

5253 5254 5255
	I915_WRITE(COMMON_SLICE_CHICKEN2,
		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));

5256 5257 5258
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));

5259 5260
	/* WaSwitchSolVfFArbitrationPriority */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271

	/* WaPsrDPAMaskVBlankInSRD */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

	/* WaPsrDPRSUnmaskVBlankInSRD */
	for_each_pipe(i) {
		I915_WRITE(CHICKEN_PIPESL_1(i),
			   I915_READ(CHICKEN_PIPESL_1(i) |
				     DPRS_MASK_VBLANK_SRD));
	}
B
Ben Widawsky 已提交
5272 5273
}

5274 5275 5276 5277 5278 5279 5280 5281 5282
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5283
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
5284 5285 5286
	 */
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);

5287
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
5288 5289 5290
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5291
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
5292 5293 5294 5295 5296
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
			GEN7_WA_L3_CHICKEN_MODE);

5297 5298 5299 5300 5301
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

5302
	/* This is required by WaCatErrorRejectionIssue:hsw */
5303 5304 5305 5306
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5307
	/* WaVSRefCountFullforceMissDisable:hsw */
5308 5309
	gen7_setup_fixed_func_scheduler(dev_priv);

5310
	/* WaDisable4x2SubspanOptimization:hsw */
5311 5312
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5313

5314
	/* WaSwitchSolVfFArbitrationPriority:hsw */
5315 5316
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

5317 5318 5319
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5320

5321
	lpt_init_clock_gating(dev);
5322 5323
}

5324
static void ivybridge_init_clock_gating(struct drm_device *dev)
5325 5326
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5327
	uint32_t snpcr;
5328 5329 5330 5331 5332

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

5333
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5334

5335
	/* WaDisableEarlyCull:ivb */
5336 5337 5338
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5339
	/* WaDisableBackToBackFlipFix:ivb */
5340 5341 5342 5343
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5344
	/* WaDisablePSDDualDispatchEnable:ivb */
5345 5346 5347 5348 5349 5350 5351
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
	else
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

5352
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5353 5354 5355
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5356
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
5357 5358 5359
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5360 5361 5362 5363 5364 5365 5366 5367
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	else
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5368

5369
	/* WaForceL3Serialization:ivb */
5370 5371 5372
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5384
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5385 5386 5387 5388 5389
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5390
	/* This is required by WaCatErrorRejectionIssue:ivb */
5391 5392 5393 5394
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5395
	g4x_disable_trickle_feed(dev);
5396

5397
	/* WaVSRefCountFullforceMissDisable:ivb */
5398
	gen7_setup_fixed_func_scheduler(dev_priv);
5399

5400
	/* WaDisable4x2SubspanOptimization:ivb */
5401 5402
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5403 5404 5405 5406 5407

	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5408

5409 5410
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
5411 5412

	gen6_check_mch_setup(dev);
5413 5414
}

5415
static void valleyview_init_clock_gating(struct drm_device *dev)
5416 5417
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5418 5419 5420 5421 5422 5423 5424 5425 5426
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	mutex_unlock(&dev_priv->rps.hw_lock);
	switch ((val >> 6) & 3) {
	case 0:
		dev_priv->mem_freq = 800;
		break;
5427
	case 1:
5428 5429
		dev_priv->mem_freq = 1066;
		break;
5430
	case 2:
5431 5432
		dev_priv->mem_freq = 1333;
		break;
5433
	case 3:
5434
		dev_priv->mem_freq = 1333;
5435
		break;
5436 5437
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5438

5439
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5440

5441
	/* WaDisableEarlyCull:vlv */
5442 5443 5444
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

5445
	/* WaDisableBackToBackFlipFix:vlv */
5446 5447 5448 5449
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

5450
	/* WaDisablePSDDualDispatchEnable:vlv */
5451
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5452 5453
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5454

5455
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5456 5457 5458
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

5459
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
5460
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5461 5462
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);

5463
	/* WaForceL3Serialization:vlv */
5464 5465 5466
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

5467
	/* WaDisableDopClockGating:vlv */
5468 5469 5470
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

