exec.c 120.1 KB
Newer Older
B
bellard 已提交
1
/*
2
 *  Virtual page mapping
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
19

P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qemu-common.h"
22
#include "qapi/error.h"
B
bellard 已提交
23

24
#include "qemu/cutils.h"
B
bellard 已提交
25
#include "cpu.h"
26
#include "exec/exec-all.h"
27
#include "exec/target_page.h"
B
bellard 已提交
28
#include "tcg.h"
29
#include "hw/qdev-core.h"
F
Fam Zheng 已提交
30
#include "hw/qdev-properties.h"
31
#if !defined(CONFIG_USER_ONLY)
32
#include "hw/boards.h"
33
#include "hw/xen/xen.h"
34
#endif
35
#include "sysemu/kvm.h"
36
#include "sysemu/sysemu.h"
37
#include "sysemu/tcg.h"
38 39
#include "qemu/timer.h"
#include "qemu/config-file.h"
40
#include "qemu/error-report.h"
41
#include "qemu/qemu-print.h"
42
#if defined(CONFIG_USER_ONLY)
43
#include "qemu.h"
J
Jun Nakajima 已提交
44
#else /* !CONFIG_USER_ONLY */
45
#include "exec/memory.h"
P
Paolo Bonzini 已提交
46
#include "exec/ioport.h"
47
#include "sysemu/dma.h"
48
#include "sysemu/hostmem.h"
49
#include "sysemu/hw_accel.h"
50
#include "exec/address-spaces.h"
51
#include "sysemu/xen-mapcache.h"
52
#include "trace-root.h"
53

54 55 56 57
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
#include <linux/falloc.h>
#endif

58
#endif
M
Mike Day 已提交
59
#include "qemu/rcu_queue.h"
60
#include "qemu/main-loop.h"
61
#include "translate-all.h"
62
#include "sysemu/replay.h"
63

64
#include "exec/memory-internal.h"
65
#include "exec/ram_addr.h"
66
#include "exec/log.h"
67

68 69
#include "qemu/pmem.h"

70 71
#include "migration/vmstate.h"

72
#include "qemu/range.h"
73 74 75
#ifndef _WIN32
#include "qemu/mmap-alloc.h"
#endif
76

77 78
#include "monitor/monitor.h"

79
//#define DEBUG_SUBPAGE
T
ths 已提交
80

81
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
82 83 84
/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 * are protected by the ramlist lock.
 */
M
Mike Day 已提交
85
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
A
Avi Kivity 已提交
86 87

static MemoryRegion *system_memory;
88
static MemoryRegion *system_io;
A
Avi Kivity 已提交
89

90 91
AddressSpace address_space_io;
AddressSpace address_space_memory;
92

93
static MemoryRegion io_mem_unassigned;
94
#endif
95

96 97
CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);

B
bellard 已提交
98 99
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
P
Paolo Bonzini 已提交
100
__thread CPUState *current_cpu;
P
pbrook 已提交
101
/* 0 = Do not count executed instructions.
T
ths 已提交
102
   1 = Precise instruction counting.
P
pbrook 已提交
103
   2 = Adaptive rate instruction counting.  */
104
int use_icount;
B
bellard 已提交
105

Y
Yang Zhong 已提交
106 107 108
uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

109
#if !defined(CONFIG_USER_ONLY)
110

111 112 113
typedef struct PhysPageEntry PhysPageEntry;

struct PhysPageEntry {
M
Michael S. Tsirkin 已提交
114
    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
115
    uint32_t skip : 6;
M
Michael S. Tsirkin 已提交
116
     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
117
    uint32_t ptr : 26;
118 119
};

120 121
#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)

122
/* Size of the L2 (and L3, etc) page tables.  */
123
#define ADDR_SPACE_BITS 64
124

M
Michael S. Tsirkin 已提交
125
#define P_L2_BITS 9
126 127 128 129 130
#define P_L2_SIZE (1 << P_L2_BITS)

#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)

typedef PhysPageEntry Node[P_L2_SIZE];
131

132
typedef struct PhysPageMap {
133 134
    struct rcu_head rcu;

135 136 137 138 139 140 141 142
    unsigned sections_nb;
    unsigned sections_nb_alloc;
    unsigned nodes_nb;
    unsigned nodes_nb_alloc;
    Node *nodes;
    MemoryRegionSection *sections;
} PhysPageMap;

143
struct AddressSpaceDispatch {
144
    MemoryRegionSection *mru_section;
145 146 147 148
    /* This is a multi-level map on the physical address space.
     * The bottom level has pointers to MemoryRegionSections.
     */
    PhysPageEntry phys_map;
149
    PhysPageMap map;
150 151
};

152 153 154
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    MemoryRegion iomem;
155
    FlatView *fv;
156
    hwaddr base;
157
    uint16_t sub_section[];
158 159
} subpage_t;

160
#define PHYS_SECTION_UNASSIGNED 0
161

162
static void io_mem_init(void);
A
Avi Kivity 已提交
163
static void memory_map_init(void);
164
static void tcg_log_global_after_sync(MemoryListener *listener);
165
static void tcg_commit(MemoryListener *listener);
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
/**
 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 * @cpu: the CPU whose AddressSpace this is
 * @as: the AddressSpace itself
 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 */
struct CPUAddressSpace {
    CPUState *cpu;
    AddressSpace *as;
    struct AddressSpaceDispatch *memory_dispatch;
    MemoryListener tcg_as_listener;
};

181 182 183 184 185 186
struct DirtyBitmapSnapshot {
    ram_addr_t start;
    ram_addr_t end;
    unsigned long dirty[];
};

187
#endif
B
bellard 已提交
188

189
#if !defined(CONFIG_USER_ONLY)
190

191
static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
192
{
193
    static unsigned alloc_hint = 16;
194
    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
195
        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
196
        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
197
        alloc_hint = map->nodes_nb_alloc;
198
    }
199 200
}

201
static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
202 203
{
    unsigned i;
204
    uint32_t ret;
205 206
    PhysPageEntry e;
    PhysPageEntry *p;
207

208
    ret = map->nodes_nb++;
209
    p = map->nodes[ret];
210
    assert(ret != PHYS_MAP_NODE_NIL);
211
    assert(ret != map->nodes_nb_alloc);
212 213 214

    e.skip = leaf ? 0 : 1;
    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
215
    for (i = 0; i < P_L2_SIZE; ++i) {
216
        memcpy(&p[i], &e, sizeof(e));
217
    }
218
    return ret;
219 220
}

221
static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
222
                                hwaddr *index, uint64_t *nb, uint16_t leaf,
223
                                int level)
224 225
{
    PhysPageEntry *p;
226
    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
227

M
Michael S. Tsirkin 已提交
228
    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
229
        lp->ptr = phys_map_node_alloc(map, level == 0);
B
bellard 已提交
230
    }
231
    p = map->nodes[lp->ptr];
232
    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
233

234
    while (*nb && lp < &p[P_L2_SIZE]) {
235
        if ((*index & (step - 1)) == 0 && *nb >= step) {
M
Michael S. Tsirkin 已提交
236
            lp->skip = 0;
237
            lp->ptr = leaf;
238 239
            *index += step;
            *nb -= step;
240
        } else {
241
            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
242 243
        }
        ++lp;
244 245 246
    }
}

A
Avi Kivity 已提交
247
static void phys_page_set(AddressSpaceDispatch *d,
248
                          hwaddr index, uint64_t nb,
249
                          uint16_t leaf)
250
{
251
    /* Wildly overreserve - it doesn't matter much. */
252
    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
253

254
    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
B
bellard 已提交
255 256
}

257 258 259
/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 * and update our entry so we can skip it and go directly to the destination.
 */
260
static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
{
    unsigned valid_ptr = P_L2_SIZE;
    int valid = 0;
    PhysPageEntry *p;
    int i;

    if (lp->ptr == PHYS_MAP_NODE_NIL) {
        return;
    }

    p = nodes[lp->ptr];
    for (i = 0; i < P_L2_SIZE; i++) {
        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
            continue;
        }

        valid_ptr = i;
        valid++;
        if (p[i].skip) {
280
            phys_page_compact(&p[i], nodes);
281 282 283 284 285 286 287 288 289 290 291
        }
    }

    /* We can only compress if there's only one child. */
    if (valid != 1) {
        return;
    }

    assert(valid_ptr < P_L2_SIZE);

    /* Don't compress if it won't fit in the # of bits we have. */
292 293
    if (P_L2_LEVELS >= (1 << 6) &&
        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        return;
    }

    lp->ptr = p[valid_ptr].ptr;
    if (!p[valid_ptr].skip) {
        /* If our only child is a leaf, make this a leaf. */
        /* By design, we should have made this node a leaf to begin with so we
         * should never reach here.
         * But since it's so simple to handle this, let's do it just in case we
         * change this rule.
         */
        lp->skip = 0;
    } else {
        lp->skip += p[valid_ptr].skip;
    }
}

311
void address_space_dispatch_compact(AddressSpaceDispatch *d)
312 313
{
    if (d->phys_map.skip) {
314
        phys_page_compact(&d->phys_map, d->map.nodes);
315 316 317
    }
}

F
Fam Zheng 已提交
318 319 320 321 322 323
static inline bool section_covers_addr(const MemoryRegionSection *section,
                                       hwaddr addr)
{
    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
     * the section must cover the entire address space.
     */
324
    return int128_gethi(section->size) ||
F
Fam Zheng 已提交
325
           range_covers_byte(section->offset_within_address_space,
326
                             int128_getlo(section->size), addr);
F
Fam Zheng 已提交
327 328
}

329
static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
B
bellard 已提交
330
{
331 332 333
    PhysPageEntry lp = d->phys_map, *p;
    Node *nodes = d->map.nodes;
    MemoryRegionSection *sections = d->map.sections;
334
    hwaddr index = addr >> TARGET_PAGE_BITS;
335
    int i;
336

M
Michael S. Tsirkin 已提交
337
    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
338
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
339
            return &sections[PHYS_SECTION_UNASSIGNED];
340
        }
341
        p = nodes[lp.ptr];
342
        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
343
    }
344

F
Fam Zheng 已提交
345
    if (section_covers_addr(&sections[lp.ptr], addr)) {
346 347 348 349
        return &sections[lp.ptr];
    } else {
        return &sections[PHYS_SECTION_UNASSIGNED];
    }
350 351
}

352
/* Called from RCU critical section */
353
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
354 355
                                                        hwaddr addr,
                                                        bool resolve_subpage)
356
{
357
    MemoryRegionSection *section = atomic_read(&d->mru_section);
358 359
    subpage_t *subpage;

360 361
    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
        !section_covers_addr(section, addr)) {
362
        section = phys_page_find(d, addr);
363
        atomic_set(&d->mru_section, section);
364
    }
365 366
    if (resolve_subpage && section->mr->subpage) {
        subpage = container_of(section->mr, subpage_t, iomem);
367
        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
368 369
    }
    return section;
370 371
}

372
/* Called from RCU critical section */
373
static MemoryRegionSection *
374
address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
375
                                 hwaddr *plen, bool resolve_subpage)
376 377
{
    MemoryRegionSection *section;
378
    MemoryRegion *mr;
379
    Int128 diff;
380

381
    section = address_space_lookup_region(d, addr, resolve_subpage);
382 383 384 385 386 387
    /* Compute offset within MemoryRegionSection */
    addr -= section->offset_within_address_space;

    /* Compute offset within MemoryRegion */
    *xlat = addr + section->offset_within_region;

388
    mr = section->mr;
389 390 391 392 393 394 395 396 397 398 399 400

    /* MMIO registers can be expected to perform full-width accesses based only
     * on their address, without considering adjacent registers that could
     * decode to completely different MemoryRegions.  When such registers
     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
     * regions overlap wildly.  For this reason we cannot clamp the accesses
     * here.
     *
     * If the length is small (as is the case for address_space_ldl/stl),
     * everything works fine.  If the incoming length is large, however,
     * the caller really has to do the clamping through memory_access_size.
     */
401
    if (memory_region_is_ram(mr)) {
402
        diff = int128_sub(section->size, int128_make64(addr));
403 404
        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
    }
405 406
    return section;
}
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/**
 * address_space_translate_iommu - translate an address through an IOMMU
 * memory region and then through the target address space.
 *
 * @iommu_mr: the IOMMU memory region that we start the translation from
 * @addr: the address to be translated through the MMU
 * @xlat: the translated address offset within the destination memory region.
 *        It cannot be %NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            cannot be %NULL.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be %NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
 * @target_as: the address space targeted by the IOMMU
425
 * @attrs: transaction attributes
426 427 428 429 430 431 432 433 434 435
 *
 * This function is called from RCU critical section.  It is the common
 * part of flatview_do_translate and address_space_translate_cached.
 */
static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
                                                         hwaddr *xlat,
                                                         hwaddr *plen_out,
                                                         hwaddr *page_mask_out,
                                                         bool is_write,
                                                         bool is_mmio,
436 437
                                                         AddressSpace **target_as,
                                                         MemTxAttrs attrs)
438 439 440 441 442 443 444
{
    MemoryRegionSection *section;
    hwaddr page_mask = (hwaddr)-1;

    do {
        hwaddr addr = *xlat;
        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
445 446 447 448 449 450 451 452 453
        int iommu_idx = 0;
        IOMMUTLBEntry iotlb;

        if (imrc->attrs_to_index) {
            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        }

        iotlb = imrc->translate(iommu_mr, addr, is_write ?
                                IOMMU_WO : IOMMU_RO, iommu_idx);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

        if (!(iotlb.perm & (1 << is_write))) {
            goto unassigned;
        }

        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        page_mask &= iotlb.addr_mask;
        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
        *target_as = iotlb.target_as;

        section = address_space_translate_internal(
                address_space_to_dispatch(iotlb.target_as), addr, xlat,
                plen_out, is_mmio);

        iommu_mr = memory_region_get_iommu(section->mr);
    } while (unlikely(iommu_mr));

    if (page_mask_out) {
        *page_mask_out = page_mask;
    }
    return *section;

unassigned:
    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/**
 * flatview_do_translate - translate an address in FlatView
 *
 * @fv: the flat view that we want to translate on
 * @addr: the address to be translated in above address space
 * @xlat: the translated address offset within memory region. It
 *        cannot be @NULL.
 * @plen_out: valid read/write length of the translated address. It
 *            can be @NULL when we don't care about it.
 * @page_mask_out: page mask for the translated address. This
 *            should only be meaningful for IOMMU translated
 *            addresses, since there may be huge pages that this bit
 *            would tell. It can be @NULL if we don't care about it.
 * @is_write: whether the translation operation is for write
 * @is_mmio: whether this can be MMIO, set true if it can
496
 * @target_as: the address space targeted by the IOMMU
497
 * @attrs: memory transaction attributes
498 499 500
 *
 * This function is called from RCU critical section
 */
501 502 503
static MemoryRegionSection flatview_do_translate(FlatView *fv,
                                                 hwaddr addr,
                                                 hwaddr *xlat,
504 505
                                                 hwaddr *plen_out,
                                                 hwaddr *page_mask_out,
506 507
                                                 bool is_write,
                                                 bool is_mmio,
508 509
                                                 AddressSpace **target_as,
                                                 MemTxAttrs attrs)
510 511
{
    MemoryRegionSection *section;
512
    IOMMUMemoryRegion *iommu_mr;
513 514
    hwaddr plen = (hwaddr)(-1);

