amd_iommu.c 83.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34
#include <asm/msidef.h>
35
#include <asm/proto.h>
36
#include <asm/iommu.h>
37
#include <asm/gart.h>
38
#include <asm/dma.h>
39 40 41

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
42 43 44

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

45
#define LOOP_TIMEOUT	100000
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define AMD_IOMMU_PGSIZES	(~0xFFFUL)

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77 78 79 80
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

81 82
static struct iommu_ops amd_iommu_ops;

83
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84
int amd_iommu_max_glx_val = -1;
85

86 87 88
/*
 * general struct to manage commands send to an IOMMU
 */
89
struct iommu_cmd {
90 91 92
	u32 data[4];
};

93
static void update_domain(struct protection_domain *domain);
94
static int __init alloc_passthrough_domain(void);
95

96 97 98 99 100 101
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

102
static struct iommu_dev_data *alloc_dev_data(u16 devid)
103 104 105 106 107 108 109 110
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

111
	dev_data->devid = devid;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

163 164 165 166 167 168 169
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

170 171 172 173 174
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

175 176 177 178
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
179 180
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
181 182 183 184 185 186 187 188 189 190 191 192
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

193 194 195 196 197 198 199 200 201
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

230 231 232 233 234 235 236 237 238 239 240 241
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
242
	if (dev->bus != &pci_bus_type)
243 244 245 246 247 248 249 250 251 252 253 254 255 256
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

257 258
static int iommu_init_device(struct device *dev)
{
259
	struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
260
	struct iommu_dev_data *dev_data;
261
	struct iommu_group *group;
262
	u16 alias;
263
	int ret;
264 265 266 267

	if (dev->archdata.iommu)
		return 0;

268
	dev_data = find_dev_data(get_device_id(dev));
269 270 271
	if (!dev_data)
		return -ENOMEM;

272
	alias = amd_iommu_alias_table[dev_data->devid];
273
	if (alias != dev_data->devid) {
274
		struct iommu_dev_data *alias_data;
275

276 277 278 279
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
280 281 282
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
283
		dev_data->alias_data = alias_data;
284 285 286 287 288 289 290 291 292 293 294

		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
	} else
		dma_pdev = pci_dev_get(pdev);

	group = iommu_group_get(&dma_pdev->dev);
	pci_dev_put(dma_pdev);
	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);
295
	}
296

297 298 299 300 301 302 303
	ret = iommu_group_add_device(group, dev);

	iommu_group_put(group);

	if (ret)
		return ret;

304 305 306 307 308 309 310
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

311 312 313 314 315
	dev->archdata.iommu = dev_data;

	return 0;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

330 331
static void iommu_uninit_device(struct device *dev)
{
332 333
	iommu_group_remove_device(dev);

334 335 336 337 338
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
339
}
J
Joerg Roedel 已提交
340 341 342

void __init amd_iommu_uninit_devices(void)
{
343
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
344 345 346 347 348 349 350 351 352
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
353 354 355 356

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
370 371 372
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
373 374 375 376 377 378 379 380 381 382 383
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
384 385 386 387 388 389
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

390
DECLARE_STATS_COUNTER(compl_wait);
391
DECLARE_STATS_COUNTER(cnt_map_single);
392
DECLARE_STATS_COUNTER(cnt_unmap_single);
393
DECLARE_STATS_COUNTER(cnt_map_sg);
394
DECLARE_STATS_COUNTER(cnt_unmap_sg);
395
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
396
DECLARE_STATS_COUNTER(cnt_free_coherent);
397
DECLARE_STATS_COUNTER(cross_page);
398
DECLARE_STATS_COUNTER(domain_flush_single);
399
DECLARE_STATS_COUNTER(domain_flush_all);
400
DECLARE_STATS_COUNTER(alloced_io_mem);
401
DECLARE_STATS_COUNTER(total_map_requests);
402 403 404 405 406
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
428 429

	amd_iommu_stats_add(&compl_wait);
430
	amd_iommu_stats_add(&cnt_map_single);
431
	amd_iommu_stats_add(&cnt_unmap_single);
432
	amd_iommu_stats_add(&cnt_map_sg);
433
	amd_iommu_stats_add(&cnt_unmap_sg);
434
	amd_iommu_stats_add(&cnt_alloc_coherent);
435
	amd_iommu_stats_add(&cnt_free_coherent);
436
	amd_iommu_stats_add(&cross_page);
437
	amd_iommu_stats_add(&domain_flush_single);
438
	amd_iommu_stats_add(&domain_flush_all);
439
	amd_iommu_stats_add(&alloced_io_mem);
440
	amd_iommu_stats_add(&total_map_requests);
441 442 443 444
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
445 446 447 448
}

#endif

449 450 451 452 453 454
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

455 456 457 458
static void dump_dte_entry(u16 devid)
{
	int i;

459 460
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
461 462 463
			amd_iommu_dev_table[devid].data[i]);
}

464 465 466 467 468 469 470 471 472
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

473
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
474
{
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
496