5471
	/* This is required by WaCatErrorRejectionIssue:vlv */
5472 5473 5474 5475
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5487
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5488
	 *
5489 5490
	 * Also apply WaDisableVDSUnitClockGating:vlv and
	 * WaDisableRCPBUnitClockGating:vlv.
5491 5492 5493
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5494
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5495 5496 5497 5498
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5499 5500
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);

5501
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5502

5503 5504
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5505

5506
	/*
5507
	 * WaDisableVLVClockGating_VBIIssue:vlv
5508 5509 5510
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);

	/* Conservative clock gating settings for now */
	I915_WRITE(0x9400, 0xffffffff);
	I915_WRITE(0x9404, 0xffffffff);
	I915_WRITE(0x9408, 0xffffffff);
	I915_WRITE(0x940c, 0xffffffff);
	I915_WRITE(0x9410, 0xffffffff);
	I915_WRITE(0x9414, 0xffffffff);
	I915_WRITE(0x9418, 0xffffffff);
5521 5522
}

5523
static void g4x_init_clock_gating(struct drm_device *dev)
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5539 5540 5541 5542

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5543

5544
	g4x_disable_trickle_feed(dev);
5545 5546
}

5547
static void crestline_init_clock_gating(struct drm_device *dev)
5548 5549 5550 5551 5552 5553 5554 5555
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5556 5557
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5558 5559
}

5560
static void broadwater_init_clock_gating(struct drm_device *dev)
5561 5562 5563 5564 5565 5566 5567 5568 5569
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
5570 5571
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5572 5573
}

5574
static void gen3_init_clock_gating(struct drm_device *dev)
5575 5576 5577 5578 5579 5580 5581
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
5582 5583 5584

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5585 5586 5587

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5588 5589
}

5590
static void i85x_init_clock_gating(struct drm_device *dev)
5591 5592 5593 5594 5595 5596
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}

5597
static void i830_init_clock_gating(struct drm_device *dev)
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

5611 5612 5613 5614 5615 5616
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
		if ((power_well)->domains & (domain_mask))

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
		if ((power_well)->domains & (domain_mask))

5630 5631 5632 5633 5634
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
5635 5636 5637 5638 5639 5640 5641 5642 5643
static bool hsw_power_well_enabled(struct drm_device *dev,
				   struct i915_power_well *power_well)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
bool intel_display_power_enabled_sw(struct drm_device *dev,
				    enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_domains *power_domains;

	power_domains = &dev_priv->power_domains;

	return power_domains->domain_use_count[domain];
}

5655 5656
bool intel_display_power_enabled(struct drm_device *dev,
				 enum intel_display_power_domain domain)
5657 5658
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5659 5660 5661 5662
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;
5663

5664 5665 5666 5667 5668 5669
	power_domains = &dev_priv->power_domains;

	is_enabled = true;

	mutex_lock(&power_domains->lock);
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5670 5671 5672
		if (power_well->always_on)
			continue;

5673 5674 5675 5676 5677 5678 5679 5680
		if (!power_well->is_enabled(dev, power_well)) {
			is_enabled = false;
			break;
		}
	}
	mutex_unlock(&power_domains->lock);

	return is_enabled;
5681 5682
}

5683 5684
static void hsw_set_power_well(struct drm_device *dev,
			       struct i915_power_well *power_well, bool enable)
5685 5686
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5687
	bool is_enabled, enable_requested;
5688
	unsigned long irqflags;
5689
	uint32_t tmp;
5690

5691
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5692 5693
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5694

5695 5696
	if (enable) {
		if (!enable_requested)
5697 5698
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);
5699

5700 5701 5702
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5703
				      HSW_PWR_WELL_STATE_ENABLED), 20))
5704 5705
				DRM_ERROR("Timeout enabling power well\n");
		}
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721

		if (IS_BROADWELL(dev)) {
			spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
			I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
				   dev_priv->de_irq_mask[PIPE_B]);
			I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
				   ~dev_priv->de_irq_mask[PIPE_B] |
				   GEN8_PIPE_VBLANK);
			I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
				   dev_priv->de_irq_mask[PIPE_C]);
			I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
				   ~dev_priv->de_irq_mask[PIPE_C] |
				   GEN8_PIPE_VBLANK);
			POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
			spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
		}
5722 5723
	} else {
		if (enable_requested) {
5724 5725
			enum pipe p;