515 516
    if (!plen_out) {
        plen_out = &plen;
517
    }
518

519 520 521
    section = address_space_translate_internal(
            flatview_to_dispatch(fv), addr, xlat,
            plen_out, is_mmio);
522

523 524 525 526 527
    iommu_mr = memory_region_get_iommu(section->mr);
    if (unlikely(iommu_mr)) {
        return address_space_translate_iommu(iommu_mr, xlat,
                                             plen_out, page_mask_out,
                                             is_write, is_mmio,
528
                                             target_as, attrs);
529
    }
530
    if (page_mask_out) {
531 532
        /* Not behind an IOMMU, use default page size. */
        *page_mask_out = ~TARGET_PAGE_MASK;
533 534
    }

535
    return *section;
536 537 538
}

/* Called from RCU critical section */
539
IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
540
                                            bool is_write, MemTxAttrs attrs)
541
{
542
    MemoryRegionSection section;
543
    hwaddr xlat, page_mask;
A
Avi Kivity 已提交
544

545 546 547 548 549
    /*
     * This can never be MMIO, and we don't really care about plen,
     * but page mask.
     */
    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
550 551
                                    NULL, &page_mask, is_write, false, &as,
                                    attrs);
A
Avi Kivity 已提交
552

553 554 555 556
    /* Illegal translation */
    if (section.mr == &io_mem_unassigned) {
        goto iotlb_fail;
    }
A
Avi Kivity 已提交
557

558 559 560 561 562
    /* Convert memory region offset into address space offset */
    xlat += section.offset_within_address_space -
        section.offset_within_region;

    return (IOMMUTLBEntry) {
563
        .target_as = as,
564 565 566
        .iova = addr & ~page_mask,
        .translated_addr = xlat & ~page_mask,
        .addr_mask = page_mask,
567 568 569 570 571 572 573 574 575
        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
        .perm = IOMMU_RW,
    };

iotlb_fail:
    return (IOMMUTLBEntry) {0};
}

/* Called from RCU critical section */
576
MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
577 578
                                 hwaddr *plen, bool is_write,
                                 MemTxAttrs attrs)
579 580 581
{
    MemoryRegion *mr;
    MemoryRegionSection section;
582
    AddressSpace *as = NULL;
583 584

    /* This can be MMIO, so setup MMIO bit. */
585
    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
586
                                    is_write, true, &as, attrs);
587 588
    mr = section.mr;

589
    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
590
        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
591
        *plen = MIN(page, *plen);
592 593
    }

A
Avi Kivity 已提交
594
    return mr;
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
typedef struct TCGIOMMUNotifier {
    IOMMUNotifier n;
    MemoryRegion *mr;
    CPUState *cpu;
    int iommu_idx;
    bool active;
} TCGIOMMUNotifier;

static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
{
    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);

    if (!notifier->active) {
        return;
    }
    tlb_flush(notifier->cpu);
    notifier->active = false;
    /* We leave the notifier struct on the list to avoid reallocating it later.
     * Generally the number of IOMMUs a CPU deals with will be small.
     * In any case we can't unregister the iommu notifier from a notify
     * callback.
     */
}

static void tcg_register_iommu_notifier(CPUState *cpu,
                                        IOMMUMemoryRegion *iommu_mr,
                                        int iommu_idx)
{
    /* Make sure this CPU has an IOMMU notifier registered for this
     * IOMMU/IOMMU index combination, so that we can flush its TLB
     * when the IOMMU tells us the mappings we've cached have changed.
     */
    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
    TCGIOMMUNotifier *notifier;
631 632
    Error *err = NULL;
    int i, ret;
633 634

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
635
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
636 637 638 639 640 641 642
        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
            break;
        }
    }
    if (i == cpu->iommu_notifiers->len) {
        /* Not found, add a new entry at the end of the array */
        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
643 644
        notifier = g_new0(TCGIOMMUNotifier, 1);
        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

        notifier->mr = mr;
        notifier->iommu_idx = iommu_idx;
        notifier->cpu = cpu;
        /* Rather than trying to register interest in the specific part
         * of the iommu's address space that we've accessed and then
         * expand it later as subsequent accesses touch more of it, we
         * just register interest in the whole thing, on the assumption
         * that iommu reconfiguration will be rare.
         */
        iommu_notifier_init(&notifier->n,
                            tcg_iommu_unmap_notify,
                            IOMMU_NOTIFIER_UNMAP,
                            0,
                            HWADDR_MAX,
                            iommu_idx);
661 662 663 664 665 666
        ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
                                                    &err);
        if (ret) {
            error_report_err(err);
            exit(1);
        }
667 668 669 670 671 672 673 674 675 676 677 678 679 680
    }

    if (!notifier->active) {
        notifier->active = true;
    }
}

static void tcg_iommu_free_notifier_list(CPUState *cpu)
{
    /* Destroy the CPU's notifier list */
    int i;
    TCGIOMMUNotifier *notifier;

    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
681
        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
682
        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
683
        g_free(notifier);
684 685 686 687
    }
    g_array_free(cpu->iommu_notifiers, true);
}

688
/* Called from RCU critical section */
689
MemoryRegionSection *
690
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
691 692
                                  hwaddr *xlat, hwaddr *plen,
                                  MemTxAttrs attrs, int *prot)
693
{
A
Avi Kivity 已提交
694
    MemoryRegionSection *section;
695 696 697 698
    IOMMUMemoryRegion *iommu_mr;
    IOMMUMemoryRegionClass *imrc;
    IOMMUTLBEntry iotlb;
    int iommu_idx;
699
    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    for (;;) {
        section = address_space_translate_internal(d, addr, &addr, plen, false);

        iommu_mr = memory_region_get_iommu(section->mr);
        if (!iommu_mr) {
            break;
        }

        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);

        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
         * doesn't short-cut its translation table walk.
         */
        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
                | (addr & iotlb.addr_mask));
        /* Update the caller's prot bits to remove permissions the IOMMU
         * is giving us a failure response for. If we get down to no
         * permissions left at all we can give up now.
         */
        if (!(iotlb.perm & IOMMU_RO)) {
            *prot &= ~(PAGE_READ | PAGE_EXEC);
        }
        if (!(iotlb.perm & IOMMU_WO)) {
            *prot &= ~PAGE_WRITE;
        }

        if (!*prot) {
            goto translate_fail;
        }

        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
    }
A
Avi Kivity 已提交
736

737
    assert(!memory_region_is_iommu(section->mr));
738
    *xlat = addr;
A
Avi Kivity 已提交
739
    return section;
740 741 742

translate_fail:
    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
743
}
744
#endif
B
bellard 已提交
745

746
#if !defined(CONFIG_USER_ONLY)
747 748

static int cpu_common_post_load(void *opaque, int version_id)
B
bellard 已提交
749
{
750
    CPUState *cpu = opaque;
B
bellard 已提交
751

752 753
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
754
    cpu->interrupt_request &= ~0x01;
755
    tlb_flush(cpu);
756

757 758 759 760 761 762 763
    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

764
    return 0;
B
bellard 已提交
765
}
B
bellard 已提交
766

767 768 769 770
static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

771
    cpu->exception_index = -1;
772 773 774 775 776 777 778 779

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

780
    return tcg_enabled() && cpu->exception_index != -1;
781 782 783 784 785 786
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
787
    .needed = cpu_common_exception_index_needed,
788 789 790 791 792 793
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

812
const VMStateDescription vmstate_cpu_common = {
813 814 815
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
816
    .pre_load = cpu_common_pre_load,
817
    .post_load = cpu_common_post_load,
818
    .fields = (VMStateField[]) {
819 820
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
821
        VMSTATE_END_OF_LIST()
822
    },
823 824
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
825
        &vmstate_cpu_common_crash_occurred,
826
        NULL
827 828
    }
};
829

830
#endif
B
bellard 已提交
831

832
CPUState *qemu_get_cpu(int index)
B
bellard 已提交
833
{
A
Andreas Färber 已提交
834
    CPUState *cpu;
B
bellard 已提交
835

A
Andreas Färber 已提交
836
    CPU_FOREACH(cpu) {
837
        if (cpu->cpu_index == index) {
A
Andreas Färber 已提交
838
            return cpu;
839
        }
B
bellard 已提交
840
    }
841

A
Andreas Färber 已提交
842
    return NULL;
B
bellard 已提交
843 844
}

845
#if !defined(CONFIG_USER_ONLY)
P
Peter Xu 已提交
846 847
void cpu_address_space_init(CPUState *cpu, int asidx,
                            const char *prefix, MemoryRegion *mr)
848
{
849
    CPUAddressSpace *newas;
P
Peter Xu 已提交
850
    AddressSpace *as = g_new0(AddressSpace, 1);
851
    char *as_name;
P
Peter Xu 已提交
852 853

    assert(mr);
854 855 856
    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
    address_space_init(as, mr, as_name);
    g_free(as_name);
857 858 859 860

    /* Target code should have set num_ases before calling us */
    assert(asidx < cpu->num_ases);

861 862 863 864 865
    if (asidx == 0) {
        /* address space 0 gets the convenience alias */
        cpu->as = as;
    }

866 867
    /* KVM cannot currently support multiple address spaces. */
    assert(asidx == 0 || !kvm_enabled());
868

869 870
    if (!cpu->cpu_ases) {
        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
871
    }
872

873 874 875
    newas = &cpu->cpu_ases[asidx];
    newas->cpu = cpu;
    newas->as = as;
876
    if (tcg_enabled()) {
877
        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
878 879
        newas->tcg_as_listener.commit = tcg_commit;
        memory_listener_register(&newas->tcg_as_listener, as);
880
    }
881
}
882 883 884 885 886 887

AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
{
    /* Return the AddressSpace corresponding to the specified index */
    return cpu->cpu_ases[asidx].as;
}
888 889
#endif

890
void cpu_exec_unrealizefn(CPUState *cpu)
891
{
892 893
    CPUClass *cc = CPU_GET_CLASS(cpu);

894
    cpu_list_remove(cpu);
895 896 897 898 899 900 901

    if (cc->vmsd != NULL) {
        vmstate_unregister(NULL, cc->vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
902 903 904
#ifndef CONFIG_USER_ONLY
    tcg_iommu_free_notifier_list(cpu);
#endif
905 906
}

F
Fam Zheng 已提交
907 908 909
Property cpu_common_props[] = {
#ifndef CONFIG_USER_ONLY
    /* Create a memory property for softmmu CPU object,
910
     * so users can wire up its memory. (This can't go in hw/core/cpu.c
F
Fam Zheng 已提交
911 912 913 914 915 916 917 918 919 920
     * because that file is compiled only once for both user-mode
     * and system builds.) The default if no link is set up is to use
     * the system address space.
     */
    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
#endif
    DEFINE_PROP_END_OF_LIST(),
};

L
Laurent Vivier 已提交
921
void cpu_exec_initfn(CPUState *cpu)
B
bellard 已提交
922
{
923
    cpu->as = NULL;
924
    cpu->num_ases = 0;
925

926 927
#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
928 929
    cpu->memory = system_memory;
    object_ref(OBJECT(cpu->memory));
930
#endif
L
Laurent Vivier 已提交
931 932
}

933
void cpu_exec_realizefn(CPUState *cpu, Error **errp)
L
Laurent Vivier 已提交
934
{
935
    CPUClass *cc = CPU_GET_CLASS(cpu);
936
    static bool tcg_target_initialized;
937

938
    cpu_list_add(cpu);
939

940 941
    if (tcg_enabled() && !tcg_target_initialized) {
        tcg_target_initialized = true;
942 943
        cc->tcg_initialize();
    }
E
Emilio G. Cota 已提交
944
    tlb_init(cpu);
945

E
Emilio G. Cota 已提交
946 947
    qemu_plugin_vcpu_init_hook(cpu);

948
#ifndef CONFIG_USER_ONLY
949
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
951
    }
952
    if (cc->vmsd != NULL) {
953
        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
954
    }
955

956
    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
957
#endif
B
bellard 已提交
958 959
}

960
const char *parse_cpu_option(const char *cpu_option)
961 962 963 964 965 966
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

967
    model_pieces = g_strsplit(cpu_option, ",", 2);
968 969 970 971
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

987
#if defined(CONFIG_USER_ONLY)
988
void tb_invalidate_phys_addr(target_ulong addr)
989
{
990
    mmap_lock();
991
    tb_invalidate_phys_page_range(addr, addr + 1);
992 993
    mmap_unlock();
}
994 995 996 997 998

static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    tb_invalidate_phys_addr(pc);
}
999
#else
1000 1001 1002 1003 1004 1005
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

1006 1007 1008 1009
    if (!tcg_enabled()) {
        return;
    }

1010
    RCU_READ_LOCK_GUARD();
1011 1012 1013 1014 1015 1016
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
1017
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
    MemTxAttrs attrs;
    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    if (phys != -1) {
        /* Locks grabbed by tb_invalidate_phys_addr */
        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1028
                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1029
    }
1030
}
1031
#endif
B
bellard 已提交
1032

1033
#ifndef CONFIG_USER_ONLY
1034
/* Add a watchpoint.  */
1035
int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1036
                          int flags, CPUWatchpoint **watchpoint)
1037
{
1038
    CPUWatchpoint *wp;
1039

1040
    /* forbid ranges which are empty or run off the end of the address space */
1041
    if (len == 0 || (addr + len - 1) < addr) {
1042 1043
        error_report("tried to set invalid watchpoint at %"
                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1044 1045
        return -EINVAL;
    }
1046
    wp = g_malloc(sizeof(*wp));
1047 1048

    wp->vaddr = addr;
1049
    wp->len = len;
1050 1051
    wp->flags = flags;

1052
    /* keep all GDB-injected watchpoints in front */
1053 1054 1055 1056 1057
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
    }
1058

1059
    tlb_flush_page(cpu, addr);
1060 1061 1062 1063

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1064 1065
}

1066
/* Remove a specific watchpoint.  */
1067
int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1068
                          int flags)
1069
{
1070
    CPUWatchpoint *wp;
1071

1072
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1073
        if (addr == wp->vaddr && len == wp->len
1074
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1075
            cpu_watchpoint_remove_by_ref(cpu, wp);
1076 1077 1078
            return 0;
        }
    }
1079
    return -ENOENT;
1080 1081
}

1082
/* Remove a specific watchpoint by reference.  */
1083
void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1084
{
1085
    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1086

1087
    tlb_flush_page(cpu, watchpoint->vaddr);
1088

1089
    g_free(watchpoint);
1090 1091 1092
}

/* Remove all matching watchpoints.  */
1093
void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1094
{
1095
    CPUWatchpoint *wp, *next;
1096

1097
    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1098 1099 1100
        if (wp->flags & mask) {
            cpu_watchpoint_remove_by_ref(cpu, wp);
        }
1101
    }
1102
}
1103 1104 1105 1106 1107 1108