497
	printk(KERN_ERR "AMD-Vi: Event logged [");
498 499 500 501 502 503 504

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
505
		dump_dte_entry(devid);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
527
		dump_command(address);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
548 549

	memset(__evt, 0, 4 * sizeof(u32));
550 551 552 553 554 555 556 557 558 559 560 561 562
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
563
		iommu_print_event(iommu, iommu->evt_buf + head);
564 565 566 567 568 569 570 571
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

572
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
573 574 575
{
	struct amd_iommu_fault fault;

576 577
	INC_STATS_COUNTER(pri_requests);

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

600 601 602
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

603 604 605 606 607 608
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
625

626 627 628
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
629

630 631 632 633 634 635 636
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
637 638
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
639 640 641 642 643 644 645 646 647 648 649 650 651 652

		/*
		 * Release iommu->lock because ppr-handling might need to
		 * re-aquire it
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
653 654 655 656 657 658
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

659
irqreturn_t amd_iommu_int_thread(int irq, void *data)
660
{
661 662
	struct amd_iommu *iommu;

663
	for_each_iommu(iommu) {
664
		iommu_poll_events(iommu);
665 666
		iommu_poll_ppr_log(iommu);
	}
667 668

	return IRQ_HANDLED;
669 670
}

671 672 673 674 675
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

676 677 678 679 680 681
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
702 703 704
{
	u8 *target;

705
	target = iommu->cmd_buf + tail;
706 707 708 709 710 711
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
712
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
713
}
714

715
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
716
{
717 718
	WARN_ON(address & 0x7ULL);

719
	memset(cmd, 0, sizeof(*cmd));
720 721 722
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
723 724 725
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

726 727 728 729 730 731 732
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

849 850 851 852
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
853 854
}

855 856
/*
 * Writes the command to the IOMMUs command buffer and informs the
857
 * hardware about the new command.
858
 */
859 860 861
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
862
{
863
	u32 left, tail, head, next_tail;
864 865
	unsigned long flags;

866
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
867 868

again:
869 870
	spin_lock_irqsave(&iommu->lock, flags);

871 872 873 874
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
875

876 877 878 879
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
880

881 882
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
883

884 885 886 887 888 889
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
890 891
	}

892 893 894
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
895
	iommu->need_sync = sync;
896

897
	spin_unlock_irqrestore(&iommu->lock, flags);
898

899
	return 0;
900 901
}

902 903 904 905 906
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

907 908 909 910
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
911
static int iommu_completion_wait(struct amd_iommu *iommu)
912 913
{
	struct iommu_cmd cmd;
914
	volatile u64 sem = 0;
915
	int ret;
916

917
	if (!iommu->need_sync)
918
		return 0;
919

920
	build_completion_wait(&cmd, (u64)&sem);
921

922
	ret = iommu_queue_command_sync(iommu, &cmd, false);
923
	if (ret)
924
		return ret;
925

926
	return wait_on_sem(&sem);
927 928
}

929
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
930
{
931
	struct iommu_cmd cmd;
932

933
	build_inv_dte(&cmd, devid);
934

935 936
	return iommu_queue_command(iommu, &cmd);
}
937

938 939 940
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
941

942 943
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
944

945 946
	iommu_completion_wait(iommu);
}
947

948 949 950 951 952 953 954
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
955

956 957 958 959 960 961
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
962

963
	iommu_completion_wait(iommu);
964 965
}

966
static void iommu_flush_all(struct amd_iommu *iommu)
967
{
968
	struct iommu_cmd cmd;
969

970
	build_inv_all(&cmd);
971

972 973 974 975
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

976 977
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
978 979 980 981 982
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
983 984 985
	}
}

986
/*
987
 * Command send function for flushing on-device TLB
988
 */
989 990
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
991 992
{
	struct amd_iommu *iommu;
993
	struct iommu_cmd cmd;
994
	int qdep;
995

996 997
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
998

999
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1000 1001

	return iommu_queue_command(iommu, &cmd);
1002 1003
}

1004 1005 1006
/*
 * Command send function for invalidating a device table entry
 */
1007
static int device_flush_dte(struct iommu_dev_data *dev_data)
1008
{
1009
	struct amd_iommu *iommu;
1010
	int ret;
1011

1012
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1013

1014
	ret = iommu_flush_dte(iommu, dev_data->devid);
1015 1016 1017
	if (ret)
		return ret;

1018
	if (dev_data->ats.enabled)
1019
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1020 1021

	return ret;
1022 1023
}

1024 1025 1026 1027 1028
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1029 1030
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1031
{
1032
	struct iommu_dev_data *dev_data;
1033 1034
	struct iommu_cmd cmd;
	int ret = 0, i;
1035

1036
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1037

1038 1039 1040 1041 1042 1043 1044 1045
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1046
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1047 1048
	}

1049 1050
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1051
		if (!dev_data->ats.enabled)
1052 1053
			continue;

1054
		ret |= device_flush_iotlb(dev_data, address, size);
1055 1056
	}

1057
	WARN_ON(ret);
1058 1059
}

1060 1061
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1062
{
1063
	__domain_flush_pages(domain, address, size, 0);
1064
}
1065