5726
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5727
			POSTING_READ(HSW_PWR_WELL_DRIVER);
5728
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740

			/*
			 * After this, the registers on the pipes that are part
			 * of the power well will become zero, so we have to
			 * adjust our counters according to that.
			 *
			 * FIXME: Should we do this in general in
			 * drm_vblank_post_modeset?
			 */
			spin_lock_irqsave(&dev->vbl_lock, irqflags);
			for_each_pipe(p)
				if (p != PIPE_A)
5741
					dev->vblank[p].last = 0;
5742
			spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5743 5744
		}
	}
5745
}
5746

5747 5748
static void __intel_power_well_get(struct drm_device *dev,
				   struct i915_power_well *power_well)
5749
{
5750 5751
	if (!power_well->count++ && power_well->set)
		power_well->set(dev, power_well, true);
5752 5753
}

5754 5755
static void __intel_power_well_put(struct drm_device *dev,
				   struct i915_power_well *power_well)
5756 5757
{
	WARN_ON(!power_well->count);
5758 5759 5760

	if (!--power_well->count && power_well->set && i915_disable_power_well)
		power_well->set(dev, power_well, false);
5761 5762
}

5763 5764 5765 5766
void intel_display_power_get(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5767
	struct i915_power_domains *power_domains;
5768 5769
	struct i915_power_well *power_well;
	int i;
5770

5771 5772 5773
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
5774

5775 5776
	for_each_power_well(i, power_well, BIT(domain), power_domains)
		__intel_power_well_get(dev, power_well);
5777

5778 5779
	power_domains->domain_use_count[domain]++;

5780
	mutex_unlock(&power_domains->lock);
5781 5782 5783 5784 5785 5786
}

void intel_display_power_put(struct drm_device *dev,
			     enum intel_display_power_domain domain)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5787
	struct i915_power_domains *power_domains;
5788 5789
	struct i915_power_well *power_well;
	int i;
5790

5791 5792 5793
	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
5794 5795 5796

	WARN_ON(!power_domains->domain_use_count[domain]);
	power_domains->domain_use_count[domain]--;
5797 5798 5799

	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
		__intel_power_well_put(dev, power_well);
5800

5801
	mutex_unlock(&power_domains->lock);
5802 5803
}

5804
static struct i915_power_domains *hsw_pwr;
5805 5806 5807 5808

/* Display audio driver power well request */
void i915_request_power_well(void)
{
5809 5810
	struct drm_i915_private *dev_priv;

5811 5812 5813
	if (WARN_ON(!hsw_pwr))
		return;

5814 5815
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
I
Imre Deak 已提交
5816
	intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
5817 5818 5819 5820 5821 5822
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
void i915_release_power_well(void)
{
5823 5824
	struct drm_i915_private *dev_priv;

5825 5826 5827
	if (WARN_ON(!hsw_pwr))
		return;

5828 5829
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
				power_domains);
I
Imre Deak 已提交
5830
	intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
5831 5832 5833
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

5834 5835 5836 5837 5838 5839 5840 5841
static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
	},
};

5842
static struct i915_power_well hsw_power_wells[] = {
5843 5844 5845 5846 5847
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
	},
5848 5849 5850 5851 5852 5853 5854 5855 5856
	{
		.name = "display",
		.domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
		.is_enabled = hsw_power_well_enabled,
		.set = hsw_set_power_well,
	},
};

static struct i915_power_well bdw_power_wells[] = {
5857 5858 5859 5860 5861
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
	},
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
	{
		.name = "display",
		.domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
		.is_enabled = hsw_power_well_enabled,
		.set = hsw_set_power_well,
	},
};

#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

5875
int intel_power_domains_init(struct drm_device *dev)
5876 5877
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5878
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5879