/* Return true if this watchpoint address matches the specified
 * access (ie the address range covered by the watchpoint overlaps
 * partially or completely with the address range covered by the
 * access).
 */
1109 1110
static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
                                              vaddr addr, vaddr len)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
{
    /* We know the lengths are non-zero, but a little caution is
     * required to avoid errors in the case where the range ends
     * exactly at the top of the address space and so addr + len
     * wraps round to zero.
     */
    vaddr wpend = wp->vaddr + wp->len - 1;
    vaddr addrend = addr + len - 1;

    return !(addr > wpend || wp->vaddr > addrend);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/* Return flags for watchpoints that match addr + prot.  */
int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
{
    CPUWatchpoint *wp;
    int ret = 0;

    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
        if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
            ret |= wp->flags;
        }
    }
    return ret;
}
1136
#endif /* !CONFIG_USER_ONLY */
1137

1138
/* Add a breakpoint.  */
1139
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1140
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1141
{
1142
    CPUBreakpoint *bp;
1143

1144
    bp = g_malloc(sizeof(*bp));
B
bellard 已提交
1145

1146 1147 1148
    bp->pc = pc;
    bp->flags = flags;

1149
    /* keep all GDB-injected breakpoints in front */
1150
    if (flags & BP_GDB) {
1151
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1152
    } else {
1153
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1154
    }
1155

1156
    breakpoint_invalidate(cpu, pc);
1157

1158
    if (breakpoint) {
1159
        *breakpoint = bp;
1160
    }
B
bellard 已提交
1161 1162 1163
    return 0;
}

1164
/* Remove a specific breakpoint.  */
1165
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1166 1167 1168
{
    CPUBreakpoint *bp;

1169
    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1170
        if (bp->pc == pc && bp->flags == flags) {
1171
            cpu_breakpoint_remove_by_ref(cpu, bp);
1172 1173
            return 0;
        }
1174
    }
1175
    return -ENOENT;
1176 1177
}

1178
/* Remove a specific breakpoint by reference.  */
1179
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
B
bellard 已提交
1180
{
1181 1182 1183
    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);

    breakpoint_invalidate(cpu, breakpoint->pc);
1184

1185
    g_free(breakpoint);
1186 1187 1188
}

/* Remove all matching breakpoints. */
1189
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1190
{
1191
    CPUBreakpoint *bp, *next;
1192

1193
    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1194 1195 1196
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
1197
    }
B
bellard 已提交
1198 1199
}

B
bellard 已提交
1200 1201
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
1202
void cpu_single_step(CPUState *cpu, int enabled)
B
bellard 已提交
1203
{
1204 1205 1206
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
1207
            kvm_update_guest_debug(cpu, 0);
1208
        } else {
S
Stuart Brady 已提交
1209
            /* must flush all the translated code to avoid inconsistencies */
1210
            /* XXX: only flush what is necessary */
1211
            tb_flush(cpu);
1212
        }
B
bellard 已提交
1213 1214 1215
    }
}

1216
void cpu_abort(CPUState *cpu, const char *fmt, ...)
B
bellard 已提交
1217 1218
{
    va_list ap;
P
pbrook 已提交
1219
    va_list ap2;
B
bellard 已提交
1220 1221

    va_start(ap, fmt);
P
pbrook 已提交
1222
    va_copy(ap2, ap);
B
bellard 已提交
1223 1224 1225
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
1226
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1227
    if (qemu_log_separate()) {
1228
        FILE *logfile = qemu_log_lock();
1229 1230 1231
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1232
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1233
        qemu_log_flush();
1234
        qemu_log_unlock(logfile);
1235
        qemu_log_close();
1236
    }
P
pbrook 已提交
1237
    va_end(ap2);
1238
    va_end(ap);
1239
    replay_finish();
1240 1241 1242 1243 1244
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
1245
        act.sa_flags = 0;
1246 1247 1248
        sigaction(SIGABRT, &act, NULL);
    }
#endif
B
bellard 已提交
1249 1250 1251
    abort();
}

1252
#if !defined(CONFIG_USER_ONLY)
M
Mike Day 已提交
1253
/* Called from RCU critical section */
P
Paolo Bonzini 已提交
1254 1255 1256 1257
static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
    RAMBlock *block;

P
Paolo Bonzini 已提交
1258
    block = atomic_rcu_read(&ram_list.mru_block);
1259
    if (block && addr - block->offset < block->max_length) {
1260
        return block;
P
Paolo Bonzini 已提交
1261
    }
P
Peter Xu 已提交
1262
    RAMBLOCK_FOREACH(block) {
1263
        if (addr - block->offset < block->max_length) {
P
Paolo Bonzini 已提交
1264 1265 1266 1267 1268 1269 1270 1271
            goto found;
        }
    }

    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
    abort();

found:
P
Paolo Bonzini 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
    /* It is safe to write mru_block outside the iothread lock.  This
     * is what happens:
     *
     *     mru_block = xxx
     *     rcu_read_unlock()
     *                                        xxx removed from list
     *                  rcu_read_lock()
     *                  read mru_block
     *                                        mru_block = NULL;
     *                                        call_rcu(reclaim_ramblock, xxx);
     *                  rcu_read_unlock()
     *
     * atomic_rcu_set is not needed here.  The block was already published
     * when it was placed into the list.  Here we're just making an extra
     * copy of the pointer.
     */
P
Paolo Bonzini 已提交
1288 1289 1290 1291
    ram_list.mru_block = block;
    return block;
}

1292
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
J
Juan Quintela 已提交
1293
{
1294
    CPUState *cpu;
P
Paolo Bonzini 已提交
1295
    ram_addr_t start1;
1296 1297 1298
    RAMBlock *block;
    ram_addr_t end;

1299
    assert(tcg_enabled());
1300 1301
    end = TARGET_PAGE_ALIGN(start + length);
    start &= TARGET_PAGE_MASK;
J
Juan Quintela 已提交
1302

1303
    RCU_READ_LOCK_GUARD();
P
Paolo Bonzini 已提交
1304 1305
    block = qemu_get_ram_block(start);
    assert(block == qemu_get_ram_block(end - 1));
1306
    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1307 1308 1309
    CPU_FOREACH(cpu) {
        tlb_reset_dirty(cpu, start1, length);
    }
J
Juan Quintela 已提交
1310 1311
}

P
pbrook 已提交
1312
/* Note: start and end must be within the same ram block.  */
1313 1314 1315
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
                                              ram_addr_t length,
                                              unsigned client)
1316
{
1317
    DirtyMemoryBlocks *blocks;
1318
    unsigned long end, page;
1319
    bool dirty = false;
1320 1321
    RAMBlock *ramblock;
    uint64_t mr_offset, mr_size;
1322 1323 1324 1325

    if (length == 0) {
        return false;
    }
B
bellard 已提交
1326

1327 1328
    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
    page = start >> TARGET_PAGE_BITS;
1329

1330 1331 1332 1333 1334 1335
    WITH_RCU_READ_LOCK_GUARD() {
        blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
        ramblock = qemu_get_ram_block(start);
        /* Range sanity check on the ramblock */
        assert(start >= ramblock->offset &&
               start + length <= ramblock->offset + ramblock->used_length);
1336

1337 1338 1339 1340 1341
        while (page < end) {
            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long num = MIN(end - page,
                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1342

1343 1344 1345 1346
            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
                                                  offset, num);
            page += num;
        }
1347

1348 1349 1350
        mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
        mr_size = (end - page) << TARGET_PAGE_BITS;
        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1351 1352
    }

1353
    if (dirty && tcg_enabled()) {
1354
        tlb_reset_dirty_range_all(start, length);
P
pbrook 已提交
1355
    }
1356 1357

    return dirty;
1358 1359
}

1360
DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1361
    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1362 1363
{
    DirtyMemoryBlocks *blocks;
1364
    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
    DirtyBitmapSnapshot *snap;
    unsigned long page, end, dest;

    snap = g_malloc0(sizeof(*snap) +
                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
    snap->start = first;
    snap->end   = last;

    page = first >> TARGET_PAGE_BITS;
    end  = last  >> TARGET_PAGE_BITS;
    dest = 0;

1380 1381
    WITH_RCU_READ_LOCK_GUARD() {
        blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1382

1383 1384 1385 1386 1387
        while (page < end) {
            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
            unsigned long num = MIN(end - page,
                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1388

1389 1390 1391
            assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
            offset >>= BITS_PER_LEVEL;
1392

1393 1394 1395 1396 1397 1398
            bitmap_copy_and_clear_atomic(snap->dirty + dest,
                                         blocks->blocks[idx] + offset,
                                         num);
            page += num;
            dest += num >> BITS_PER_LEVEL;
        }
1399 1400 1401 1402 1403 1404
    }

    if (tcg_enabled()) {
        tlb_reset_dirty_range_all(start, length);
    }

1405 1406
    memory_region_clear_dirty_bitmap(mr, offset, length);

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    return snap;
}

bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
                                            ram_addr_t start,
                                            ram_addr_t length)
{
    unsigned long page, end;

    assert(start >= snap->start);
    assert(start + length <= snap->end);

    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
    page = (start - snap->start) >> TARGET_PAGE_BITS;

    while (page < end) {
        if (test_bit(page, snap->dirty)) {
            return true;
        }
        page++;
    }
    return false;
}

1431
/* Called from RCU critical section */
1432
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1433
                                       MemoryRegionSection *section)
B
Blue Swirl 已提交
1434
{
1435 1436
    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
    return section - d->map.sections;
B
Blue Swirl 已提交
1437
}
1438 1439
#endif /* defined(CONFIG_USER_ONLY) */

1440
#if !defined(CONFIG_USER_ONLY)
1441

1442 1443
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section);
1444
static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1445

1446
static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1447
                               qemu_anon_ram_alloc;
1448 1449 1450 1451 1452 1453

/*
 * Set a custom physical guest memory alloator.
 * Accelerators with unusual needs may need this.  Hopefully, we can
 * get rid of it eventually.
 */
1454
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1455 1456 1457 1458
{
    phys_mem_alloc = alloc;
}

1459 1460
static uint16_t phys_section_add(PhysPageMap *map,
                                 MemoryRegionSection *section)
1461
{
1462 1463 1464 1465
    /* The physical section number is ORed with a page-aligned
     * pointer to produce the iotlb entries.  Thus it should
     * never overflow into the page-aligned value.
     */
1466
    assert(map->sections_nb < TARGET_PAGE_SIZE);
1467

1468 1469 1470 1471
    if (map->sections_nb == map->sections_nb_alloc) {
        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
        map->sections = g_renew(MemoryRegionSection, map->sections,
                                map->sections_nb_alloc);
1472
    }
1473
    map->sections[map->sections_nb] = *section;
P
Paolo Bonzini 已提交
1474
    memory_region_ref(section->mr);
1475
    return map->sections_nb++;
1476 1477
}

1478 1479
static void phys_section_destroy(MemoryRegion *mr)
{
D
Don Slutz 已提交
1480 1481
    bool have_sub_page = mr->subpage;

P
Paolo Bonzini 已提交
1482 1483
    memory_region_unref(mr);

D
Don Slutz 已提交
1484
    if (have_sub_page) {
1485
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
P
Peter Crosthwaite 已提交
1486
        object_unref(OBJECT(&subpage->iomem));
1487 1488 1489 1490
        g_free(subpage);
    }
}

P
Paolo Bonzini 已提交
1491
static void phys_sections_free(PhysPageMap *map)
1492
{
1493 1494
    while (map->sections_nb > 0) {
        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1495 1496
        phys_section_destroy(section->mr);
    }
1497 1498
    g_free(map->sections);
    g_free(map->nodes);
1499 1500
}

1501
static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1502
{
1503
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1504
    subpage_t *subpage;
A
Avi Kivity 已提交
1505
    hwaddr base = section->offset_within_address_space
1506
        & TARGET_PAGE_MASK;
1507
    MemoryRegionSection *existing = phys_page_find(d, base);
1508 1509
    MemoryRegionSection subsection = {
        .offset_within_address_space = base,
1510
        .size = int128_make64(TARGET_PAGE_SIZE),
1511
    };
A
Avi Kivity 已提交
1512
    hwaddr start, end;
1513

1514
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1515

1516
    if (!(existing->mr->subpage)) {
1517 1518
        subpage = subpage_init(fv, base);
        subsection.fv = fv;
1519
        subsection.mr = &subpage->iomem;
A
Avi Kivity 已提交
1520
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1521
                      phys_section_add(&d->map, &subsection));
1522
    } else {
1523
        subpage = container_of(existing->mr, subpage_t, iomem);
1524 1525
    }
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1526
    end = start + int128_get64(section->size) - 1;
1527 1528
    subpage_register(subpage, start, end,
                     phys_section_add(&d->map, section));
1529 1530 1531
}


1532
static void register_multipage(FlatView *fv,
1533
                               MemoryRegionSection *section)
1534
{
1535
    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
A
Avi Kivity 已提交
1536
    hwaddr start_addr = section->offset_within_address_space;
1537
    uint16_t section_index = phys_section_add(&d->map, section);
1538 1539
    uint64_t num_pages = int128_get64(int128_rshift(section->size,
                                                    TARGET_PAGE_BITS));
1540

1541 1542
    assert(num_pages);
    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1543 1544
}

1545 1546 1547 1548 1549 1550 1551
/*
 * The range in *section* may look like this:
 *
 *      |s|PPPPPPP|s|
 *
 * where s stands for subpage and P for page.
 */
1552
void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1553
{
1554
    MemoryRegionSection remain = *section;
1555
    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1556

1557 1558 1559 1560
    /* register first subpage */
    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
                        - remain.offset_within_address_space;
1561

1562
        MemoryRegionSection now = remain;
1563
        now.size = int128_min(int128_make64(left), now.size);
1564
        register_subpage(fv, &now);
1565 1566 1567
        if (int128_eq(remain.size, now.size)) {
            return;
        }
1568 1569 1570
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1571 1572 1573 1574 1575 1576 1577 1578 1579
    }

    /* register whole pages */
    if (int128_ge(remain.size, page_size)) {
        MemoryRegionSection now = remain;
        now.size = int128_and(now.size, int128_neg(page_size));
        register_multipage(fv, &now);
        if (int128_eq(remain.size, now.size)) {
            return;
1580
        }
1581 1582 1583
        remain.size = int128_sub(remain.size, now.size);
        remain.offset_within_address_space += int128_get64(now.size);
        remain.offset_within_region += int128_get64(now.size);
1584
    }
1585 1586 1587

    /* register last subpage */
    register_subpage(fv, &remain);
1588 1589
}

1590 1591 1592 1593 1594 1595
void qemu_flush_coalesced_mmio_buffer(void)
{
    if (kvm_enabled())
        kvm_flush_coalesced_mmio_buffer();
}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
void qemu_mutex_lock_ramlist(void)
{
    qemu_mutex_lock(&ram_list.mutex);
}

void qemu_mutex_unlock_ramlist(void)
{
    qemu_mutex_unlock(&ram_list.mutex);
}

1606 1607 1608 1609 1610
void ram_block_dump(Monitor *mon)
{
    RAMBlock *block;
    char *psize;