1066
/* Flush the whole IO/TLB for a given protection domain */
1067
static void domain_flush_tlb(struct protection_domain *domain)
1068
{
1069
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1070 1071
}

1072
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1073
static void domain_flush_tlb_pde(struct protection_domain *domain)
1074
{
1075
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1076 1077
}

1078
static void domain_flush_complete(struct protection_domain *domain)
1079
{
1080
	int i;
1081

1082 1083 1084
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1085

1086 1087 1088 1089 1090
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1091
	}
1092 1093
}

1094

1095
/*
1096
 * This function flushes the DTEs for all devices in domain
1097
 */
1098
static void domain_flush_devices(struct protection_domain *domain)
1099
{
1100
	struct iommu_dev_data *dev_data;
1101

1102
	list_for_each_entry(dev_data, &domain->dev_list, list)
1103
		device_flush_dte(dev_data);
1104 1105
}

1106 1107 1108 1109 1110 1111 1112
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1142
		      unsigned long page_size,
1143 1144 1145
		      u64 **pte_page,
		      gfp_t gfp)
{
1146
	int level, end_lvl;
1147
	u64 *pte, *page;
1148 1149

	BUG_ON(!is_power_of_2(page_size));
1150 1151 1152 1153

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1154 1155 1156 1157
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1158 1159 1160 1161 1162 1163 1164 1165 1166

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1167 1168 1169 1170
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1188
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1189 1190 1191 1192
{
	int level;
	u64 *pte;

1193 1194 1195 1196 1197
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1198

1199 1200 1201
	while (level > 0) {

		/* Not Present */
1202 1203 1204
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1224 1225
		level -= 1;

1226
		/* Walk to the next level */
1227 1228 1229 1230 1231 1232 1233
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1234 1235 1236 1237 1238 1239 1240
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1241 1242 1243
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1244
			  int prot,
1245
			  unsigned long page_size)
1246
{
1247
	u64 __pte, *pte;
1248
	int i, count;
1249

1250
	if (!(prot & IOMMU_PROT_MASK))
1251 1252
		return -EINVAL;

1253 1254 1255 1256 1257 1258 1259 1260
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1261

1262 1263 1264 1265 1266
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1267 1268 1269 1270 1271 1272

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1273 1274
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1275

1276 1277
	update_domain(dom);

1278 1279 1280
	return 0;
}

1281 1282 1283
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1284
{
1285 1286 1287 1288 1289 1290
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1321

1322
	return unmapped;
1323 1324
}

1325 1326 1327 1328
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1343 1344 1345 1346
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1347 1348 1349 1350 1351 1352 1353 1354
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1355
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1356
				     PAGE_SIZE);
1357 1358 1359 1360 1361 1362 1363
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1364
			__set_bit(addr >> PAGE_SHIFT,
1365
				  dma_dom->aperture[0]->bitmap);
1366 1367 1368 1369 1370
	}

	return 0;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1393 1394 1395
/*
 * Inits the unity mappings required for a specific device
 */
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1413 1414 1415 1416 1417 1418 1419 1420 1421
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1422

1423
/*
1424
 * The address allocator core functions.
1425 1426 1427
 *
 * called with domain->lock held
 */
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1449 1450 1451 1452 1453
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1454
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1455 1456 1457
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1458
	struct amd_iommu *iommu;
1459
	unsigned long i, old_size;
1460

1461 1462 1463 1464
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1484
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1495
	old_size                = dma_dom->aperture_size;
1496 1497
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1510
	/* Initialize the exclusion range if necessary */
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1533
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1534 1535 1536
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1537
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1538 1539
	}

1540 1541
	update_domain(&dma_dom->domain);

1542 1543 1544
	return 0;

out_free:
1545 1546
	update_domain(&dma_dom->domain);

1547 1548 1549 1550 1551 1552 1553 1554
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1555 1556 1557 1558 1559 1560 1561
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1562
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1563 1564 1565 1566 1567 1568
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1569 1570
	next_bit >>= PAGE_SHIFT;

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1589
			dom->next_address = address + (pages << PAGE_SHIFT);
1590 1591 1592 1593 1594 1595 1596 1597 1598
			break;
		}

		next_bit = 0;
	}

	return address;
}

1599 1600
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1601
					     unsigned int pages,
1602 1603
					     unsigned long align_mask,
					     u64 dma_mask)
1604 1605 1606
{
	unsigned long address;

1607 1608 1609 1610
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1611

1612
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1613
				     dma_mask, dom->next_address);
1614

1615
	if (address == -1) {
1616
		dom->next_address = 0;
1617 1618
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1619 1620
		dom->need_flush = true;
	}
1621

1622
	if (unlikely(address == -1))
1623
		address = DMA_ERROR_CODE;
1624 1625 1626 1627 1628 1629

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1630 1631 1632 1633 1634
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1635 1636 1637 1638
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1639 1640
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1641

1642 1643
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1644 1645 1646 1647
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1648