5880
	mutex_init(&power_domains->lock);
5881

5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
	if (IS_HASWELL(dev)) {
		set_power_wells(power_domains, hsw_power_wells);
		hsw_pwr = power_domains;
	} else if (IS_BROADWELL(dev)) {
		set_power_wells(power_domains, bdw_power_wells);
		hsw_pwr = power_domains;
	} else {
5893
		set_power_wells(power_domains, i9xx_always_on_power_well);
5894
	}
5895 5896 5897 5898

	return 0;
}

5899
void intel_power_domains_remove(struct drm_device *dev)
5900 5901 5902 5903
{
	hsw_pwr = NULL;
}

5904
static void intel_power_domains_resume(struct drm_device *dev)
5905 5906
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5907 5908
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
5909
	int i;
5910

5911
	mutex_lock(&power_domains->lock);
5912 5913 5914 5915
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		if (power_well->set)
			power_well->set(dev, power_well, power_well->count > 0);
	}
5916
	mutex_unlock(&power_domains->lock);
5917 5918
}

5919 5920 5921 5922 5923
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
5924
 */
5925
void intel_power_domains_init_hw(struct drm_device *dev)
5926 5927 5928
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5929
	/* For now, we need the power well to be always enabled. */
5930
	intel_display_set_init_power(dev, true);
5931
	intel_power_domains_resume(dev);
5932

5933 5934 5935
	if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
		return;

5936 5937
	/* We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now. */
5938
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5939
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5940 5941
}

5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
{
	hsw_disable_package_c8(dev_priv);
}

void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
{
	hsw_enable_package_c8(dev_priv);
}

5953 5954 5955 5956 5957 5958
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_HAS_FBC(dev)) {
5959
		if (INTEL_INFO(dev)->gen >= 7) {
5960
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5961 5962 5963 5964 5965
			dev_priv->display.enable_fbc = gen7_enable_fbc;
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (INTEL_INFO(dev)->gen >= 5) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
5966 5967 5968 5969 5970
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
5971
		} else {
5972 5973 5974 5975 5976 5977
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
	}

5978 5979 5980 5981 5982 5983
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

5984 5985
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
5986 5987
		intel_setup_wm_latency(dev);

5988
		if (IS_GEN5(dev)) {
5989 5990 5991
			if (dev_priv->wm.pri_latency[1] &&
			    dev_priv->wm.spr_latency[1] &&
			    dev_priv->wm.cur_latency[1])
5992 5993 5994 5995 5996 5997 5998 5999
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
		} else if (IS_GEN6(dev)) {
6000 6001 6002
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6003 6004 6005 6006 6007 6008 6009 6010 6011
				dev_priv->display.update_wm = sandybridge_update_wm;
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
		} else if (IS_IVYBRIDGE(dev)) {
6012 6013 6014
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6015
				dev_priv->display.update_wm = ivybridge_update_wm;
6016 6017 6018 6019 6020 6021 6022
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6023
		} else if (IS_HASWELL(dev)) {
6024 6025 6026
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
6027
				dev_priv->display.update_wm = haswell_update_wm;
6028 6029
				dev_priv->display.update_sprite_wm =
					haswell_update_sprite_wm;
6030 6031 6032 6033 6034
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
6035
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
B
Ben Widawsky 已提交
6036 6037
		} else if (INTEL_INFO(dev)->gen == 8) {
			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_I865G(dev)) {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

B
Ben Widawsky 已提交
6091 6092
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
6093
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
6117
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6137

6138
int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6139
{
6140
	int div;
6141

6142
	/* 4 x czclk */
6143
	switch (dev_priv->mem_freq) {
6144
	case 800:
6145
		div = 10;
6146 6147
		break;
	case 1066:
6148
		div = 12;
6149 6150
		break;
	case 1333:
6151
		div = 16;
6152 6153 6154 6155 6156
		break;
	default:
		return -1;
	}

6157
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6158 6159
}

6160
int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6161
{
6162
	int mul;
6163

6164
	/* 4 x czclk */
6165
	switch (dev_priv->mem_freq) {
6166
	case 800:
6167
		mul = 10;
6168 6169
		break;
	case 1066:
6170
		mul = 12;
6171 6172
		break;
	case 1333:
6173
		mul = 16;
6174 6175 6176 6177 6178
		break;
	default:
		return -1;
	}

6179
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6180 6181
}

6182 6183 6184 6185 6186 6187 6188
void intel_pm_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
}