1611
    RCU_READ_LOCK_GUARD();
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
                   "Block Name", "PSize", "Offset", "Used", "Total");
    RAMBLOCK_FOREACH(block) {
        psize = size_to_str(block->page_size);
        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
                       " 0x%016" PRIx64 "\n", block->idstr, psize,
                       (uint64_t)block->offset,
                       (uint64_t)block->used_length,
                       (uint64_t)block->max_length);
        g_free(psize);
    }
}

1625 1626 1627 1628 1629 1630 1631
#ifdef __linux__
/*
 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
 * may or may not name the same files / on the same filesystem now as
 * when we actually open and map them.  Iterate over the file
 * descriptors instead, and use qemu_fd_getpagesize().
 */
1632
static int find_min_backend_pagesize(Object *obj, void *opaque)
1633 1634 1635 1636
{
    long *hpsize_min = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1637 1638
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);
1639

1640
        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1641
            *hpsize_min = hpsize;
1642 1643 1644 1645 1646 1647
        }
    }

    return 0;
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
static int find_max_backend_pagesize(Object *obj, void *opaque)
{
    long *hpsize_max = opaque;

    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
        long hpsize = host_memory_backend_pagesize(backend);

        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
            *hpsize_max = hpsize;
        }
    }

    return 0;
}

/*
 * TODO: We assume right now that all mapped host memory backends are
 * used as RAM, however some might be used for different purposes.
 */
long qemu_minrampagesize(void)
1669 1670 1671 1672
{
    long hpsize = LONG_MAX;
    long mainrampagesize;
    Object *memdev_root;
1673
    MachineState *ms = MACHINE(qdev_get_machine());
1674

1675
    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

    /* it's possible we have memory-backend objects with
     * hugepage-backed RAM. these may get mapped into system
     * address space via -numa parameters or memory hotplug
     * hooks. we want to take these into account, but we
     * also want to make sure these supported hugepage
     * sizes are applicable across the entire range of memory
     * we may boot from, so we take the min across all
     * backends, and assume normal pages in cases where a
     * backend isn't backed by hugepages.
     */
    memdev_root = object_resolve_path("/objects", NULL);
    if (memdev_root) {
1689
        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    }
    if (hpsize == LONG_MAX) {
        /* No additional memory regions found ==> Report main RAM page size */
        return mainrampagesize;
    }

    /* If NUMA is disabled or the NUMA nodes are not backed with a
     * memory-backend, then there is at least one node using "normal" RAM,
     * so if its page size is smaller we have got to report that size instead.
     */
    if (hpsize > mainrampagesize &&
1701 1702
        (ms->numa_state == NULL ||
         ms->numa_state->num_nodes == 0 ||
1703
         ms->numa_state->nodes[0].node_memdev == NULL)) {
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        static bool warned;
        if (!warned) {
            error_report("Huge page support disabled (n/a for main memory).");
            warned = true;
        }
        return mainrampagesize;
    }

    return hpsize;
}
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

long qemu_maxrampagesize(void)
{
    long pagesize = qemu_mempath_getpagesize(mem_path);
    Object *memdev_root = object_resolve_path("/objects", NULL);

    if (memdev_root) {
        object_child_foreach(memdev_root, find_max_backend_pagesize,
                             &pagesize);
    }
    return pagesize;
}
1726
#else
1727 1728
long qemu_minrampagesize(void)
{
1729
    return qemu_real_host_page_size;
1730 1731
}
long qemu_maxrampagesize(void)
1732
{
1733
    return qemu_real_host_page_size;
1734 1735 1736
}
#endif

1737
#ifdef CONFIG_POSIX
1738 1739
static int64_t get_file_size(int fd)
{
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    int64_t size;
#if defined(__linux__)
    struct stat st;

    if (fstat(fd, &st) < 0) {
        return -errno;
    }

    /* Special handling for devdax character devices */
    if (S_ISCHR(st.st_mode)) {
        g_autofree char *subsystem_path = NULL;
        g_autofree char *subsystem = NULL;

        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
                                         major(st.st_rdev), minor(st.st_rdev));
        subsystem = g_file_read_link(subsystem_path, NULL);

        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
            g_autofree char *size_path = NULL;
            g_autofree char *size_str = NULL;

            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
                                    major(st.st_rdev), minor(st.st_rdev));

            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
                return g_ascii_strtoll(size_str, NULL, 0);
            }
        }
    }
#endif /* defined(__linux__) */

    /* st.st_size may be zero for special files yet lseek(2) works */
    size = lseek(fd, 0, SEEK_END);
1773 1774 1775 1776 1777 1778
    if (size < 0) {
        return -errno;
    }
    return size;
}

1779 1780 1781 1782
static int file_ram_open(const char *path,
                         const char *region_name,
                         bool *created,
                         Error **errp)
1783 1784
{
    char *filename;
1785 1786
    char *sanitized_name;
    char *c;
1787
    int fd = -1;
1788

1789
    *created = false;
1790 1791 1792 1793 1794
    for (;;) {
        fd = open(path, O_RDWR);
        if (fd >= 0) {
            /* @path names an existing file, use it */
            break;
1795
        }
1796 1797 1798 1799
        if (errno == ENOENT) {
            /* @path names a file that doesn't exist, create it */
            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
            if (fd >= 0) {
1800
                *created = true;
1801 1802 1803 1804 1805
                break;
            }
        } else if (errno == EISDIR) {
            /* @path names a directory, create a file there */
            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1806
            sanitized_name = g_strdup(region_name);
1807 1808 1809 1810 1811
            for (c = sanitized_name; *c != '\0'; c++) {
                if (*c == '/') {
                    *c = '_';
                }
            }
1812

1813 1814 1815
            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
                                       sanitized_name);
            g_free(sanitized_name);
1816

1817 1818 1819 1820 1821 1822 1823
            fd = mkstemp(filename);
            if (fd >= 0) {
                unlink(filename);
                g_free(filename);
                break;
            }
            g_free(filename);
1824
        }
1825 1826 1827 1828
        if (errno != EEXIST && errno != EINTR) {
            error_setg_errno(errp, errno,
                             "can't open backing store %s for guest RAM",
                             path);
1829
            return -1;
1830 1831 1832 1833 1834
        }
        /*
         * Try again on EINTR and EEXIST.  The latter happens when
         * something else creates the file between our two open().
         */
1835
    }
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845
    return fd;
}

static void *file_ram_alloc(RAMBlock *block,
                            ram_addr_t memory,
                            int fd,
                            bool truncate,
                            Error **errp)
{
1846
    MachineState *ms = MACHINE(qdev_get_machine());
1847 1848
    void *area;

1849
    block->page_size = qemu_fd_getpagesize(fd);
1850 1851 1852 1853 1854
    if (block->mr->align % block->page_size) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be multiples of page size 0x%zx",
                   block->mr->align, block->page_size);
        return NULL;
1855 1856 1857 1858
    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
        error_setg(errp, "alignment 0x%" PRIx64
                   " must be a power of two", block->mr->align);
        return NULL;
1859 1860
    }
    block->mr->align = MAX(block->page_size, block->mr->align);
1861 1862 1863 1864 1865
#if defined(__s390x__)
    if (kvm_enabled()) {
        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
    }
#endif
1866

1867
    if (memory < block->page_size) {
1868
        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1869 1870
                   "or larger than page size 0x%zx",
                   memory, block->page_size);
1871
        return NULL;
1872 1873
    }

1874
    memory = ROUND_UP(memory, block->page_size);
1875 1876 1877 1878 1879 1880

    /*
     * ftruncate is not supported by hugetlbfs in older
     * hosts, so don't bother bailing out on errors.
     * If anything goes wrong with it under other filesystems,
     * mmap will fail.
1881 1882 1883 1884 1885 1886 1887 1888
     *
     * Do not truncate the non-empty backend file to avoid corrupting
     * the existing data in the file. Disabling shrinking is not
     * enough. For example, the current vNVDIMM implementation stores
     * the guest NVDIMM labels at the end of the backend file. If the
     * backend file is later extended, QEMU will not be able to find
     * those labels. Therefore, extending the non-empty backend file
     * is disabled as well.
1889
     */
1890
    if (truncate && ftruncate(fd, memory)) {
Y
Yoshiaki Tamura 已提交
1891
        perror("ftruncate");
1892
    }
1893

1894
    area = qemu_ram_mmap(fd, memory, block->mr->align,
1895
                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1896
    if (area == MAP_FAILED) {
1897
        error_setg_errno(errp, errno,
1898
                         "unable to map backing store for guest RAM");
1899
        return NULL;
1900
    }
1901 1902

    if (mem_prealloc) {
1903
        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1904
        if (errp && *errp) {
1905
            qemu_ram_munmap(fd, area, memory);
1906
            return NULL;
1907
        }
1908 1909
    }

A
Alex Williamson 已提交
1910
    block->fd = fd;
1911 1912 1913 1914
    return area;
}
#endif

1915 1916 1917 1918
/* Allocate space within the ram_addr_t space that governs the
 * dirty bitmaps.
 * Called with the ramlist lock held.
 */
1919
static ram_addr_t find_ram_offset(ram_addr_t size)
A
Alex Williamson 已提交
1920 1921
{
    RAMBlock *block, *next_block;
A
Alex Williamson 已提交
1922
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1923

1924 1925
    assert(size != 0); /* it would hand out same offset multiple times */

M
Mike Day 已提交
1926
    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
A
Alex Williamson 已提交
1927
        return 0;
M
Mike Day 已提交
1928
    }
A
Alex Williamson 已提交
1929

P
Peter Xu 已提交
1930
    RAMBLOCK_FOREACH(block) {
1931
        ram_addr_t candidate, next = RAM_ADDR_MAX;
A
Alex Williamson 已提交
1932

1933 1934 1935
        /* Align blocks to start on a 'long' in the bitmap
         * which makes the bitmap sync'ing take the fast path.
         */
1936
        candidate = block->offset + block->max_length;
1937
        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
A
Alex Williamson 已提交
1938

1939 1940 1941
        /* Search for the closest following block
         * and find the gap.
         */
P
Peter Xu 已提交
1942
        RAMBLOCK_FOREACH(next_block) {
1943
            if (next_block->offset >= candidate) {
A
Alex Williamson 已提交
1944 1945 1946
                next = MIN(next, next_block->offset);
            }
        }
1947 1948 1949 1950 1951 1952 1953 1954

        /* If it fits remember our place and remember the size
         * of gap, but keep going so that we might find a smaller
         * gap to fill so avoiding fragmentation.
         */
        if (next - candidate >= size && next - candidate < mingap) {
            offset = candidate;
            mingap = next - candidate;
A
Alex Williamson 已提交
1955
        }
1956 1957

        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
A
Alex Williamson 已提交
1958
    }
A
Alex Williamson 已提交
1959 1960 1961 1962 1963 1964 1965

    if (offset == RAM_ADDR_MAX) {
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
                (uint64_t)size);
        abort();
    }

1966 1967
    trace_find_ram_offset(size, offset);

A
Alex Williamson 已提交
1968 1969 1970
    return offset;
}

1971
static unsigned long last_ram_page(void)
1972 1973 1974 1975
{
    RAMBlock *block;
    ram_addr_t last = 0;

1976
    RCU_READ_LOCK_GUARD();
P
Peter Xu 已提交
1977
    RAMBLOCK_FOREACH(block) {
1978
        last = MAX(last, block->offset + block->max_length);
M
Mike Day 已提交
1979
    }
1980
    return last >> TARGET_PAGE_BITS;
1981 1982
}

1983 1984 1985 1986 1987
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
    int ret;

    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1988
    if (!machine_dump_guest_core(current_machine)) {
1989 1990 1991 1992 1993 1994 1995 1996 1997
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
        if (ret) {
            perror("qemu_madvise");
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
                            "but dump_guest_core=off specified\n");
        }
    }
}

D
Dr. David Alan Gilbert 已提交
1998 1999 2000 2001 2002
const char *qemu_ram_get_idstr(RAMBlock *rb)
{
    return rb->idstr;
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
void *qemu_ram_get_host_addr(RAMBlock *rb)
{
    return rb->host;
}

ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
{
    return rb->offset;
}

ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
{
    return rb->used_length;
}

2018 2019 2020 2021 2022
bool qemu_ram_is_shared(RAMBlock *rb)
{
    return rb->flags & RAM_SHARED;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
/* Note: Only set at the start of postcopy */
bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
{
    return rb->flags & RAM_UF_ZEROPAGE;
}

void qemu_ram_set_uf_zeroable(RAMBlock *rb)
{
    rb->flags |= RAM_UF_ZEROPAGE;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
bool qemu_ram_is_migratable(RAMBlock *rb)
{
    return rb->flags & RAM_MIGRATABLE;
}

void qemu_ram_set_migratable(RAMBlock *rb)
{
    rb->flags |= RAM_MIGRATABLE;
}

void qemu_ram_unset_migratable(RAMBlock *rb)
{
    rb->flags &= ~RAM_MIGRATABLE;
}

2049
/* Called with iothread lock held.  */
G
Gonglei 已提交
2050
void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2051
{
G
Gonglei 已提交
2052
    RAMBlock *block;
2053

2054 2055
    assert(new_block);
    assert(!new_block->idstr[0]);
2056

2057 2058
    if (dev) {
        char *id = qdev_get_dev_path(dev);
2059 2060
        if (id) {
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2061
            g_free(id);
2062 2063 2064 2065
        }
    }
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);

2066
    RCU_READ_LOCK_GUARD();
P
Peter Xu 已提交
2067
    RAMBLOCK_FOREACH(block) {
G
Gonglei 已提交
2068 2069
        if (block != new_block &&
            !strcmp(block->idstr, new_block->idstr)) {
2070 2071 2072 2073 2074
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
                    new_block->idstr);
            abort();
        }
    }
2075 2076
}

2077
/* Called with iothread lock held.  */
G
Gonglei 已提交
2078
void qemu_ram_unset_idstr(RAMBlock *block)
2079
{
2080 2081 2082 2083
    /* FIXME: arch_init.c assumes that this is not called throughout
     * migration.  Ignore the problem since hot-unplug during migration
     * does not work anyway.
     */
2084 2085 2086 2087 2088
    if (block) {
        memset(block->idstr, 0, sizeof(block->idstr));
    }
}

2089 2090 2091 2092 2093
size_t qemu_ram_pagesize(RAMBlock *rb)
{
    return rb->page_size;
}

2094 2095 2096 2097 2098 2099
/* Returns the largest size of page in use */
size_t qemu_ram_pagesize_largest(void)
{
    RAMBlock *block;
    size_t largest = 0;

P
Peter Xu 已提交
2100
    RAMBLOCK_FOREACH(block) {
2101 2102 2103 2104 2105 2106
        largest = MAX(largest, qemu_ram_pagesize(block));
    }

    return largest;
}

2107 2108
static int memory_try_enable_merging(void *addr, size_t len)
{
2109
    if (!machine_mem_merge(current_machine)) {
2110 2111 2112 2113 2114 2115 2116
        /* disabled by the user */
        return 0;
    }