1649
	if (address >= dom->next_address)
1650
		dom->need_flush = true;
1651 1652

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1653

A
Akinobu Mita 已提交
1654
	bitmap_clear(range->bitmap, address, pages);
1655

1656 1657
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1720
static void free_pagetable(struct protection_domain *domain)
1721 1722 1723 1724
{
	int i, j;
	u64 *p1, *p2, *p3;

1725
	p1 = domain->pt_root;
1726 1727 1728 1729 1730 1731 1732 1733 1734

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1735
		for (j = 0; j < 512; ++j) {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1746 1747

	domain->pt_root = NULL;
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1780 1781
static void free_gcr3_table(struct protection_domain *domain)
{
1782 1783 1784 1785 1786 1787 1788
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1789 1790 1791
	free_page((unsigned long)domain->gcr3_tbl);
}

1792 1793 1794 1795
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1796 1797
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1798 1799
	int i;

1800 1801 1802
	if (!dom)
		return;

1803 1804
	del_domain_from_list(&dom->domain);

1805
	free_pagetable(&dom->domain);
1806

1807 1808 1809 1810 1811 1812
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1813 1814 1815 1816

	kfree(dom);
}

1817 1818
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1819
 * It also initializes the page table and the address allocator data
1820 1821
 * structures required for the dma_ops interface
 */
1822
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1835
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1836
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1837
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1838
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1839 1840 1841 1842
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1843
	dma_dom->need_flush = false;
1844
	dma_dom->target_dev = 0xffff;
1845

1846 1847
	add_domain_to_list(&dma_dom->domain);

1848
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1849 1850
		goto free_dma_dom;

1851
	/*
1852 1853
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1854
	 */
1855
	dma_dom->aperture[0]->bitmap[0] = 1;
1856
	dma_dom->next_address = 0;
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1876
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1877
{
1878
	u64 pte_root = 0;
1879
	u64 flags = 0;
1880

1881 1882 1883
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1884 1885 1886
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1887

1888 1889
	flags = amd_iommu_dev_table[devid].data[1];

1890 1891 1892
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1919 1920 1921 1922 1923
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1924 1925 1926 1927 1928 1929 1930 1931 1932
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1933 1934
}

1935 1936
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1937 1938
{
	struct amd_iommu *iommu;
1939
	bool ats;
1940

1941 1942
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1943 1944 1945 1946

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1947
	set_dte_entry(dev_data->devid, domain, ats);
1948 1949 1950 1951 1952 1953

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1954
	device_flush_dte(dev_data);
1955 1956
}

1957
static void do_detach(struct iommu_dev_data *dev_data)
1958 1959 1960
{
	struct amd_iommu *iommu;

1961
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1962 1963

	/* decrease reference counters */
1964 1965 1966 1967 1968 1969
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1970
	clear_dte_entry(dev_data->devid);
1971

1972
	/* Flush the DTE entry */
1973
	device_flush_dte(dev_data);
1974 1975 1976 1977 1978 1979
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1980
static int __attach_device(struct iommu_dev_data *dev_data,
1981
			   struct protection_domain *domain)
1982
{
1983
	int ret;
1984

1985 1986 1987
	/* lock domain */
	spin_lock(&domain->lock);

1988 1989
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1990

1991 1992 1993 1994 1995
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1996

1997 1998 1999
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2000

2001
		/* Do real assignment */
2002
		if (alias_data->domain == NULL)
2003
			do_attach(alias_data, domain);
2004 2005

		atomic_inc(&alias_data->bind);
2006
	}
2007

2008
	if (dev_data->domain == NULL)
2009
		do_attach(dev_data, domain);
2010

2011 2012
	atomic_inc(&dev_data->bind);

2013 2014 2015 2016
	ret = 0;

out_unlock:

2017 2018
	/* ready */
	spin_unlock(&domain->lock);
2019

2020
	return ret;
2021
}
2022

2023 2024 2025 2026 2027 2028 2029 2030

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2031 2032 2033 2034 2035 2036
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2037
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2038 2039 2040
	if (!pos)
		return -EINVAL;

2041 2042 2043
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2044 2045 2046 2047

	return 0;
}

2048 2049
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2050 2051 2052 2053 2054 2055 2056 2057
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2069 2070
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2071 2072 2073
	if (ret)
		goto out_err;

2074 2075 2076 2077 2078 2079
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2093
/* FIXME: Move this to PCI code */
2094
#define PCI_PRI_TLP_OFF		(1 << 15)
2095 2096 2097

bool pci_pri_tlp_required(struct pci_dev *pdev)
{
2098
	u16 status;
2099 2100
	int pos;

2101
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2102 2103 2104
	if (!pos)
		return false;

2105
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2106

2107
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2108 2109
}

2110 2111 2112 2113
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2114 2115
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2116
{
2117
	struct pci_dev *pdev = to_pci_dev(dev);
2118
	struct iommu_dev_data *dev_data;
2119
	unsigned long flags;
2120
	int ret;
2121

2122 2123
	dev_data = get_dev_data(dev);

2124 2125 2126 2127 2128 2129 2130 2131 2132
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2133
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2134 2135
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2136 2137 2138
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2139