    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
}

2117 2118 2119 2120 2121 2122 2123
/* Only legal before guest might have detected the memory size: e.g. on
 * incoming migration, or right after reset.
 *
 * As memory core doesn't know how is memory accessed, it is up to
 * resize callback to update device state and/or add assertions to detect
 * misuse, if necessary.
 */
G
Gonglei 已提交
2124
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2125 2126 2127
{
    assert(block);

2128
    newsize = HOST_PAGE_ALIGN(newsize);
2129

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
    if (block->used_length == newsize) {
        return 0;
    }

    if (!(block->flags & RAM_RESIZEABLE)) {
        error_setg_errno(errp, EINVAL,
                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
                         " in != 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->used_length);
        return -EINVAL;
    }

    if (block->max_length < newsize) {
        error_setg_errno(errp, EINVAL,
                         "Length too large: %s: 0x" RAM_ADDR_FMT
                         " > 0x" RAM_ADDR_FMT, block->idstr,
                         newsize, block->max_length);
        return -EINVAL;
    }

    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
    block->used_length = newsize;
2152 2153
    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
                                        DIRTY_CLIENTS_ALL);
2154 2155 2156 2157 2158 2159 2160
    memory_region_set_size(block->mr, newsize);
    if (block->resized) {
        block->resized(block->idstr, newsize, block->host);
    }
    return 0;
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
/*
 * Trigger sync on the given ram block for range [start, start + length]
 * with the backing store if one is available.
 * Otherwise no-op.
 * @Note: this is supposed to be a synchronous op.
 */
void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
{
    void *addr = ramblock_ptr(block, start);

    /* The requested range should fit in within the block range */
    g_assert((start + length) <= block->used_length);

#ifdef CONFIG_LIBPMEM
    /* The lack of support for pmem should not block the sync */
    if (ramblock_is_pmem(block)) {
        pmem_persist(addr, length);
        return;
    }
#endif
    if (block->fd >= 0) {
        /**
         * Case there is no support for PMEM or the memory has not been
         * specified as persistent (or is not one) - use the msync.
         * Less optimal but still achieves the same goal
         */
        if (qemu_msync(addr, length, block->fd)) {
            warn_report("%s: failed to sync memory range: start: "
                    RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
                    __func__, start, length);
        }
    }
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
/* Called with ram_list.mutex held */
static void dirty_memory_extend(ram_addr_t old_ram_size,
                                ram_addr_t new_ram_size)
{
    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
                                             DIRTY_MEMORY_BLOCK_SIZE);
    int i;

    /* Only need to extend if block count increased */
    if (new_num_blocks <= old_num_blocks) {
        return;
    }

    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
        DirtyMemoryBlocks *old_blocks;
        DirtyMemoryBlocks *new_blocks;
        int j;

        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
        new_blocks = g_malloc(sizeof(*new_blocks) +
                              sizeof(new_blocks->blocks[0]) * new_num_blocks);

        if (old_num_blocks) {
            memcpy(new_blocks->blocks, old_blocks->blocks,
                   old_num_blocks * sizeof(old_blocks->blocks[0]));
        }

        for (j = old_num_blocks; j < new_num_blocks; j++) {
            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
        }

        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);

        if (old_blocks) {
            g_free_rcu(old_blocks, rcu);
        }
    }
}

2236
static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2237
{
2238
    RAMBlock *block;
M
Mike Day 已提交
2239
    RAMBlock *last_block = NULL;
2240
    ram_addr_t old_ram_size, new_ram_size;
2241
    Error *err = NULL;
2242

2243
    old_ram_size = last_ram_page();
2244

2245
    qemu_mutex_lock_ramlist();
2246
    new_block->offset = find_ram_offset(new_block->max_length);
2247 2248 2249

    if (!new_block->host) {
        if (xen_enabled()) {
2250
            xen_ram_alloc(new_block->offset, new_block->max_length,
2251 2252 2253 2254
                          new_block->mr, &err);
            if (err) {
                error_propagate(errp, err);
                qemu_mutex_unlock_ramlist();
2255
                return;
2256
            }
2257
        } else {
2258
            new_block->host = phys_mem_alloc(new_block->max_length,
2259
                                             &new_block->mr->align, shared);
2260
            if (!new_block->host) {
2261 2262 2263 2264
                error_setg_errno(errp, errno,
                                 "cannot set up guest memory '%s'",
                                 memory_region_name(new_block->mr));
                qemu_mutex_unlock_ramlist();
2265
                return;
2266
            }
2267
            memory_try_enable_merging(new_block->host, new_block->max_length);
2268
        }
2269
    }
P
pbrook 已提交
2270

L
Li Zhijian 已提交
2271 2272 2273
    new_ram_size = MAX(old_ram_size,
              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
    if (new_ram_size > old_ram_size) {
2274
        dirty_memory_extend(old_ram_size, new_ram_size);
L
Li Zhijian 已提交
2275
    }
M
Mike Day 已提交
2276 2277 2278 2279
    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
     * QLIST (which has an RCU-friendly variant) does not have insertion at
     * tail, so save the last element in last_block.
     */
P
Peter Xu 已提交
2280
    RAMBLOCK_FOREACH(block) {
M
Mike Day 已提交
2281
        last_block = block;
2282
        if (block->max_length < new_block->max_length) {
2283 2284 2285 2286
            break;
        }
    }
    if (block) {
M
Mike Day 已提交
2287
        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
M
Mike Day 已提交
2288
    } else if (last_block) {
M
Mike Day 已提交
2289
        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
M
Mike Day 已提交
2290
    } else { /* list is empty */
M
Mike Day 已提交
2291
        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2292
    }
2293
    ram_list.mru_block = NULL;
P
pbrook 已提交
2294

M
Mike Day 已提交
2295 2296
    /* Write list before version */
    smp_wmb();
U
Umesh Deshpande 已提交
2297
    ram_list.version++;
2298
    qemu_mutex_unlock_ramlist();
U
Umesh Deshpande 已提交
2299

2300
    cpu_physical_memory_set_dirty_range(new_block->offset,
2301 2302
                                        new_block->used_length,
                                        DIRTY_CLIENTS_ALL);
P
pbrook 已提交
2303

2304 2305 2306
    if (new_block->host) {
        qemu_ram_setup_dump(new_block->host, new_block->max_length);
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
C
Cao jin 已提交
2307
        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2308
        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
P
Paolo Bonzini 已提交
2309
        ram_block_notify_add(new_block->host, new_block->max_length);
2310
    }
P
pbrook 已提交
2311
}
B
bellard 已提交
2312

2313
#ifdef CONFIG_POSIX
2314
RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2315
                                 uint32_t ram_flags, int fd,
2316
                                 Error **errp)
2317 2318
{
    RAMBlock *new_block;
2319
    Error *local_err = NULL;
2320
    int64_t file_size;
2321

J
Junyan He 已提交
2322 2323 2324
    /* Just support these ram flags by now. */
    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);

2325
    if (xen_enabled()) {
2326
        error_setg(errp, "-mem-path not supported with Xen");
2327
        return NULL;
2328 2329
    }

2330 2331 2332 2333 2334 2335
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
        error_setg(errp,
                   "host lacks kvm mmu notifiers, -mem-path unsupported");
        return NULL;
    }

2336 2337 2338 2339 2340 2341
    if (phys_mem_alloc != qemu_anon_ram_alloc) {
        /*
         * file_ram_alloc() needs to allocate just like
         * phys_mem_alloc, but we haven't bothered to provide
         * a hook there.
         */
2342 2343
        error_setg(errp,
                   "-mem-path not supported with this accelerator");
2344
        return NULL;
2345 2346
    }

2347
    size = HOST_PAGE_ALIGN(size);
2348 2349 2350 2351 2352 2353 2354 2355
    file_size = get_file_size(fd);
    if (file_size > 0 && file_size < size) {
        error_setg(errp, "backing store %s size 0x%" PRIx64
                   " does not match 'size' option 0x" RAM_ADDR_FMT,
                   mem_path, file_size, size);
        return NULL;
    }

2356 2357
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2358 2359
    new_block->used_length = size;
    new_block->max_length = size;
2360
    new_block->flags = ram_flags;
2361
    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2362 2363
    if (!new_block->host) {
        g_free(new_block);
2364
        return NULL;
2365 2366
    }

2367
    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2368 2369 2370
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2371
        return NULL;
2372
    }
2373
    return new_block;
2374 2375 2376 2377 2378

}


RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2379
                                   uint32_t ram_flags, const char *mem_path,
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
                                   Error **errp)
{
    int fd;
    bool created;
    RAMBlock *block;

    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
    if (fd < 0) {
        return NULL;
    }

2391
    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2392 2393 2394 2395 2396 2397 2398 2399 2400
    if (!block) {
        if (created) {
            unlink(mem_path);
        }
        close(fd);
        return NULL;
    }

    return block;
2401
}
2402
#endif
2403

2404
static
2405 2406 2407 2408
RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
                                  void (*resized)(const char*,
                                                  uint64_t length,
                                                  void *host),
2409
                                  void *host, bool resizeable, bool share,
2410
                                  MemoryRegion *mr, Error **errp)
2411 2412
{
    RAMBlock *new_block;
2413
    Error *local_err = NULL;
2414

2415 2416
    size = HOST_PAGE_ALIGN(size);
    max_size = HOST_PAGE_ALIGN(max_size);
2417 2418
    new_block = g_malloc0(sizeof(*new_block));
    new_block->mr = mr;
2419
    new_block->resized = resized;
2420 2421
    new_block->used_length = size;
    new_block->max_length = max_size;
2422
    assert(max_size >= size);
2423
    new_block->fd = -1;
2424
    new_block->page_size = qemu_real_host_page_size;
2425 2426
    new_block->host = host;
    if (host) {
2427
        new_block->flags |= RAM_PREALLOC;
2428
    }
2429 2430 2431
    if (resizeable) {
        new_block->flags |= RAM_RESIZEABLE;
    }
2432
    ram_block_add(new_block, &local_err, share);
2433 2434 2435
    if (local_err) {
        g_free(new_block);
        error_propagate(errp, local_err);
2436
        return NULL;
2437
    }
2438
    return new_block;
2439 2440
}

2441
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2442 2443
                                   MemoryRegion *mr, Error **errp)
{
2444 2445
    return qemu_ram_alloc_internal(size, size, NULL, host, false,
                                   false, mr, errp);
2446 2447
}

2448 2449
RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
                         MemoryRegion *mr, Error **errp)
2450
{
2451 2452
    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
                                   share, mr, errp);
2453 2454
}

2455
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2456 2457 2458 2459 2460
                                     void (*resized)(const char*,
                                                     uint64_t length,
                                                     void *host),
                                     MemoryRegion *mr, Error **errp)
{
2461 2462
    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
                                   false, mr, errp);
2463 2464
}

P
Paolo Bonzini 已提交
2465 2466 2467 2468 2469 2470 2471 2472
static void reclaim_ramblock(RAMBlock *block)
{
    if (block->flags & RAM_PREALLOC) {
        ;
    } else if (xen_enabled()) {
        xen_invalidate_map_cache_entry(block->host);
#ifndef _WIN32
    } else if (block->fd >= 0) {
2473
        qemu_ram_munmap(block->fd, block->host, block->max_length);
P
Paolo Bonzini 已提交
2474 2475 2476 2477 2478 2479 2480 2481
        close(block->fd);
#endif
    } else {
        qemu_anon_ram_free(block->host, block->max_length);
    }
    g_free(block);
}

2482
void qemu_ram_free(RAMBlock *block)
B
bellard 已提交
2483
{
2484 2485 2486 2487
    if (!block) {
        return;
    }

P
Paolo Bonzini 已提交
2488 2489 2490 2491
    if (block->host) {
        ram_block_notify_remove(block->host, block->max_length);
    }

2492
    qemu_mutex_lock_ramlist();
2493 2494 2495 2496 2497 2498
    QLIST_REMOVE_RCU(block, next);
    ram_list.mru_block = NULL;
    /* Write list before version */
    smp_wmb();
    ram_list.version++;
    call_rcu(block, reclaim_ramblock, rcu);
2499
    qemu_mutex_unlock_ramlist();
B
bellard 已提交
2500 2501
}

H
Huang Ying 已提交
2502 2503 2504 2505 2506 2507 2508 2509
#ifndef _WIN32
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
{
    RAMBlock *block;
    ram_addr_t offset;
    int flags;
    void *area, *vaddr;

P
Peter Xu 已提交
2510
    RAMBLOCK_FOREACH(block) {
H
Huang Ying 已提交
2511
        offset = addr - block->offset;
2512
        if (offset < block->max_length) {
2513
            vaddr = ramblock_ptr(block, offset);
2514
            if (block->flags & RAM_PREALLOC) {
H
Huang Ying 已提交
2515
                ;
2516 2517
            } else if (xen_enabled()) {
                abort();
H
Huang Ying 已提交
2518 2519
            } else {
                flags = MAP_FIXED;
2520
                if (block->fd >= 0) {
2521 2522
                    flags |= (block->flags & RAM_SHARED ?
                              MAP_SHARED : MAP_PRIVATE);
2523 2524
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, block->fd, offset);
H
Huang Ying 已提交
2525
                } else {
2526 2527 2528 2529 2530 2531 2532
                    /*
                     * Remap needs to match alloc.  Accelerators that
                     * set phys_mem_alloc never remap.  If they did,
                     * we'd need a remap hook here.
                     */
                    assert(phys_mem_alloc == qemu_anon_ram_alloc);

H
Huang Ying 已提交
2533 2534 2535 2536 2537
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
                                flags, -1, 0);
                }
                if (area != vaddr) {
2538 2539 2540
                    error_report("Could not remap addr: "
                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
                                 length, addr);
H
Huang Ying 已提交
2541 2542
                    exit(1);
                }
2543
                memory_try_enable_merging(vaddr, length);
2544
                qemu_ram_setup_dump(vaddr, length);
H
Huang Ying 已提交
2545 2546 2547 2548 2549 2550
            }
        }
    }
}
#endif /* !_WIN32 */

2551
/* Return a host pointer to ram allocated with qemu_ram_alloc.
2552 2553 2554
 * This should not be used for general purpose DMA.  Use address_space_map
 * or address_space_rw instead. For local memory (e.g. video ram) that the
 * device owns, use memory_region_get_ram_ptr.
M
Mike Day 已提交
2555
 *
2556
 * Called within RCU critical section.
2557
 */
2558
void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2559
{
2560 2561 2562 2563
    RAMBlock *block = ram_block;

    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2564
        addr -= block->offset;
2565
    }
2566 2567

    if (xen_enabled() && block->host == NULL) {
2568 2569 2570 2571 2572
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map until the end of the page.
         */
        if (block->offset == 0) {
2573
            return xen_map_cache(addr, 0, 0, false);
2574
        }
2575

2576
        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2577
    }
2578
    return ramblock_ptr(block, addr);
2579 2580
}