2140
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2141
	ret = __attach_device(dev_data, domain);
2142 2143
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2144 2145 2146 2147 2148
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2149
	domain_flush_tlb_pde(domain);
2150 2151

	return ret;
2152 2153
}

2154 2155 2156
/*
 * Removes a device from a protection domain (unlocked)
 */
2157
static void __detach_device(struct iommu_dev_data *dev_data)
2158
{
2159
	struct protection_domain *domain;
2160
	unsigned long flags;
2161

2162
	BUG_ON(!dev_data->domain);
2163

2164 2165 2166
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2167

2168 2169 2170
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2171
		if (atomic_dec_and_test(&alias_data->bind))
2172
			do_detach(alias_data);
2173 2174
	}

2175
	if (atomic_dec_and_test(&dev_data->bind))
2176
		do_detach(dev_data);
2177

2178
	spin_unlock_irqrestore(&domain->lock, flags);
2179 2180 2181

	/*
	 * If we run in passthrough mode the device must be assigned to the
2182 2183
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2184
	 */
2185
	if (dev_data->passthrough &&
2186
	    (dev_data->domain == NULL && domain != pt_domain))
2187
		__attach_device(dev_data, pt_domain);
2188 2189 2190 2191 2192
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2193
static void detach_device(struct device *dev)
2194
{
2195
	struct protection_domain *domain;
2196
	struct iommu_dev_data *dev_data;
2197 2198
	unsigned long flags;

2199
	dev_data = get_dev_data(dev);
2200
	domain   = dev_data->domain;
2201

2202 2203
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2204
	__detach_device(dev_data);
2205
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2206

2207 2208 2209
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2210
		pci_disable_ats(to_pci_dev(dev));
2211 2212

	dev_data->ats.enabled = false;
2213
}
2214

2215 2216 2217 2218 2219 2220
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2221
	struct iommu_dev_data *dev_data;
2222
	struct protection_domain *dom = NULL;
2223 2224
	unsigned long flags;

2225
	dev_data   = get_dev_data(dev);
2226

2227 2228
	if (dev_data->domain)
		return dev_data->domain;
2229

2230 2231
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2232 2233 2234 2235 2236 2237 2238 2239

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2240 2241 2242 2243

	return dom;
}

2244 2245 2246 2247
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2248 2249 2250
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2251
	struct amd_iommu *iommu;
2252
	unsigned long flags;
2253
	u16 devid;
2254

2255 2256
	if (!check_device(dev))
		return 0;
2257

2258 2259 2260
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2261 2262

	switch (action) {
2263
	case BUS_NOTIFY_UNBOUND_DRIVER:
2264 2265 2266

		domain = domain_for_device(dev);

2267 2268
		if (!domain)
			goto out;
2269
		if (dev_data->passthrough)
2270
			break;
2271
		detach_device(dev);
2272 2273
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2274 2275 2276 2277 2278

		iommu_init_device(dev);

		domain = domain_for_device(dev);

2279 2280 2281 2282
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2283
		dma_domain = dma_ops_domain_alloc();
2284 2285 2286 2287 2288 2289 2290 2291
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2292
		break;
2293 2294 2295 2296
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2307
static struct notifier_block device_nb = {
2308 2309
	.notifier_call = device_change_notifier,
};
2310

2311 2312 2313 2314 2315
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2329
static struct protection_domain *get_domain(struct device *dev)
2330
{
2331
	struct protection_domain *domain;
2332
	struct dma_ops_domain *dma_dom;
2333
	u16 devid = get_device_id(dev);
2334

2335
	if (!check_device(dev))
2336
		return ERR_PTR(-EINVAL);
2337

2338 2339 2340
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2341

2342 2343
	if (domain != NULL)
		return domain;
2344

2345
	/* Device not bount yet - bind it */
2346
	dma_dom = find_protection_domain(devid);
2347
	if (!dma_dom)
2348 2349
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2350
	DUMP_printk("Using protection domain %d for device %s\n",
2351
		    dma_dom->domain.id, dev_name(dev));
2352

2353
	return &dma_dom->domain;
2354 2355
}

2356 2357
static void update_device_table(struct protection_domain *domain)
{
2358
	struct iommu_dev_data *dev_data;
2359

2360 2361
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2362 2363 2364 2365 2366 2367 2368 2369
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2370 2371 2372

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2373 2374 2375 2376

	domain->updated = false;
}

2377 2378 2379 2380 2381 2382
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2383
	struct aperture_range *aperture;
2384 2385
	u64 *pte, *pte_page;

2386 2387 2388 2389 2390
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2391
	if (!pte) {
2392
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2393
				GFP_ATOMIC);
2394 2395
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2396
		pte += PM_LEVEL_INDEX(0, address);
2397

2398
	update_domain(&dom->domain);
2399 2400 2401 2402

	return pte;
}

2403 2404 2405 2406
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2407
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2418
	pte  = dma_ops_get_pte(dom, address);
2419
	if (!pte)
2420
		return DMA_ERROR_CODE;
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2438 2439 2440
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2441
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2442 2443
				 unsigned long address)
{
2444
	struct aperture_range *aperture;
2445 2446 2447 2448 2449
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2450 2451 2452 2453 2454 2455 2456
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2457

2458
	pte += PM_LEVEL_INDEX(0, address);
2459 2460 2461 2462 2463 2464

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2465 2466
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2467 2468
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2469 2470
 * Must be called with the domain lock held.
 */
2471 2472 2473 2474
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2475
			       int dir,
2476 2477
			       bool align,
			       u64 dma_mask)
2478 2479
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2480
	dma_addr_t address, start, ret;
2481
	unsigned int pages;
2482
	unsigned long align_mask = 0;
2483 2484
	int i;

2485
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2486 2487
	paddr &= PAGE_MASK;

2488 2489
	INC_STATS_COUNTER(total_map_requests);

2490 2491 2492
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2493 2494 2495
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2496
retry:
2497 2498
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2499
	if (unlikely(address == DMA_ERROR_CODE)) {
2500 2501 2502 2503 2504 2505 2506
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2507
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2508 2509 2510
			goto out;

		/*
2511
		 * aperture was successfully enlarged by 128 MB, try
2512 2513 2514 2515
		 * allocation again
		 */
		goto retry;
	}
2516 2517 2518

	start = address;
	for (i = 0; i < pages; ++i) {
2519
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2520
		if (ret == DMA_ERROR_CODE)
2521 2522
			goto out_unmap;

2523 2524 2525 2526 2527
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2528 2529
	ADD_STATS_COUNTER(alloced_io_mem, size);

2530
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2531
		domain_flush_tlb(&dma_dom->domain);
2532
		dma_dom->need_flush = false;
2533
	} else if (unlikely(amd_iommu_np_cache))
2534
		domain_flush_pages(&dma_dom->domain, address, size);
2535

2536 2537
out:
	return address;
2538 2539 2540 2541 2542

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2543
		dma_ops_domain_unmap(dma_dom, start);
2544 2545 2546 2547
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2548
	return DMA_ERROR_CODE;
2549 2550
}

2551 2552 2553 2554
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2555
static void __unmap_single(struct dma_ops_domain *dma_dom,
2556 2557 2558 2559
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2560
	dma_addr_t flush_addr;
2561 2562 2563
	dma_addr_t i, start;
	unsigned int pages;

2564
	if ((dma_addr == DMA_ERROR_CODE) ||
2565
	    (dma_addr + size > dma_dom->aperture_size))
2566 2567
		return;

2568
	flush_addr = dma_addr;
2569
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2570 2571 2572 2573
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2574
		dma_ops_domain_unmap(dma_dom, start);
2575 2576 2577
		start += PAGE_SIZE;
	}

2578 2579
	SUB_STATS_COUNTER(alloced_io_mem, size);

2580
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2581

2582
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2583
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2584 2585
		dma_dom->need_flush = false;
	}
2586 2587
}

2588 2589 2590
/*
 * The exported map_single function for dma_ops.
 */
2591 2592 2593 2594
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2595 2596 2597 2598
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2599
	u64 dma_mask;
2600
	phys_addr_t paddr = page_to_phys(page) + offset;
2601

2602 2603
	INC_STATS_COUNTER(cnt_map_single);

2604 2605
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2606
		return (dma_addr_t)paddr;
2607 2608
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2609

2610 2611
	dma_mask = *dev->dma_mask;

2612
	spin_lock_irqsave(&domain->lock, flags);
2613

2614
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2615
			    dma_mask);
2616
	if (addr == DMA_ERROR_CODE)
2617 2618
		goto out;

2619
	domain_flush_complete(domain);
2620 2621 2622 2623 2624 2625 2626

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2627 2628 2629
/*
 * The exported unmap_single function for dma_ops.
 */
2630 2631
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2632 2633 2634 2635
{
	unsigned long flags;
	struct protection_domain *domain;

2636 2637
	INC_STATS_COUNTER(cnt_unmap_single);

2638 2639
	domain = get_domain(dev);
	if (IS_ERR(domain))
2640 2641
		return;

2642 2643
	spin_lock_irqsave(&domain->lock, flags);

2644
	__unmap_single(domain->priv, dma_addr, size, dir);
2645

2646
	domain_flush_complete(domain);
2647 2648 2649 2650

	spin_unlock_irqrestore(&domain->lock, flags);
}

2651 2652 2653 2654
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2669 2670 2671 2672
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2673
static int map_sg(struct device *dev, struct scatterlist *sglist,
2674 2675
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2676 2677 2678 2679 2680 2681 2682
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2683
	u64 dma_mask;
2684

2685 2686
	INC_STATS_COUNTER(cnt_map_sg);

2687 2688
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2689
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2690 2691
	else if (IS_ERR(domain))
		return 0;
2692

2693
	dma_mask = *dev->dma_mask;
2694 2695 2696 2697 2698 2699

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2700
		s->dma_address = __map_single(dev, domain->priv,
2701 2702
					      paddr, s->length, dir, false,
					      dma_mask);
2703 2704 2705 2706 2707 2708 2709 2710

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2711
	domain_flush_complete(domain);
2712 2713 2714 2715 2716 2717 2718 2719