2581
/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2582
 * but takes a size argument.
M
Mike Day 已提交
2583
 *
2584
 * Called within RCU critical section.
2585
 */
2586
static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2587
                                 hwaddr *size, bool lock)
2588
{
2589
    RAMBlock *block = ram_block;
2590 2591 2592
    if (*size == 0) {
        return NULL;
    }
2593

2594 2595
    if (block == NULL) {
        block = qemu_get_ram_block(addr);
2596
        addr -= block->offset;
2597
    }
2598
    *size = MIN(*size, block->max_length - addr);
2599 2600 2601 2602 2603 2604 2605

    if (xen_enabled() && block->host == NULL) {
        /* We need to check if the requested address is in the RAM
         * because we don't want to map the entire memory in QEMU.
         * In that case just map the requested area.
         */
        if (block->offset == 0) {
2606
            return xen_map_cache(addr, *size, lock, lock);
2607 2608
        }

2609
        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2610
    }
2611

2612
    return ramblock_ptr(block, addr);
2613 2614
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/* Return the offset of a hostpointer within a ramblock */
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
{
    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
    assert((uintptr_t)host >= (uintptr_t)rb->host);
    assert(res < rb->max_length);

    return res;
}

D
Dr. David Alan Gilbert 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
/*
 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 * in that RAMBlock.
 *
 * ptr: Host pointer to look up
 * round_offset: If true round the result offset down to a page boundary
 * *ram_addr: set to result ram_addr
 * *offset: set to result offset within the RAMBlock
 *
 * Returns: RAMBlock (or NULL if not found)
2635 2636 2637 2638 2639 2640 2641
 *
 * By the time this function returns, the returned pointer is not protected
 * by RCU anymore.  If the caller is not within an RCU critical section and
 * does not hold the iothread lock, it must have other means of protecting the
 * pointer, such as a reference to the region that includes the incoming
 * ram_addr_t.
 */
D
Dr. David Alan Gilbert 已提交
2642 2643
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
                                   ram_addr_t *offset)
P
pbrook 已提交
2644
{
P
pbrook 已提交
2645 2646 2647
    RAMBlock *block;
    uint8_t *host = ptr;

2648
    if (xen_enabled()) {
2649
        ram_addr_t ram_addr;
2650
        RCU_READ_LOCK_GUARD();
2651 2652
        ram_addr = xen_ram_addr_from_mapcache(ptr);
        block = qemu_get_ram_block(ram_addr);
D
Dr. David Alan Gilbert 已提交
2653
        if (block) {
2654
            *offset = ram_addr - block->offset;
D
Dr. David Alan Gilbert 已提交
2655 2656
        }
        return block;
2657 2658
    }

2659
    RCU_READ_LOCK_GUARD();
M
Mike Day 已提交
2660
    block = atomic_rcu_read(&ram_list.mru_block);
2661
    if (block && block->host && host - block->host < block->max_length) {
2662 2663 2664
        goto found;
    }

P
Peter Xu 已提交
2665
    RAMBLOCK_FOREACH(block) {
J
Jun Nakajima 已提交
2666 2667 2668 2669
        /* This case append when the block is not mapped. */
        if (block->host == NULL) {
            continue;
        }
2670
        if (host - block->host < block->max_length) {
2671
            goto found;
A
Alex Williamson 已提交
2672
        }
P
pbrook 已提交
2673
    }
J
Jun Nakajima 已提交
2674

2675
    return NULL;
2676 2677

found:
D
Dr. David Alan Gilbert 已提交
2678 2679 2680 2681 2682 2683 2684
    *offset = (host - block->host);
    if (round_offset) {
        *offset &= TARGET_PAGE_MASK;
    }
    return block;
}

D
Dr. David Alan Gilbert 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/*
 * Finds the named RAMBlock
 *
 * name: The name of RAMBlock to find
 *
 * Returns: RAMBlock (or NULL if not found)
 */
RAMBlock *qemu_ram_block_by_name(const char *name)
{
    RAMBlock *block;

P
Peter Xu 已提交
2696
    RAMBLOCK_FOREACH(block) {
D
Dr. David Alan Gilbert 已提交
2697 2698 2699 2700 2701 2702 2703 2704
        if (!strcmp(name, block->idstr)) {
            return block;
        }
    }

    return NULL;
}

D
Dr. David Alan Gilbert 已提交
2705 2706
/* Some of the softmmu routines need to translate from a host pointer
   (typically a TLB entry) back to a ram offset.  */
2707
ram_addr_t qemu_ram_addr_from_host(void *ptr)
D
Dr. David Alan Gilbert 已提交
2708 2709
{
    RAMBlock *block;
2710
    ram_addr_t offset;
D
Dr. David Alan Gilbert 已提交
2711

2712
    block = qemu_ram_block_from_host(ptr, false, &offset);
D
Dr. David Alan Gilbert 已提交
2713
    if (!block) {
2714
        return RAM_ADDR_INVALID;
D
Dr. David Alan Gilbert 已提交
2715 2716
    }

2717
    return block->offset + offset;
M
Marcelo Tosatti 已提交
2718
}
A
Alex Williamson 已提交
2719

P
pbrook 已提交
2720
/* Generate a debug exception if a watchpoint has been hit.  */
2721 2722
void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
                          MemTxAttrs attrs, int flags, uintptr_t ra)
P
pbrook 已提交
2723
{
2724
    CPUClass *cc = CPU_GET_CLASS(cpu);
2725
    CPUWatchpoint *wp;
P
pbrook 已提交
2726

2727
    assert(tcg_enabled());
2728
    if (cpu->watchpoint_hit) {
2729 2730 2731 2732 2733 2734
        /*
         * We re-entered the check after replacing the TB.
         * Now raise the debug interrupt so that it will
         * trigger after the current instruction.
         */
        qemu_mutex_lock_iothread();
2735
        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2736
        qemu_mutex_unlock_iothread();
2737 2738
        return;
    }
2739 2740

    addr = cc->adjust_watchpoint_address(cpu, addr, len);
2741
    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2742
        if (watchpoint_address_matches(wp, addr, len)
2743
            && (wp->flags & flags)) {
2744 2745 2746 2747 2748
            if (flags == BP_MEM_READ) {
                wp->flags |= BP_WATCHPOINT_HIT_READ;
            } else {
                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
            }
2749
            wp->hitaddr = MAX(addr, wp->vaddr);
2750
            wp->hitattrs = attrs;
2751
            if (!cpu->watchpoint_hit) {
2752 2753 2754 2755 2756
                if (wp->flags & BP_CPU &&
                    !cc->debug_check_watchpoint(cpu, wp)) {
                    wp->flags &= ~BP_WATCHPOINT_HIT;
                    continue;
                }
2757
                cpu->watchpoint_hit = wp;
2758

E
Emilio G. Cota 已提交
2759
                mmap_lock();
2760
                tb_check_watchpoint(cpu, ra);
2761
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2762
                    cpu->exception_index = EXCP_DEBUG;
E
Emilio G. Cota 已提交
2763
                    mmap_unlock();
2764
                    cpu_loop_exit_restore(cpu, ra);
2765
                } else {
2766 2767
                    /* Force execution of one insn next time.  */
                    cpu->cflags_next_tb = 1 | curr_cflags();
E
Emilio G. Cota 已提交
2768
                    mmap_unlock();
2769 2770 2771
                    if (ra) {
                        cpu_restore_state(cpu, ra, true);
                    }
2772
                    cpu_loop_exit_noexc(cpu);
2773
                }
2774
            }
2775 2776
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2777 2778 2779 2780
        }
    }
}

2781
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2782
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2783
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2784 2785
                                  const uint8_t *buf, hwaddr len);
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2786
                                  bool is_write, MemTxAttrs attrs);
2787

2788 2789
static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
                                unsigned len, MemTxAttrs attrs)
2790
{
2791
    subpage_t *subpage = opaque;
2792
    uint8_t buf[8];
2793
    MemTxResult res;
2794

2795
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2796
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2797
           subpage, len, addr);
2798
#endif
2799
    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2800 2801
    if (res) {
        return res;
2802
    }
2803 2804
    *data = ldn_p(buf, len);
    return MEMTX_OK;
2805 2806
}

2807 2808
static MemTxResult subpage_write(void *opaque, hwaddr addr,
                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2809
{
2810
    subpage_t *subpage = opaque;
2811
    uint8_t buf[8];
2812

2813
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2814
    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2815 2816
           " value %"PRIx64"\n",
           __func__, subpage, len, addr, value);
2817
#endif
2818
    stn_p(buf, len, value);
2819
    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2820 2821
}

2822
static bool subpage_accepts(void *opaque, hwaddr addr,
2823 2824
                            unsigned len, bool is_write,
                            MemTxAttrs attrs)
2825
{
2826
    subpage_t *subpage = opaque;
2827
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2828
    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2829
           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2830 2831
#endif

2832
    return flatview_access_valid(subpage->fv, addr + subpage->base,
2833
                                 len, is_write, attrs);
2834 2835
}

2836
static const MemoryRegionOps subpage_ops = {
2837 2838
    .read_with_attrs = subpage_read,
    .write_with_attrs = subpage_write,
2839 2840 2841 2842
    .impl.min_access_size = 1,
    .impl.max_access_size = 8,
    .valid.min_access_size = 1,
    .valid.max_access_size = 8,
2843
    .valid.accepts = subpage_accepts,
2844
    .endianness = DEVICE_NATIVE_ENDIAN,
2845 2846
};

2847 2848
static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
                            uint16_t section)
2849 2850 2851 2852 2853 2854 2855 2856
{
    int idx, eidx;

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2857 2858
    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
           __func__, mmio, start, end, idx, eidx, section);
2859 2860
#endif
    for (; idx <= eidx; idx++) {
2861
        mmio->sub_section[idx] = section;
2862 2863 2864 2865 2866
    }

    return 0;
}

2867
static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2868
{
A
Anthony Liguori 已提交
2869
    subpage_t *mmio;
2870

2871
    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2872
    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2873
    mmio->fv = fv;
2874
    mmio->base = base;
2875
    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
P
Peter Crosthwaite 已提交
2876
                          NULL, TARGET_PAGE_SIZE);
A
Avi Kivity 已提交
2877
    mmio->iomem.subpage = true;
2878
#if defined(DEBUG_SUBPAGE)
A
Amos Kong 已提交
2879 2880
    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
           mmio, base, TARGET_PAGE_SIZE);
2881 2882 2883 2884 2885
#endif

    return mmio;
}

2886
static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2887
{
2888
    assert(fv);
2889
    MemoryRegionSection section = {
2890
        .fv = fv,
2891 2892 2893
        .mr = mr,
        .offset_within_address_space = 0,
        .offset_within_region = 0,
2894
        .size = int128_2_64(),
2895 2896
    };

2897
    return phys_section_add(map, &section);
2898 2899
}

2900 2901
MemoryRegionSection *iotlb_to_section(CPUState *cpu,
                                      hwaddr index, MemTxAttrs attrs)
2902
{
2903 2904
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2905
    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2906
    MemoryRegionSection *sections = d->map.sections;
P
Paolo Bonzini 已提交
2907

2908
    return &sections[index & ~TARGET_PAGE_MASK];
2909 2910
}

A
Avi Kivity 已提交
2911 2912
static void io_mem_init(void)
{
2913
    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2914
                          NULL, UINT64_MAX);
A
Avi Kivity 已提交
2915 2916
}

2917
AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2918
{
2919 2920 2921
    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
    uint16_t n;

2922
    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2923
    assert(n == PHYS_SECTION_UNASSIGNED);
2924

M
Michael S. Tsirkin 已提交
2925
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2926 2927

    return d;
2928 2929
}

2930
void address_space_dispatch_free(AddressSpaceDispatch *d)
2931 2932 2933 2934 2935
{
    phys_sections_free(&d->map);
    g_free(d);
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
static void do_nothing(CPUState *cpu, run_on_cpu_data d)
{
}

static void tcg_log_global_after_sync(MemoryListener *listener)
{
    CPUAddressSpace *cpuas;

    /* Wait for the CPU to end the current TB.  This avoids the following
     * incorrect race:
     *
     *      vCPU                         migration
     *      ----------------------       -------------------------
     *      TLB check -> slow path
     *        notdirty_mem_write
     *          write to RAM
     *          mark dirty
     *                                   clear dirty flag
     *      TLB check -> fast path
     *                                   read memory
     *        write to RAM
     *
     * by pushing the migration thread's memory read after the vCPU thread has
     * written the memory.
     */
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
    if (replay_mode == REPLAY_MODE_NONE) {
        /*
         * VGA can make calls to this function while updating the screen.
         * In record/replay mode this causes a deadlock, because
         * run_on_cpu waits for rr mutex. Therefore no races are possible
         * in this case and no need for making run_on_cpu when
         * record/replay is not enabled.
         */
        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
    }
2972 2973
}

2974
static void tcg_commit(MemoryListener *listener)
2975
{
2976 2977
    CPUAddressSpace *cpuas;
    AddressSpaceDispatch *d;
2978

2979
    assert(tcg_enabled());
2980 2981
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
2982 2983 2984 2985 2986 2987
    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
    cpu_reloading_memory_map();
    /* The CPU and TLB are protected by the iothread lock.
     * We reload the dispatch pointer now because cpu_reloading_memory_map()
     * may have split the RCU critical section.
     */
2988
    d = address_space_to_dispatch(cpuas->as);
2989
    atomic_rcu_set(&cpuas->memory_dispatch, d);
2990
    tlb_flush(cpuas->cpu);
2991 2992
}

A
Avi Kivity 已提交
2993 2994
static void memory_map_init(void)
{
2995
    system_memory = g_malloc(sizeof(*system_memory));
2996

2997
    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2998
    address_space_init(&address_space_memory, system_memory, "memory");
2999

3000
    system_io = g_malloc(sizeof(*system_io));
3001 3002
    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
                          65536);
3003
    address_space_init(&address_space_io, system_io, "I/O");
A
Avi Kivity 已提交
3004 3005 3006 3007 3008 3009 3010
}

MemoryRegion *get_system_memory(void)
{
    return system_memory;
}

3011 3012 3013 3014 3015
MemoryRegion *get_system_io(void)
{
    return system_io;
}

3016 3017
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
3018 3019
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
3020
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3021
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3022
{
3023 3024
    int flags;
    target_ulong l, page;
3025
    void * p;
B
bellard 已提交
3026 3027 3028 3029 3030 3031 3032 3033

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
P
Paul Brook 已提交
3034
            return -1;
B
bellard 已提交
3035 3036
        if (is_write) {
            if (!(flags & PAGE_WRITE))
P
Paul Brook 已提交
3037
                return -1;
3038
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3039
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
P
Paul Brook 已提交
3040
                return -1;
A
aurel32 已提交
3041 3042
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
3043 3044
        } else {
            if (!(flags & PAGE_READ))
P
Paul Brook 已提交
3045
                return -1;
3046
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
3047
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
P
Paul Brook 已提交
3048
                return -1;
A
aurel32 已提交
3049
            memcpy(buf, p, l);
A
aurel32 已提交
3050
            unlock_user(p, addr, 0);
B
bellard 已提交
3051 3052 3053 3054 3055
        }
        len -= l;
        buf += l;
        addr += l;
    }
P
Paul Brook 已提交
3056
    return 0;
B
bellard 已提交
3057
}
B
bellard 已提交
3058

B
bellard 已提交
3059
#else
3060

3061
static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
A
Avi Kivity 已提交
3062
                                     hwaddr length)
3063
{
3064
    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3065 3066
    addr += memory_region_get_ram_addr(mr);

3067 3068 3069 3070 3071 3072 3073 3074 3075
    /* No early return if dirty_log_mask is or becomes 0, because
     * cpu_physical_memory_set_dirty_range will still call
     * xen_modified_memory.
     */
    if (dirty_log_mask) {
        dirty_log_mask =
            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
    }
    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3076
        assert(tcg_enabled());
3077 3078
        tb_invalidate_phys_range(addr, addr + length);
        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3079
    }
3080
    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3081 3082
}

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
    /*
     * In principle this function would work on other memory region types too,
     * but the ROM device use case is the only one where this operation is
     * necessary.  Other memory regions should use the
     * address_space_read/write() APIs.
     */
    assert(memory_region_is_romd(mr));

    invalidate_and_set_dirty(mr, addr, size);
}

3096
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3097
{
3098
    unsigned access_size_max = mr->ops->valid.max_access_size;
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

    /* Regions are assumed to support 1-4 byte accesses unless
       otherwise specified.  */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
3112
    }
3113 3114 3115 3116

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
3117
    }
3118
    l = pow2floor(l);
3119 3120

    return l;
3121 3122
}

3123
static bool prepare_mmio_access(MemoryRegion *mr)
3124
{
3125 3126 3127 3128 3129 3130 3131 3132
    bool unlocked = !qemu_mutex_iothread_locked();
    bool release_lock = false;

    if (unlocked && mr->global_locking) {
        qemu_mutex_lock_iothread();
        unlocked = false;
        release_lock = true;
    }
3133
    if (mr->flush_coalesced_mmio) {
3134 3135 3136
        if (unlocked) {
            qemu_mutex_lock_iothread();
        }
3137
        qemu_flush_coalesced_mmio_buffer();
3138 3139 3140
        if (unlocked) {
            qemu_mutex_unlock_iothread();
        }
3141
    }
3142 3143

    return release_lock;
3144 3145
}

3146
/* Called within RCU critical section.  */
3147 3148 3149
static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
                                           MemTxAttrs attrs,
                                           const uint8_t *buf,
3150
                                           hwaddr len, hwaddr addr1,
3151
                                           hwaddr l, MemoryRegion *mr)
B
bellard 已提交
3152 3153
{
    uint8_t *ptr;
3154
    uint64_t val;
3155
    MemTxResult result = MEMTX_OK;
3156
    bool release_lock = false;
3157

3158
    for (;;) {
3159 3160 3161 3162 3163
        if (!memory_access_is_direct(mr, true)) {
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
            /* XXX: could force current_cpu to NULL to avoid
               potential bugs */
3164
            val = ldn_he_p(buf, l);
3165
            result |= memory_region_dispatch_write(mr, addr1, val,
3166
                                                   size_memop(l), attrs);
B
bellard 已提交
3167
        } else {
3168
            /* RAM case */
3169
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3170 3171
            memcpy(ptr, buf, l);
            invalidate_and_set_dirty(mr, addr1, l);
B
bellard 已提交
3172
        }
3173 3174 3175 3176 3177 3178

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

B
bellard 已提交
3179 3180 3181
        len -= l;
        buf += l;
        addr += l;
3182 3183 3184 3185 3186 3187

        if (!len) {
            break;
        }

        l = len;
3188
        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
B
bellard 已提交
3189
    }
3190

3191
    return result;
B
bellard 已提交
3192
}
B
bellard 已提交
3193

3194
/* Called from RCU critical section.  */
3195
static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3196
                                  const uint8_t *buf, hwaddr len)
A
Avi Kivity 已提交
3197
{
3198 3199 3200 3201 3202
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
    MemTxResult result = MEMTX_OK;

3203
    l = len;
3204
    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3205 3206
    result = flatview_write_continue(fv, addr, attrs, buf, len,
                                     addr1, l, mr);
3207 3208 3209 3210 3211

    return result;
}

/* Called within RCU critical section.  */
3212 3213
MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
                                   MemTxAttrs attrs, uint8_t *buf,
3214
                                   hwaddr len, hwaddr addr1, hwaddr l,
3215
                                   MemoryRegion *mr)
3216 3217 3218 3219 3220
{
    uint8_t *ptr;
    uint64_t val;
    MemTxResult result = MEMTX_OK;
    bool release_lock = false;
3221

3222
    for (;;) {
3223 3224 3225 3226
        if (!memory_access_is_direct(mr, false)) {
            /* I/O case */
            release_lock |= prepare_mmio_access(mr);
            l = memory_access_size(mr, l, addr1);
3227
            result |= memory_region_dispatch_read(mr, addr1, &val,
3228 3229
                                                  size_memop(l), attrs);
            stn_he_p(buf, l, val);
3230 3231
        } else {
            /* RAM case */
3232
            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
            memcpy(buf, ptr, l);
        }

        if (release_lock) {
            qemu_mutex_unlock_iothread();
            release_lock = false;
        }

        len -= l;
        buf += l;
        addr += l;
3244 3245 3246 3247 3248 3249

        if (!len) {
            break;
        }

        l = len;
3250
        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3251 3252 3253 3254 3255
    }

    return result;
}

3256 3257
/* Called from RCU critical section.  */
static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3258
                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3259 3260 3261 3262
{
    hwaddr l;
    hwaddr addr1;
    MemoryRegion *mr;
3263

3264
    l = len;
3265
    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3266 3267
    return flatview_read_continue(fv, addr, attrs, buf, len,
                                  addr1, l, mr);
A
Avi Kivity 已提交
3268 3269
}

3270
MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3271
                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3272 3273 3274 3275 3276
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
3277
        RCU_READ_LOCK_GUARD();
3278 3279 3280 3281 3282 3283 3284
        fv = address_space_to_flatview(as);
        result = flatview_read(fv, addr, attrs, buf, len);
    }

    return result;
}

3285 3286
MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
                                MemTxAttrs attrs,
3287
                                const uint8_t *buf, hwaddr len)
3288 3289 3290 3291 3292
{
    MemTxResult result = MEMTX_OK;
    FlatView *fv;

    if (len > 0) {
3293
        RCU_READ_LOCK_GUARD();
3294 3295 3296 3297 3298 3299 3300
        fv = address_space_to_flatview(as);
        result = flatview_write(fv, addr, attrs, buf, len);
    }

    return result;
}

3301
MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3302
                             uint8_t *buf, hwaddr len, bool is_write)
3303 3304 3305 3306 3307 3308 3309 3310
{
    if (is_write) {
        return address_space_write(as, addr, attrs, buf, len);
    } else {
        return address_space_read_full(as, addr, attrs, buf, len);
    }
}

A
Avi Kivity 已提交
3311
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3312
                            hwaddr len, int is_write)
A
Avi Kivity 已提交
3313
{
3314 3315
    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
                     buf, len, is_write);
A
Avi Kivity 已提交
3316 3317
}

3318 3319 3320 3321 3322
enum write_rom_type {
    WRITE_DATA,
    FLUSH_CACHE,
};

3323 3324 3325 3326
static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
                                                           hwaddr addr,
                                                           MemTxAttrs attrs,
                                                           const uint8_t *buf,
3327
                                                           hwaddr len,
3328
                                                           enum write_rom_type type)
B
bellard 已提交
3329
{
3330
    hwaddr l;
B
bellard 已提交
3331
    uint8_t *ptr;
3332
    hwaddr addr1;
3333
    MemoryRegion *mr;
3334

3335
    RCU_READ_LOCK_GUARD();
B
bellard 已提交
3336
    while (len > 0) {
3337
        l = len;
3338
        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3339

3340 3341
        if (!(memory_region_is_ram(mr) ||
              memory_region_is_romd(mr))) {
3342
            l = memory_access_size(mr, l, addr1);
B
bellard 已提交
3343 3344
        } else {
            /* ROM/RAM case */
3345
            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3346 3347 3348
            switch (type) {
            case WRITE_DATA:
                memcpy(ptr, buf, l);
3349
                invalidate_and_set_dirty(mr, addr1, l);
3350 3351 3352 3353 3354
                break;
            case FLUSH_CACHE:
                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
                break;
            }
B
bellard 已提交
3355 3356 3357 3358 3359
        }
        len -= l;
        buf += l;
        addr += l;
    }
3360
    return MEMTX_OK;
B
bellard 已提交
3361 3362
}

3363
/* used for ROM loading : can write in RAM and ROM */
3364 3365
MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
                                    MemTxAttrs attrs,
3366
                                    const uint8_t *buf, hwaddr len)
3367
{
3368 3369
    return address_space_write_rom_internal(as, addr, attrs,
                                            buf, len, WRITE_DATA);
3370 3371
}

3372
void cpu_flush_icache_range(hwaddr start, hwaddr len)
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
{
    /*
     * This function should do the same thing as an icache flush that was
     * triggered from within the guest. For TCG we are always cache coherent,
     * so there is no need to flush anything. For KVM / Xen we need to flush
     * the host's instruction cache at least.
     */
    if (tcg_enabled()) {
        return;
    }

3384 3385 3386
    address_space_write_rom_internal(&address_space_memory,
                                     start, MEMTXATTRS_UNSPECIFIED,
                                     NULL, len, FLUSH_CACHE);
3387 3388
}

3389
typedef struct {
3390
    MemoryRegion *mr;
3391
    void *buffer;
A
Avi Kivity 已提交
3392 3393
    hwaddr addr;
    hwaddr len;
F
Fam Zheng 已提交
3394
    bool in_use;
3395 3396 3397 3398
} BounceBuffer;

static BounceBuffer bounce;

3399
typedef struct MapClient {
3400
    QEMUBH *bh;
B
Blue Swirl 已提交
3401
    QLIST_ENTRY(MapClient) link;
3402 3403
} MapClient;

3404
QemuMutex map_client_list_lock;
3405
static QLIST_HEAD(, MapClient) map_client_list
B
Blue Swirl 已提交
3406
    = QLIST_HEAD_INITIALIZER(map_client_list);
3407

3408 3409 3410 3411 3412 3413
static void cpu_unregister_map_client_do(MapClient *client)
{
    QLIST_REMOVE(client, link);
    g_free(client);
}

3414 3415 3416 3417 3418 3419
static void cpu_notify_map_clients_locked(void)
{
    MapClient *client;

    while (!QLIST_EMPTY(&map_client_list)) {
        client = QLIST_FIRST(&map_client_list);
3420 3421
        qemu_bh_schedule(client->bh);
        cpu_unregister_map_client_do(client);
3422 3423 3424
    }
}

3425
void cpu_register_map_client(QEMUBH *bh)
3426
{
3427
    MapClient *client = g_malloc(sizeof(*client));
3428

3429
    qemu_mutex_lock(&map_client_list_lock);
3430
    client->bh = bh;
B
Blue Swirl 已提交
3431
    QLIST_INSERT_HEAD(&map_client_list, client, link);
3432 3433 3434
    if (!atomic_read(&bounce.in_use)) {
        cpu_notify_map_clients_locked();
    }
3435
    qemu_mutex_unlock(&map_client_list_lock);
3436 3437
}

3438
void cpu_exec_init_all(void)
3439
{
3440
    qemu_mutex_init(&ram_list.mutex);
3441 3442 3443 3444 3445 3446 3447 3448
    /* The data structures we set up here depend on knowing the page size,
     * so no more changes can be made after this point.
     * In an ideal world, nothing we did before we had finished the
     * machine setup would care about the target page size, and we could
     * do this much later, rather than requiring board models to state
     * up front what their requirements are.
     */
    finalize_target_page_bits();
3449
    io_mem_init();
3450
    memory_map_init();
3451
    qemu_mutex_init(&map_client_list_lock);
3452 3453
}

3454
void cpu_unregister_map_client(QEMUBH *bh)
3455 3456 3457
{
    MapClient *client;

3458 3459 3460 3461 3462 3463
    qemu_mutex_lock(&map_client_list_lock);
    QLIST_FOREACH(client, &map_client_list, link) {
        if (client->bh == bh) {
            cpu_unregister_map_client_do(client);
            break;
        }
3464
    }
3465
    qemu_mutex_unlock(&map_client_list_lock);
3466 3467 3468 3469
}

static void cpu_notify_map_clients(void)
{
3470
    qemu_mutex_lock(&map_client_list_lock);
3471
    cpu_notify_map_clients_locked();
3472
    qemu_mutex_unlock(&map_client_list_lock);
3473 3474
}

3475
static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3476
                                  bool is_write, MemTxAttrs attrs)
3477
{
3478
    MemoryRegion *mr;
3479 3480 3481 3482
    hwaddr l, xlat;

    while (len > 0) {
        l = len;
3483
        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3484 3485
        if (!memory_access_is_direct(mr, is_write)) {
            l = memory_access_size(mr, l, addr);
3486
            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
                return false;
            }
        }

        len -= l;
        addr += l;
    }
    return true;
}

3497
bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3498
                                hwaddr len, bool is_write,
3499
                                MemTxAttrs attrs)
3500
{
3501 3502 3503
    FlatView *fv;
    bool result;

3504
    RCU_READ_LOCK_GUARD();
3505
    fv = address_space_to_flatview(as);
3506
    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3507
    return result;
3508 3509
}

3510
static hwaddr
3511
flatview_extend_translation(FlatView *fv, hwaddr addr,
3512 3513 3514
                            hwaddr target_len,
                            MemoryRegion *mr, hwaddr base, hwaddr len,
                            bool is_write, MemTxAttrs attrs)
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
{
    hwaddr done = 0;
    hwaddr xlat;
    MemoryRegion *this_mr;

    for (;;) {
        target_len -= len;
        addr += len;
        done += len;
        if (target_len == 0) {
            return done;
        }

        len = target_len;
3529
        this_mr = flatview_translate(fv, addr, &xlat,
3530
                                     &len, is_write, attrs);
3531 3532 3533 3534 3535 3536
        if (this_mr != mr || xlat != base + done) {
            return done;
        }
    }
}

3537 3538 3539 3540
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3541 3542
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3543
 */
A
Avi Kivity 已提交
3544
void *address_space_map(AddressSpace *as,
A
Avi Kivity 已提交
3545 3546
                        hwaddr addr,
                        hwaddr *plen,
3547 3548
                        bool is_write,
                        MemTxAttrs attrs)
3549
{
A
Avi Kivity 已提交
3550
    hwaddr len = *plen;
3551 3552
    hwaddr l, xlat;
    MemoryRegion *mr;
3553
    void *ptr;
3554
    FlatView *fv;
3555

3556 3557 3558
    if (len == 0) {
        return NULL;
    }
3559

3560
    l = len;
3561
    RCU_READ_LOCK_GUARD();
3562
    fv = address_space_to_flatview(as);
3563
    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3564