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2720
			__unmap_single(domain->priv, s->dma_address,
2721 2722 2723 2724 2725 2726 2727 2728 2729
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2730 2731 2732 2733
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2734
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2735 2736
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2737 2738 2739 2740 2741 2742
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2743 2744
	INC_STATS_COUNTER(cnt_unmap_sg);

2745 2746
	domain = get_domain(dev);
	if (IS_ERR(domain))
2747 2748
		return;

2749 2750 2751
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2752
		__unmap_single(domain->priv, s->dma_address,
2753 2754 2755 2756
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2757
	domain_flush_complete(domain);
2758 2759 2760 2761

	spin_unlock_irqrestore(&domain->lock, flags);
}

2762 2763 2764
/*
 * The exported alloc_coherent function for dma_ops.
 */
2765
static void *alloc_coherent(struct device *dev, size_t size,
2766 2767
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2768 2769 2770 2771 2772
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2773
	u64 dma_mask = dev->coherent_dma_mask;
2774

2775 2776
	INC_STATS_COUNTER(cnt_alloc_coherent);

2777 2778
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2779 2780 2781
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2782 2783
	} else if (IS_ERR(domain))
		return NULL;
2784

2785 2786 2787
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2788 2789 2790

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2791
		return NULL;
2792 2793 2794

	paddr = virt_to_phys(virt_addr);

2795 2796 2797
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2798 2799
	spin_lock_irqsave(&domain->lock, flags);

2800
	*dma_addr = __map_single(dev, domain->priv, paddr,
2801
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2802

2803
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2804
		spin_unlock_irqrestore(&domain->lock, flags);
2805
		goto out_free;
J
Jiri Slaby 已提交
2806
	}
2807

2808
	domain_flush_complete(domain);
2809 2810 2811 2812

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2813 2814 2815 2816 2817 2818

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2819 2820
}

2821 2822 2823
/*
 * The exported free_coherent function for dma_ops.
 */
2824
static void free_coherent(struct device *dev, size_t size,
2825 2826
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2827 2828 2829 2830
{
	unsigned long flags;
	struct protection_domain *domain;

2831 2832
	INC_STATS_COUNTER(cnt_free_coherent);

2833 2834
	domain = get_domain(dev);
	if (IS_ERR(domain))
2835 2836
		goto free_mem;

2837 2838
	spin_lock_irqsave(&domain->lock, flags);

2839
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2840

2841
	domain_flush_complete(domain);
2842 2843 2844 2845 2846 2847 2848

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2849 2850 2851 2852 2853 2854
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2855
	return check_device(dev);
2856 2857
}

2858
/*
2859 2860
 * The function for pre-allocating protection domains.
 *
2861 2862 2863 2864
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
2865
static void __init prealloc_protection_domains(void)
2866
{
2867
	struct iommu_dev_data *dev_data;
2868
	struct dma_ops_domain *dma_dom;
2869
	struct pci_dev *dev = NULL;
2870
	u16 devid;
2871

2872
	for_each_pci_dev(dev) {
2873 2874 2875

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2876
			continue;
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2888
		/* Is there already any domain for it? */
2889
		if (domain_for_device(&dev->dev))
2890
			continue;
2891 2892 2893

		devid = get_device_id(&dev->dev);

2894
		dma_dom = dma_ops_domain_alloc();
2895 2896 2897
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2898 2899
		dma_dom->target_dev = devid;

2900
		attach_device(&dev->dev, &dma_dom->domain);
2901

2902
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2903 2904 2905
	}
}

2906
static struct dma_map_ops amd_iommu_dma_ops = {
2907 2908
	.alloc = alloc_coherent,
	.free = free_coherent,
2909 2910
	.map_page = map_page,
	.unmap_page = unmap_page,
2911 2912
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2913
	.dma_supported = amd_iommu_dma_supported,
2914 2915
};

2916 2917
static unsigned device_dma_ops_init(void)
{
2918
	struct iommu_dev_data *dev_data;
2919 2920 2921 2922 2923
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
2924 2925 2926

			iommu_ignore_device(&pdev->dev);

2927 2928 2929 2930
			unhandled += 1;
			continue;
		}

2931 2932 2933 2934 2935 2936
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2937 2938 2939 2940 2941
	}

	return unhandled;
}

2942 2943 2944
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2945 2946 2947

void __init amd_iommu_init_api(void)
{
2948
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2949 2950
}

2951 2952 2953
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2954
	int ret, unhandled;
2955

2956 2957 2958 2959 2960
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2961
	for_each_iommu(iommu) {
2962
		iommu->default_dom = dma_ops_domain_alloc();
2963 2964
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2965
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2966 2967 2968 2969 2970
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2971
	/*
2972
	 * Pre-allocate the protection domains for each device.
2973
	 */
2974
	prealloc_protection_domains();
2975 2976

	iommu_detected = 1;
2977
	swiotlb = 0;
2978

2979
	/* Make the driver finally visible to the drivers */
2980 2981 2982 2983 2984
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2985

2986 2987
	amd_iommu_stats_init();

2988 2989 2990 2991
	return 0;

free_domains:

2992
	for_each_iommu(iommu) {
2993 2994 2995 2996 2997 2998
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3012
	struct iommu_dev_data *dev_data, *next;
3013 3014 3015 3016
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3017
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3018
		__detach_device(dev_data);
3019 3020
		atomic_set(&dev_data->bind, 0);
	}
3021 3022 3023 3024

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3025 3026 3027 3028 3029
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3030 3031
	del_domain_from_list(domain);

3032 3033 3034 3035 3036 3037 3038
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3039 3040 3041 3042 3043
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3044
		return NULL;
3045 3046

	spin_lock_init(&domain->lock);
3047
	mutex_init(&domain->api_lock);
3048 3049
	domain->id = domain_id_alloc();
	if (!domain->id)
3050
		goto out_err;
3051
	INIT_LIST_HEAD(&domain->dev_list);
3052

3053 3054
	add_domain_to_list(domain);

3055 3056 3057 3058 3059 3060 3061 3062
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3077 3078 3079 3080 3081 3082
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3083
		goto out_free;
3084 3085

	domain->mode    = PAGE_MODE_3_LEVEL;
3086 3087 3088 3089
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3090 3091
	domain->iommu_domain = dom;

3092 3093 3094 3095 3096
	dom->priv = domain;

	return 0;

out_free:
3097
	protection_domain_free(domain);
3098 3099 3100 3101

	return -ENOMEM;
}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3114 3115
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3116

3117 3118 3119
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3120
	protection_domain_free(domain);
3121 3122 3123 3124

	dom->priv = NULL;
}

3125 3126 3127
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3128
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3129 3130 3131
	struct amd_iommu *iommu;
	u16 devid;

3132
	if (!check_device(dev))
3133 3134
		return;

3135
	devid = get_device_id(dev);
3136

3137
	if (dev_data->domain != NULL)
3138
		detach_device(dev);
3139 3140 3141 3142 3143 3144 3145 3146

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3147 3148 3149 3150
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3151
	struct iommu_dev_data *dev_data;
3152
	struct amd_iommu *iommu;
3153
	int ret;
3154

3155
	if (!check_device(dev))
3156 3157
		return -EINVAL;

3158 3159
	dev_data = dev->archdata.iommu;

3160
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3161 3162 3163
	if (!iommu)
		return -EINVAL;

3164
	if (dev_data->domain)
3165
		detach_device(dev);
3166

3167
	ret = attach_device(dev, domain);
3168 3169 3170

	iommu_completion_wait(iommu);

3171
	return ret;
3172 3173
}

3174
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3175
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3176 3177 3178 3179 3180
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3181 3182 3183
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3184 3185 3186 3187 3188
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3189
	mutex_lock(&domain->api_lock);
3190
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3191 3192
	mutex_unlock(&domain->api_lock);

3193
	return ret;
3194 3195
}

3196 3197
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3198 3199
{
	struct protection_domain *domain = dom->priv;
3200
	size_t unmap_size;
3201

3202 3203 3204
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3205
	mutex_lock(&domain->api_lock);
3206
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3207
	mutex_unlock(&domain->api_lock);
3208

3209
	domain_flush_tlb_pde(domain);
3210

3211
	return unmap_size;
3212 3213
}

3214 3215 3216 3217
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3218
	unsigned long offset_mask;
3219
	phys_addr_t paddr;
3220
	u64 *pte, __pte;
3221

3222 3223 3224
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3225
	pte = fetch_pte(domain, iova);
3226

3227
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3228 3229
		return 0;

3230 3231 3232 3233 3234 3235 3236
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3237 3238 3239 3240

	return paddr;
}

S
Sheng Yang 已提交
3241 3242 3243
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3244 3245 3246 3247 3248
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3249 3250 3251
	return 0;
}

3252 3253 3254 3255 3256
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3257 3258
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3259
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3260
	.domain_has_cap = amd_iommu_domain_has_cap,
3261
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3262 3263
};

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3276
	struct iommu_dev_data *dev_data;
3277
	struct pci_dev *dev = NULL;
3278
	struct amd_iommu *iommu;
3279
	u16 devid;
3280
	int ret;
3281

3282 3283 3284
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3285

3286
	for_each_pci_dev(dev) {
3287
		if (!check_device(&dev->dev))
3288 3289
			continue;

3290 3291 3292
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3293 3294
		devid = get_device_id(&dev->dev);

3295
		iommu = amd_iommu_rlookup_table[devid];
3296 3297 3298
		if (!iommu)
			continue;

3299
		attach_device(&dev->dev, pt_domain);
3300 3301
	}

J
Joerg Roedel 已提交
3302 3303
	amd_iommu_stats_init();

3304 3305 3306 3307
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3449 3450
	INC_STATS_COUNTER(invalidate_iotlb);

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3471 3472
	INC_STATS_COUNTER(invalidate_iotlb_all);

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3584 3585 3586 3587 3588 3589 3590 3591

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3592 3593
	INC_STATS_COUNTER(complete_ppr);

3594 3595 3596 3597 3598 3599 3600 3601 3602
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);