3565
    if (!memory_access_is_direct(mr, is_write)) {
F
Fam Zheng 已提交
3566
        if (atomic_xchg(&bounce.in_use, true)) {
3567
            return NULL;
3568
        }
3569 3570 3571
        /* Avoid unbounded allocations */
        l = MIN(l, TARGET_PAGE_SIZE);
        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3572 3573
        bounce.addr = addr;
        bounce.len = l;
3574 3575 3576

        memory_region_ref(mr);
        bounce.mr = mr;
3577
        if (!is_write) {
3578
            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3579
                               bounce.buffer, l);
3580
        }
3581

3582 3583 3584 3585 3586
        *plen = l;
        return bounce.buffer;
    }


3587
    memory_region_ref(mr);
3588
    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3589
                                        l, is_write, attrs);
3590
    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3591 3592

    return ptr;
3593 3594
}

A
Avi Kivity 已提交
3595
/* Unmaps a memory region previously mapped by address_space_map().
3596 3597 3598
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
A
Avi Kivity 已提交
3599 3600
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
                         int is_write, hwaddr access_len)
3601 3602
{
    if (buffer != bounce.buffer) {
3603 3604 3605
        MemoryRegion *mr;
        ram_addr_t addr1;

3606
        mr = memory_region_from_host(buffer, &addr1);
3607
        assert(mr != NULL);
3608
        if (is_write) {
3609
            invalidate_and_set_dirty(mr, addr1, access_len);
3610
        }
3611
        if (xen_enabled()) {
J
Jan Kiszka 已提交
3612
            xen_invalidate_map_cache_entry(buffer);
A
Anthony PERARD 已提交
3613
        }
3614
        memory_region_unref(mr);
3615 3616 3617
        return;
    }
    if (is_write) {
3618 3619
        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
                            bounce.buffer, access_len);
3620
    }
3621
    qemu_vfree(bounce.buffer);
3622
    bounce.buffer = NULL;
3623
    memory_region_unref(bounce.mr);
F
Fam Zheng 已提交
3624
    atomic_mb_set(&bounce.in_use, false);
3625
    cpu_notify_map_clients();
3626
}
B
bellard 已提交
3627

A
Avi Kivity 已提交
3628 3629
void *cpu_physical_memory_map(hwaddr addr,
                              hwaddr *plen,
A
Avi Kivity 已提交
3630 3631
                              int is_write)
{
3632 3633
    return address_space_map(&address_space_memory, addr, plen, is_write,
                             MEMTXATTRS_UNSPECIFIED);
A
Avi Kivity 已提交
3634 3635
}

A
Avi Kivity 已提交
3636 3637
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
                               int is_write, hwaddr access_len)
A
Avi Kivity 已提交
3638 3639 3640 3641
{
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
}

P
Paolo Bonzini 已提交
3642 3643 3644 3645 3646 3647 3648
#define ARG1_DECL                AddressSpace *as
#define ARG1                     as
#define SUFFIX
#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
#define RCU_READ_LOCK(...)       rcu_read_lock()
#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
#include "memory_ldst.inc.c"
3649

P
Paolo Bonzini 已提交
3650 3651 3652 3653 3654 3655
int64_t address_space_cache_init(MemoryRegionCache *cache,
                                 AddressSpace *as,
                                 hwaddr addr,
                                 hwaddr len,
                                 bool is_write)
{
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
    AddressSpaceDispatch *d;
    hwaddr l;
    MemoryRegion *mr;

    assert(len > 0);

    l = len;
    cache->fv = address_space_get_flatview(as);
    d = flatview_to_dispatch(cache->fv);
    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);

    mr = cache->mrs.mr;
    memory_region_ref(mr);
    if (memory_access_is_direct(mr, is_write)) {
3670 3671 3672 3673
        /* We don't care about the memory attributes here as we're only
         * doing this if we found actual RAM, which behaves the same
         * regardless of attributes; so UNSPECIFIED is fine.
         */
3674
        l = flatview_extend_translation(cache->fv, addr, len, mr,
3675 3676
                                        cache->xlat, l, is_write,
                                        MEMTXATTRS_UNSPECIFIED);
3677 3678 3679 3680 3681 3682 3683 3684
        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
    } else {
        cache->ptr = NULL;
    }

    cache->len = l;
    cache->is_write = is_write;
    return l;
P
Paolo Bonzini 已提交
3685 3686 3687 3688 3689 3690
}

void address_space_cache_invalidate(MemoryRegionCache *cache,
                                    hwaddr addr,
                                    hwaddr access_len)
{
3691 3692 3693 3694
    assert(cache->is_write);
    if (likely(cache->ptr)) {
        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
    }
P
Paolo Bonzini 已提交
3695 3696 3697 3698
}

void address_space_cache_destroy(MemoryRegionCache *cache)
{
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
    if (!cache->mrs.mr) {
        return;
    }

    if (xen_enabled()) {
        xen_invalidate_map_cache_entry(cache->ptr);
    }
    memory_region_unref(cache->mrs.mr);
    flatview_unref(cache->fv);
    cache->mrs.mr = NULL;
    cache->fv = NULL;
}

/* Called from RCU critical section.  This function has the same
 * semantics as address_space_translate, but it only works on a
 * predefined range of a MemoryRegion that was mapped with
 * address_space_cache_init.
 */
static inline MemoryRegion *address_space_translate_cached(
    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3719
    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
{
    MemoryRegionSection section;
    MemoryRegion *mr;
    IOMMUMemoryRegion *iommu_mr;
    AddressSpace *target_as;

    assert(!cache->ptr);
    *xlat = addr + cache->xlat;

    mr = cache->mrs.mr;
    iommu_mr = memory_region_get_iommu(mr);
    if (!iommu_mr) {
        /* MMIO region.  */
        return mr;
    }

    section = address_space_translate_iommu(iommu_mr, xlat, plen,
                                            NULL, is_write, true,
3738
                                            &target_as, attrs);
3739 3740 3741 3742 3743 3744 3745 3746
    return section.mr;
}

/* Called from RCU critical section. address_space_read_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3747
                                   void *buf, hwaddr len)
3748 3749 3750 3751 3752
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3753 3754
    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
                                        MEMTXATTRS_UNSPECIFIED);
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
    flatview_read_continue(cache->fv,
                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                           addr1, l, mr);
}

/* Called from RCU critical section. address_space_write_cached uses this
 * out of line function when the target is an MMIO or IOMMU region.
 */
void
address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3765
                                    const void *buf, hwaddr len)
3766 3767 3768 3769 3770
{
    hwaddr addr1, l;
    MemoryRegion *mr;

    l = len;
3771 3772
    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
                                        MEMTXATTRS_UNSPECIFIED);
3773 3774 3775
    flatview_write_continue(cache->fv,
                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
                            addr1, l, mr);
P
Paolo Bonzini 已提交
3776 3777 3778 3779
}

#define ARG1_DECL                MemoryRegionCache *cache
#define ARG1                     cache
3780 3781 3782 3783
#define SUFFIX                   _cached_slow
#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
#define RCU_READ_LOCK()          ((void)0)
#define RCU_READ_UNLOCK()        ((void)0)
P
Paolo Bonzini 已提交
3784 3785
#include "memory_ldst.inc.c"

3786
/* virtual memory access for debug (includes writing to ROM) */
3787
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3788
                        uint8_t *buf, target_ulong len, int is_write)
B
bellard 已提交
3789
{
A
Avi Kivity 已提交
3790
    hwaddr phys_addr;
3791
    target_ulong l, page;
B
bellard 已提交
3792

3793
    cpu_synchronize_state(cpu);
B
bellard 已提交
3794
    while (len > 0) {
3795 3796 3797
        int asidx;
        MemTxAttrs attrs;

B
bellard 已提交
3798
        page = addr & TARGET_PAGE_MASK;
3799 3800
        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
        asidx = cpu_asidx_from_attrs(cpu, attrs);
B
bellard 已提交
3801 3802 3803 3804 3805 3806
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3807
        phys_addr += (addr & ~TARGET_PAGE_MASK);
3808
        if (is_write) {
3809
            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3810
                                    attrs, buf, l);
3811
        } else {
3812
            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3813
                             attrs, buf, l, 0);
3814
        }
B
bellard 已提交
3815 3816 3817 3818 3819 3820
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
3821 3822 3823 3824 3825

/*
 * Allows code that needs to deal with migration bitmaps etc to still be built
 * target independent.
 */
3826
size_t qemu_target_page_size(void)
3827
{
3828
    return TARGET_PAGE_SIZE;
3829 3830
}

3831 3832 3833 3834 3835 3836 3837 3838 3839
int qemu_target_page_bits(void)
{
    return TARGET_PAGE_BITS;
}

int qemu_target_page_bits_min(void)
{
    return TARGET_PAGE_BITS_MIN;
}
P
Paul Brook 已提交
3840
#endif
B
bellard 已提交
3841

3842
bool target_words_bigendian(void)
3843 3844 3845 3846 3847 3848 3849 3850
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

3851
#ifndef CONFIG_USER_ONLY
A
Avi Kivity 已提交
3852
bool cpu_physical_memory_is_io(hwaddr phys_addr)
3853
{
3854
    MemoryRegion*mr;
3855
    hwaddr l = 1;
3856
    bool res;
3857

3858
    RCU_READ_LOCK_GUARD();
3859
    mr = address_space_translate(&address_space_memory,
3860 3861
                                 phys_addr, &phys_addr, &l, false,
                                 MEMTXATTRS_UNSPECIFIED);
3862

3863 3864
    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
    return res;
3865
}
3866

3867
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3868 3869
{
    RAMBlock *block;
3870
    int ret = 0;
3871

3872
    RCU_READ_LOCK_GUARD();
P
Peter Xu 已提交
3873
    RAMBLOCK_FOREACH(block) {
3874
        ret = func(block, opaque);
3875 3876 3877
        if (ret) {
            break;
        }
3878
    }
3879
    return ret;
3880
}
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902

/*
 * Unmap pages of memory from start to start+length such that
 * they a) read as 0, b) Trigger whatever fault mechanism
 * the OS provides for postcopy.
 * The pages must be unmapped by the end of the function.
 * Returns: 0 on success, none-0 on failure
 *
 */
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
{
    int ret = -1;

    uint8_t *host_startaddr = rb->host + start;

    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
        error_report("ram_block_discard_range: Unaligned start address: %p",
                     host_startaddr);
        goto err;
    }

    if ((start + length) <= rb->used_length) {
3903
        bool need_madvise, need_fallocate;
3904 3905 3906 3907 3908 3909 3910 3911 3912
        uint8_t *host_endaddr = host_startaddr + length;
        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
            error_report("ram_block_discard_range: Unaligned end address: %p",
                         host_endaddr);
            goto err;
        }

        errno = ENOTSUP; /* If we are missing MADVISE etc */

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
        /* The logic here is messy;
         *    madvise DONTNEED fails for hugepages
         *    fallocate works on hugepages and shmem
         */
        need_madvise = (rb->page_size == qemu_host_page_size);
        need_fallocate = rb->fd != -1;
        if (need_fallocate) {
            /* For a file, this causes the area of the file to be zero'd
             * if read, and for hugetlbfs also causes it to be unmapped
             * so a userfault will trigger.
3923 3924 3925 3926
             */
#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
                            start, length);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to fallocate "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: fallocate not available/file"
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
            goto err;
3940 3941
#endif
        }
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
        if (need_madvise) {
            /* For normal RAM this causes it to be unmapped,
             * for shared memory it causes the local mapping to disappear
             * and to fall back on the file contents (which we just
             * fallocate'd away).
             */
#if defined(CONFIG_MADVISE)
            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
            if (ret) {
                ret = -errno;
                error_report("ram_block_discard_range: Failed to discard range "
                             "%s:%" PRIx64 " +%zx (%d)",
                             rb->idstr, start, length, ret);
                goto err;
            }
#else
            ret = -ENOSYS;
            error_report("ram_block_discard_range: MADVISE not available"
3960 3961
                         "%s:%" PRIx64 " +%zx (%d)",
                         rb->idstr, start, length, ret);
3962 3963
            goto err;
#endif
3964
        }
3965 3966
        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
                                      need_madvise, need_fallocate, ret);
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
    } else {
        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
                     "/%zx/" RAM_ADDR_FMT")",
                     rb->idstr, start, length, rb->used_length);
    }

err:
    return ret;
}

J
Junyan He 已提交
3977 3978 3979 3980 3981
bool ramblock_is_pmem(RAMBlock *rb)
{
    return rb->flags & RAM_PMEM;
}

3982
#endif
Y
Yang Zhong 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}
3996 3997 3998

#if !defined(CONFIG_USER_ONLY)

3999
static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4000 4001
{
    if (start == end - 1) {
4002
        qemu_printf("\t%3d      ", start);
4003
    } else {
4004
        qemu_printf("\t%3d..%-3d ", start, end - 1);
4005
    }
4006
    qemu_printf(" skip=%d ", skip);
4007
    if (ptr == PHYS_MAP_NODE_NIL) {
4008
        qemu_printf(" ptr=NIL");
4009
    } else if (!skip) {
4010
        qemu_printf(" ptr=#%d", ptr);
4011
    } else {
4012
        qemu_printf(" ptr=[%d]", ptr);
4013
    }
4014
    qemu_printf("\n");
4015 4016 4017 4018 4019
}

#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
                           int128_sub((size), int128_one())) : 0)

4020
void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4021 4022 4023
{
    int i;

4024 4025
    qemu_printf("  Dispatch\n");
    qemu_printf("    Physical sections\n");
4026 4027 4028 4029 4030 4031

    for (i = 0; i < d->map.sections_nb; ++i) {
        MemoryRegionSection *s = d->map.sections + i;
        const char *names[] = { " [unassigned]", " [not dirty]",
                                " [ROM]", " [watch]" };

4032 4033
        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
                    " %s%s%s%s%s",
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
            i,
            s->offset_within_address_space,
            s->offset_within_address_space + MR_SIZE(s->mr->size),
            s->mr->name ? s->mr->name : "(noname)",
            i < ARRAY_SIZE(names) ? names[i] : "",
            s->mr == root ? " [ROOT]" : "",
            s == d->mru_section ? " [MRU]" : "",
            s->mr->is_iommu ? " [iommu]" : "");

        if (s->mr->alias) {
4044
            qemu_printf(" alias=%s", s->mr->alias->name ?
4045 4046
                    s->mr->alias->name : "noname");
        }
4047
        qemu_printf("\n");
4048 4049
    }

4050
    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4051 4052 4053 4054 4055 4056
               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
    for (i = 0; i < d->map.nodes_nb; ++i) {
        int j, jprev;
        PhysPageEntry prev;
        Node *n = d->map.nodes + i;

4057
        qemu_printf("      [%d]\n", i);
4058 4059 4060 4061 4062 4063 4064 4065

        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
            PhysPageEntry *pe = *n + j;

            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
                continue;
            }

4066
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4067 4068 4069 4070 4071 4072

            jprev = j;
            prev = *pe;
        }

        if (jprev != ARRAY_SIZE(*n)) {
4073
            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4074 4075 4076 4077 4078
        }
    }
}

#endif